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We have developed a full multimode theory of a synchronously pumped type-I optical parametric oscillator.
We calculate the output quantum fluctuations of the device and find that, in the degenerate case �coincident
signal and idler set of frequencies�, significant squeezing is obtained when one approaches threshold from
below for a set of well-defined “supermodes,” or frequency combs, consisting of a coherent linear superposi-
tion of signal modes of different frequencies which are resonant in the cavity.
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Optical parametric oscillators �OPO’s� are among the best
sources of squeezed �1�, correlated �2�, and entangled �3�
light in the so-called continuous-variable regime. They have
allowed physicists to successfully implement demonstration
experiments for high-sensitivity optical measurements and
quantum information protocols. In order to maximize the
quantum effects, one needs to optimize the parametric down-
conversion process. This has been achieved so far by using
either intense pump lasers or resonant cavities. Having in
mind that the parametric process is an almost instantaneous
one, femtosecond mode-locked lasers are the best pump
sources in this respect, as they generate very high peak op-
tical powers with high coherence properties. Furthermore,
they minimize the thermal effects in the linear crystal which
often hamper the normal operation of parametric devices.
Mode-locked lasers have been already used extensively to
generate nonclassical light, by either pumping a parametric
crystal �4,5� or an optical fiber �6�. However, in such single-
path configurations, perfect quantum properties are only ob-
tained when the pump power goes to infinity. This is the
reason why mode locking is often associated with Q switch-
ing and pulse amplification �7� in order to reach even higher
peak powers, at the expense of a loss in the coherence prop-
erties between the successive pump pulses. In contrast, int-
racavity devices produce perfect quantum properties for a
finite power: namely, the oscillation threshold of the device.
It is therefore tempting to consider devices in which one
takes advantage of the beneficial effects of both high peak
powers and resonant cavity buildup. Such devices exist: they
are the so-called synchronously pumped OPO’s �SPOPO’s�.
In a SPOPO the cavity round-trip time is equal to that of the
pumping mode-locked laser, so that the effects of the succes-
sive intense pump pulses add coherently, thus reducing con-
siderably its oscillation threshold. Such SPOPO’s have al-
ready been implemented as efficient sources of tunable
ultrashort pulses �8–13�, and their temporal properties have
been theoretically investigated �14–16�. Let us mention that
mode-locked OPO’s have also been developed: in such de-
vices, the cavity is resonant only for the signal modes and
idler modes, and the pump pulses are not recirculating. De-
generate mode-locked OPO’s have been used to generate
pulsed squeezed light in the picosecond regime �5�.

In this Rapid Communication, we make a complete mul-
timode quantum analysis of SPOPO’s and show theoretically
that these devices are very efficient to produce squeezed

states. Squeezing is effective not in a single-frequency mode,
as usual, but instead in a whole set of “supermodes,” which
are well-defined linear combinations of signal modes of dif-
ferent frequencies. Similar supermodes have been indepen-
dently introduced by Wasilewski et al. �17� in the different
context of transient, degenerate down-conversion in a single-
pass, single-pulse configuration. In their case, the super-
modes are continuous linear superpositions of the annihila-
tion operators in free space, whereas in our case, because of
the resonant cavity, they are a discrete combination of
modes.

Let us first specify the model that we use �Fig. 1�. We
consider a ring cavity of optical length L containing a type-I
parametric crystal of thickness l. Degenerate phase matching
is assumed, meaning that the phase-matching condition is
fulfilled for frequencies 2�0 and �0. This amounts to saying
that n�2�0�=n��0��n0, n��� being the refractive index of
the crystal at frequency �. The mode-locked pump laser,
having a repetition rate � /2�=c /L, is tuned so that the fre-
quency of one of its modes is equal to 2�0. The electric field
generated by the pump mode-locked laser can be expressed
as

Eext�t� = � P

2�0c
�1/2

�
m

i�me−i�2�0+m��t + c.c., �1�

where P is the average laser power per unit area, �m the
normalized ��m	�m	2=1� complex spectral component of
longitudinal mode labeled by the integer index m, and
m=0 corresponds to the phase-matched mode. For the sake
of simplicity in this first approach of the problem, we will
take the modal coefficients �m as real numbers, thus exclud-
ing chirped pump pulses. As already mentioned, the SPOPO
cavity length is adjusted so that its free spectral range coin-
cides with that of the pumping laser. In the nonlinear crystal,
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FIG. 1. �Color online� Synchronously pumped OPO.
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pump photons belonging to all the different longitudinal
pump modes are converted into signal and idler photons via
the parametric interaction. In addition we will assume here
that we are in the ideal case of doubly resonant degenerate
operation, meaning that among all the OPO cavity resonant
frequencies, there are all the pump mode frequencies �p,m
=2�0+m� but also all the frequencies �s,q=�0+q� around
the phase-matched subharmonic frequency �0. The intracav-
ity electric field generated by the parametric interaction will
then be a superposition of fields oscillating at frequencies
�s,q. We will finally call �p and �s the cavity damping rates
for the pump and signal modes. Note that the free spectral
range � is assumed to be the same in the pump and in the
signal spectral regions. This is necessary for an efficient in-
tracavity parametric down-conversion and requires, from the
experimental viewpoint, the use of extra dispersive elements
inside the cavity that compensate for the dispersion of the
crystal. At the quantum level, the signal field, taken at the
middle of the crystal, is represented by the quantum operator

Ês which can be written as

Ês�t� = �
q

iEs,qŝq�t�e−i�s,qt + H.c., �2�

where ŝq is the annihilation operator for the qth signal mode
in the interaction picture. Es,q is the single-photon field am-
plitude, equal to 
��s,q /2�0n��s,q�AL, and A its effective
transverse area.

The following Heisenberg equations for the field opera-
tors can be derived using the standard methods. The details
of the derivation will be given in a forthcoming publication
�18�. Below threshold and in the linearized regime for the
pump fluctuations, they read

dŝm

dt
= − �sŝm + �s��

q

Lm,qŝq
† + 
2�sŝin,m, �3�

where � is the normalized pump amplitude,

� = 
P/P0, �4�

in which P0 is the single-mode continuous wave �cw� oscil-
lation threshold:

P0 = 2�s
2�pn0

3c3�0/�4
2	l�0�2, �5�

with 	 the crystal nonlinear susceptibility. Lm,q is the product
of a phase-mismatch factor by the pump spectral normalized
amplitude �m+q,

Lm,q =
sin 
m,q


m,q
�m+q, �6�

where 
m,q is the phase-mismatch angle,


m,q =
l

2
�kp,m+q − ks,m − ks,q� , �7�

which can be computed using a Taylor expansion around 2�0
for the pump wave vectors kp,m and around �0 for the signal
wave vectors ks,q:


m,q � �1�m + q� + �2p�m + q�2 − �2s�m2 + q2� , �8�

where �1= 1
2��kp�−ks��l, �2p= 1

4�2kp�l, and �2s= 1
4�2ks�l. k�

and k� are the first and second derivatives of the wave vector
with respect to frequency. Finally ŝin,m are the input signal
field operators at frequency �s,m transmitted through the cou-
pling mirror. When the input is the vacuum state, which we
consider here, their only non-null correlations are

�ŝin,m1
�t1�ŝin,m2

† �t2� = �m1,m2
��t1 − t2� . �9�

In order to get Eq. �3�, we assumed, as usual, that
Es,m�Es,0 for all m and we neglected the dispersion of the
nonlinear susceptibility. Therefore the present approach is
not valid for ultrashort pulses, the spectrum of which extends
over the whole visible region.

Let us first determine the average values of the generated
fields. They are determined by the “classical” counterpart of
Eq. �3�, removing the input noise terms and replacing the
operators by complex numbers. The solution of these equa-
tions is of the form sm�t�=Sk,mekt, where k is an index label-
ing the different solutions. The parameters Sk,m and k obey
the following eigenvalue equation:

kSk,m = − �sSk,m + �s��
q

Lm,qSk,q
* . �10�

As matrix L is both self-adjoint and real �Lm,q=Lq,m real; see

Eqs. �6�–�8��, its eigenvalues �k and eigenvectors L� k, of
components Lk,m, are all real. As �s and � are also real, there
exist two sets of solutions of Eqs. �10�, which we will call
Sk,m

�+� and Sk,m
�−� . The first set is given by Sk,m

�+� =Lk,m, and the
second one is Sk,m

�−� = iLk,m, with corresponding eigenvalues

k
�±� = �s�− 1 ± ��k� . �11�

Let us now label by index k=0 the solution whose eigen-
value �k is maximum in absolute value: 	�0	=max�	�k	�.
When �	�0	 is smaller than 1, all the rates k

± are negative,
which implies that the null solution for the steady-state sig-
nal field is stable. For the simplicity of notation, we will take
�0 positive in the following �19�. The SPOPO reaches its
oscillation threshold when � takes the value 1/�0—i.e., for a
pump power P= Pthr equal to

Pthr = P0/�0
2. �12�

The exact value of �0, and therefore of the SPOPO thresh-
old, depends on the exact shape of the phase-matching curve
and on the exact spectrum of the pump laser �18�. In the most
favorable situation, the theoretical SPOPO threshold can be
extremely low, of the order of the single-mode threshold di-
vided by the number of pump modes.

Let us now define the normalized amplitude pumping rate
r by r=
P / Pthr=��0. We will call ‘‘eigenspectrum’’ the set
of Sk,m values for a given k, which corresponds physically to
the different spectral components of the signal field, and the
critical eigenspectrum S0,m

�+� the one associated with 0
�+�,

which changes sign at threshold. Above threshold, this criti-
cal mode will be the “lasing” one—i.e., the one having a
nonzero mean amplitude when r�1. Let us note that the
eigenspectrum in quadrature with respect to the critical one,
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S0
�−�= iS0

�+�, has an associated eigenvalue 0
�−�=−2�s at thresh-

old. Furthermore, Eq. �11� implies that all the damping rates
k

�±� are comprised below threshold between −2�s and 0 and
that, whatever the pump intensity, all the eigenvalues
k

�±��r� lie between 0
�+��r� and 0

�−��r�. These properties will
be useful for the study of squeezing.

We can now determine the squeezing properties of the
signal field in a SPOPO below threshold. This is done by
using the SPOPO linearized quantum equations. Let us intro-

duce the operator Ŝin,k�t� by

Ŝin,k�t� = �
m

Lk,mŝin,m�t� . �13�

As �m	Lk,m	2=1, one has �Sin,k�t� ,Sin,k�
† �t���=��t− t���k,k�:

Ŝin,k is the annihilation operator of a combination of modes
of different frequencies, which are the eigenmodes of the
linearized evolution equation �3�. The corresponding creation
operator applied to the vacuum state creates a photon in a
single mode, which can be labeled as a “supermode,” which
globally describes a frequency comb. Defining in an analo-

gous way as in Eq. �13� the intracavity operator Ŝk�t�, one
can then write

d

dt
Ŝk = − �sŜk + �s��kŜk

† + 
2�sŜin,k. �14�

Let us now define quadrature Hermitian operators Ŝk
�±� by

Ŝk
�+� = Ŝk + Ŝk

†, �15�

Ŝk
�−� = − i�Ŝk − Ŝk

†� , �16�

which obey the following equation:

d

dt
Ŝk

�±� = k
�±�Ŝk

�±� + 
2�sŜin,k
�±� , �17�

with k
�±� given by Eq. �11�. These relations enable us to

determine the intracavity quadrature operators in the Fourier

domain S̃k
�±����:

i�S̃k
�±���� = k

�±�S̃±��� + 
2�sS̃in,k
�±� ��� . �18�

Finally, the usual input-output relation on the coupling
mirror

s̃out,m��� = − s̃in,m��� + 
2�ss̃m��� , �19�

extends by linearity to any supermode operator as the mirror
is assumed to have a transmission independent of the mode
frequency. One then obtains the following expression for the
quadrature component in Fourier space of any signal super-
mode:

S̃out,k
�±� ��� =

�s�1 ± r�k/�0� − i�

�s�− 1 ± r�k/�0� + i�
S̃in,k

�±� ��� . �20�

These expressions are particularly simple for the critical-
mode quadrature components �k=0�:

S̃out,0
�±� ��� =

�s�1 ± r� − i�

− �s�1 � r� + i�
S̃in,0

�±� ��� . �21�

The variance of these operators can be measured using the
usual balanced homodyne detection scheme: the local oscil-
lator is in the present case a coherent mode-locked multi-
mode field EL�t� having the same repetition rate as the pump
laser:

EL�t� = i�L�
m

eme−i�s,mt + c.c., �22�

where �m	em	2=1 and �L is the local oscillator field total
amplitude factor. Assuming that the photodetectors measure
the intensity of the Fourier components of the photocurrent
averaged over many successive pulses, the balanced homo-
dyne detection scheme measures the variance of the fluctua-
tions of the projection of the output field on the local oscil-
lator mode when the mean field generated by the OPO is
zero, which is the case below threshold. As a result, when the
coefficients em of the local oscillator field spectral decompo-
sition are equal to the coefficients Lk,m of the kth supermode,
one measures the two following variances, depending on the
local oscillator phase:

Vk
−��� =

�s
2�1 − r�k/�0�2 + �2

�s
2�1 + r�k/�0�2 + �2 , �23�

Vk
+��� = Vk

−���−1. �24�

Equations �23� and �24� show that the device produces, as
expected, a minimum uncertainty state and that quantum
noise reduction below the standard quantum limit �equal here
to 1� is achieved for any supermode characterized by a non-
zero �k value and that the smallest fluctuations are obtained
close to threshold and at zero Fourier frequency:

�Vk�min = ��0 − 	�k	
�0 + 	�k	

�2

. �25�

In particular, if one uses as the local oscillator the critical
mode k=0, identical to the one oscillating just above the
threshold r=1, one then gets perfect squeezing just below
threshold and at zero noise frequency, just like in the cw
single-mode case. But modes of k�0 may be also signifi-
cantly squeezed, provided that 	�k /�0	 is not much different
from 1. This occurs in particular when the pump spectrum
width is smaller than the phase-matching bandwidth �18�.
For example, if the pump spectrum is 3 times smaller than
the phase-matching bandwidth and using a Gaussian shape
for the spectra �18�, the value of Vk for the second mode
�k=1� is 0.1 which is still significantly squeezed. Our multi-
mode approach of the problem has therefore allowed us to
extract from all the possible linear combinations of signal
modes the ones in which the quantum properties are concen-
trated �20�.

In conclusion, we have studied the quantum behavior of a
degenerate synchronously pumped OPO, which seems at first
sight a highly multimode system, since it involves roughly
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105 different usual single-frequency modes for a 100-fs
pulse. We have shown that its properties are more easily
understood if one considers the “supermodes,” linear combi-
nations of all these modes that are eigenmodes of the SPOPO
set of evolution equations and describe in a global way the
frequency comb—or, equivalently, the train of pulses—
generated by the SPOPO. The supermode of minimum
threshold plays a particular role, as it is the one which turns
out to be perfectly squeezed at threshold and will oscillate
above threshold, but all the supermodes have nonclassical
character and can be significantly squeezed. The present pa-
per gives a first example of the high interest of studying

frequency combs at the quantum level, as they merge the
advantages of two already well-known nonclassical states of
light: the cw light beams, with their high degree of coherence
and reproducibility, and the single pulses of light, with their
high peak power enhancing the nonlinear effects necessary to
produce pure quantum effects.
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