
Minimum-energy pulses for quantum logic cannot be shared

J. Gea-Banacloche1,* and Masanao Ozawa2,†

1Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, USA
2Graduate School of Information Sciences, Tohoku University, Aoba-ku, Sendai 980-8579, Japan

�Received 11 September 2006; published 6 December 2006�

We show that if an electromagnetic energy pulse in a multimode coherent state with average photon number
n̄ is used to carry out the same quantum logical operation on a set of N atoms, either simultaneously or
sequentially, the overall error probability in the worst-case scenario �i.e., maximized over all the possible initial
atomic states� scales as N2 / n̄. This means that in order to keep the error probability bounded by N�, with �
�1/ n̄, one needs to use Nn̄ photons or, equivalently, N separate “minimum-energy” pulses: in this sense the
pulses cannot, in general, be shared. The origin of this phenomenon is found in atom-field entanglement. These
results may have important consequences for quantum logic and, in particular, for large-scale quantum
computation.
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There is by now a substantial amount of evidence �1,2�
that an elementary quantum logical operation on a qubit re-
quires a minimum amount of energy which is inversely pro-
portional to the acceptable error probability �. This has been
most extensively studied for atomic systems interacting with
an electromagnetic-pulse control field �3–6� with the generic
result that the error probability scales as the inverse of the
number of photons in the �quantized� pulse.

A question that has not so far been addressed is whether
this minimum energy must truly be dedicated to each qubit
and each operation or whether it could be shared by two or
more qubits on which one wanted to perform a given opera-
tion, either sequentially or simultaneously. Intuitively, one
would expect the latter to be the case: if a pulse of light
containing, say, 105 photons has just interacted with an atom
that may at most add or subtract one photon to the field, one
would not expect this very small change to make a substan-
tial difference if the same pulse is used later to act on another
atom. Also, it is a fact �and this point will be elaborated on
later� that, for an atom or ion in free space, the most impor-
tant consequence of field quantization is spontaneous emis-
sion �7–9�; from this perspective, all that should matter is to
have a sufficiently large electric field at the location of the
atom, so as to complete the operation before it can decay,
and there appears to be no reason why two or more atoms
should not be able to share this field, for a sufficiently long
or wide pulse, without an appreciable increase in the error
rate.

In contrast to these very reasonable expectations, we
show here that a minimum-energy pulse cannot, in general,
be shared as described above: specifically, the result to be
proven is that if the same �multimode coherent-state� pulse,
with average photon number n̄, is used to carry out the same
quantum logical operation on a set of N identical atoms,
either simultaneously or sequentially, the overall error prob-
ability in the worst-case scenario �i.e., maximized over all
the possible initial atomic states� scales, not as N / n̄, as one

would expect for N independent processes, but as N2 / n̄. This
means that in order to keep the maximum error probability
bounded by N�, with ��1/ n̄, one needs to use a total of N /�
photons—that is to say, the energy equivalent to N separate
“minimum-energy pulses.”

The most general proof of this result makes use of the
methods of �6,10� and applies to a system of N atoms inter-
acting with an arbitrary set of quantized field modes via a
Hamiltonian of the form

H = ��
k

�kak
†ak +

��0

2 �
i=1

N

�iz

+ i��
k,i

gk�Uk,iak�i
† − Uk,i

* ak
†�i� . �1�

Here the gk are coupling constants and the Uk,i are arbitrary
mode functions, evaluated at the positions �indexed by i� of
the respective atoms. We use the convention �iz�e�i= �e�i,
where �e�i	�0�i is the excited state of the ith two-level atom.
The model �1� is extremely general, and it can easily be
further generalized to cover multilevel atoms and Raman-
type processes �see �6� for details�; in particular, it includes
spontaneous emission implicitly, by the presence of quan-
tized vacuum modes.

The key property of the Hamiltonian �1� is that it has a
conserved quantity: namely,

L = L1 + L2 =
1

2�
i=1

N

�iz + �
k

ak
†ak, �2�

where L1 is an atomic operator and L2 a field operator. Sup-
pose we want to use the Hamiltonian �1� to implement a
certain quantum logical operation so that, after a time T
�omitted below for simplicity�, the evolution operator U
is as close as possible to some desired Uideal. We can get
an idea of how successful the procedure is by looking at
how an atomic operator A is transformed and, specifically,
at the difference D	U†AU−Uideal

† AUideal. If we choose
A so that it commutes with L1, the methods of �6�
can be used to show that one must have 
D2����D�2

� �
�L1 ,Uideal
† AUideal���2 /��L�2, where ��·� stands for the
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standard deviation of an operator and all expectation values
are calculated in the initial state, which we shall take to be of
the form ������, with ��� an atomic state and ��� a field
state.

Consider the case in which Uideal corresponds to a collec-
tive � /2 pulse, which is a Hadamard gate up to an overall bit
flip: specifically,

Uideal =
1

2N/2�1 − 1

1 1
��N

. �3�

Then, choosing A=i=1
N �iz and the initial atomic state

���= ��0��N+ i�1��N� /�2, one immediately obtains


D2� �
N2

2N�N + 1� + 4���
k

nk�2 . �4�

If the initial field state is a multimode coherent state, one has
���knk�2=�k
nk�= n̄ and Eq. �4� exhibits the N2 / n̄ scaling,
as long as n̄	N2.

To relate the error 
D2� in the operator A to a more famil-
iar error measure, such as the overall fidelity, one can follow
a procedure similar to the one in Appendix A of �6�. With the
above choices for A and ���,


D2� =
1

2
�� �izU − �− 1�NU  �ix���0��N + i�1��N�����2

.

�5�

For definiteness, assume that N is even. Inserting a sum
�����
��� over a complete set of atomic states and noting
that 
����iz= �−1�p
���, where p is the number of 1’s in
����, one obtains


D2� = �
p even

�
���U��0��N − �1��N�����2

+ �
p odd

�
���U��0��N + �1��N�����2. �6�

However, with N even, the ideal operation �3� when acting
on the state ���0��N− �1��N�� /�2 produces a superposition of
states with only odd numbers of 1’s, which means that the
first term in Eq. �6� is 
2�1−F−

2�, where F−
2 is the fidelity for

that initial state. Similarly, the second term is 
2�1−F+
2�,

where F+
2 is the fidelity for the initial state

��0��N+ �1��N� /�2. Both of these infidelities must be smaller
than the infidelity �1−F2�max, maximized over all initial
atomic states, and therefore one concludes

�1 − F2�max �
1

4

N2

2N�N + 1� + 4n̄
. �7�

The same result for N odd can be established along similar
lines.

While the above method is very powerful, it does not
provide much insight into the origin of the N2 scaling and it
has also proven hard to generalize it to other operations such
as bit flips �� pulses�. Hence it is worthwhile to explore a
much simpler model for the interaction which was shown in
�6� to capture the essence of the constraints arising from the

conservation of Eq. �2�. This is a single-mode model where
the creation and annihilation operators are replaced by e±i�̂,
where �̂ is a “phase operator”:

H = i���ei�̂�
i=1

N

�iz
† − e−i�̂�

i=1

N

�iz� . �8�

Although a Hermitian phase operator, strictly speaking, does
not exist in the full Fock space, reasonable approximations
can be defined �11� with the desired properties: namely,
e±i�̂�n�= �n1�. As also shown in �6�, the following manipu-
lations will be accurate enough provided the weight of the
vacuum in the initial field state ��� is vanishingly small,
which is always the case for a coherent state with a high
excitation number. The model �8� removes the nonessential
�in this context� complication of the field amplitude fluctua-
tions, and captures the basic requirement expressed by the
conservation of Eq. �2�: namely, that the photon number
must increase or decrease by 1 when any of the atoms makes
a transition.

Integration of Eq. �8� is trivial. Assuming each atom in-
teracts with the field for a total time T �it does not matter
whether simultaneously or sequentially�, the evolution opera-
tor is

U = � cos �T − e−i�̂ sin �T

ei�̂ sin �T cos �T
��N

. �9�

When �T=� /4 �the � /2-pulse condition�, Eq. �9� would
reduce to Eq. �3� provided �̂=0. In what follows, it
will be assumed that 
�̂�=0 and 
�̂2�	���̂�2 is small.
Taking again the initial atomic state to be of the form
��0��N+ i�1��N� /�2, which would be transformed by Uideal

into ��+x��N+ i�−1�N�−x��N� /�2, a direct calculation using
Eq. �9� yields the fidelity

F2 =
1

22�N+1� ���1 + ei�̂�N + �e−i�̂ + 1�N + i�1 − e−i�̂�N

− i�ei�̂ − 1�N�����2

� 1 −
N�N + 1�

4

�̂2� . �10�

For a coherent state we have ����2�1/4n̄ and hence the
result

�1 − F2�max �
N�N + 1�

16n̄
��/2 pulse� . �11�

The right-hand side of �11� is always greater than that of �7�,
as it should be, and, in fact, the two expressions agree up to
terms of the order of �N2 / n̄�2.

In spite of its simplicity, there are several reasons to ex-
pect that the single-mode approach provides a universally
valid lower bound to the infidelity: first, because adding
more modes generally only adds more avenues for decoher-
ence �a point that will be elaborated on later�, and second,
because it has been shown by Silberfarb and Deutsch �12�
that the atom-field entanglement predicted by single-mode
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models �specifically, the Jaynes-Cummings model� is actu-
ally a good approximation to the actual entanglement ob-
tained from multimode, free-space calculations, as long as
the total probability for spontaneous emission over the dura-
tion of the gate remains small �which is the regime in which
one would want to operate in any case�.

With this in mind, one can use the model �8� to show that
the N2 / n̄ scaling also applies to the case of bit flips �or �
pulses�. This is obtained by setting �T=� /2 in Eq. �9�.
Again starting from a state of the Greenberger-Horne-
Zeilinger form, ��0��N+ei��1��N� /�2 �with arbitrary phase

��, one finds for the fidelity F2= 
cos2�N�̂�� and, therefore,
in a coherent state,

�1 − F2�max �
N2

4n̄
�� pulse� . �12�

The bit-flip example is especially helpful to show how the
effect described arises from atom-field entanglement. In an
N-atom bit flip, the initial states �0��N��� and �1��N���
would have to become �1��NaN��� /N1 and �0��Na†N��� /N2,
respectively �where N1 and N2 are appropriate normalization
constants�, and therefore the coherent superposition
��0��N+ �1��N� /�2, which ideally should be left invariant by
the operation, is instead transformed into

1
�2

��0��Na†N���
N2

+ �1��NaN���
N1

� . �13�

This superposition differs from the intended result because
the atomic and field states are entangled, since the field states
aN��� /N1 and a†N��� /N2 are different in general. In fact,
the infidelity of the state �13� is simply proportional to the
“lack of overlap” between the two field states:

1 − F2 =
1

2
−

1

4N1N2
�
��a2N��� + 
��a†2N���� . �14�

Now, one might think that for a very “classical” state ���,
with a large average photon number, the difference between
the state resulting from the creation of N photons and the one
resulting from the annihilation of N photons would be very
small, and it is—but, somewhat surprisingly, it turns out to
be quadratic, rather than linear, in N. Specifically, for a co-
herent state ���, with ���2= n̄, the only nontrivial expectation
value appearing in Eq. �14� is N2= �
��aNa†N����1/2, for
which one has �see �13��

N2
2 = �

n=0

N
n̄n�N!�2

�n!�2�N − n�!
= n̄N�1 +

N2

n̄
+ O��N2

n̄
�2�� ,

�15�

and using this in Eq. �14� one obtains 1−F2=N2 /4n̄
+O(�N2 / n̄�2) in agreement with �12�.

This derivation suggests the kinds of situations when one
may expect the N2 terms in the infidelity to be significant:
when �as in �13�� the final state wave function contains at
least two terms, with reasonably large weights, that differ
from each other by the action of a number of creation opera-
tors of the order of N.

At this point it may be thought that a way to avoid this
kind of difficulty in quantum logical operations would be to
use an encoding such as �0�L= �01�, �1�L= �10� �14,15�, where
each logical qubit is represented by two physical qubits and
the numbers of 1’s and 0’s in the states �0�L and �1�L are the
same. It is also known that such an encoding makes the
logical qubit insensitive to collective phase fluctuations, such
as those in Eq. �8� and �16�. However, since the Hamiltonian
�1� does not couple directly the states �01� and �10�, a mean-
ingful discussion of what can or cannot be done with en-
coded qubits requires a careful look at the “effective Hamil-
tonians” that describe the action of the control fields on the
encoded states. For example, in the proposal �16� to use the
above encoding in an ion trap, in conjunction with the
Sørensen-Mølmer gate �17�, one obtains, in effect, an evolu-
tion operator of the form U=cos�gn̂t�+ i sin�gn̂t��X, where
�X is the encoded bit-flip operator and n̂ is a photon number
operator �or a sum of such operators�. But then one can show
explicitly that the N2 / n̄ scaling must hold, for certain initial
states, for arbitrary operations.

To exhibit this for a collective bit flip, let �±X� be the
�two-qubit� encoded eigenstates of �X. Then U�±X����
=e±ign̂t�±X����. Separating n̂ into average n̄ and fluctuations
�n̂, where, for a bit flip operation, gn̄T=� /2, and making
U�N act on a superposition 2−1/2��+X��N+ �−X��N����, the
result is �up to a global phase�

1
�2

�eigN�n̂T� + X��N + �− 1�Ne−igN�n̂T�− X��N���� . �16�

This is to be compared to the action of Uideal
�N 	 iN�X

�N, which
yields the same state except for the e±igN�n̂T terms. The infi-
delity is then easily calculated to be 1−F2= 
sin2�gN�n̂T��
��2N2��n�2 /4n̄2=�2N2 /4n̄ for a coherent state.

The above derivation, concerning what is arguably the
most popular proposal for encoded logic in an atomic sys-
tem, is enough to make us skeptical that one might get
around the N2 / n̄ scaling using these approaches. Nonethe-
less, other encodings and gate mechanisms certainly exist,
and we do intend to look into as many of them as possible in
the future.

Finally, we would like to supplement our single-mode cal-
culations by considering briefly their possible relevance for a
collection of atoms or ions in free space, where spontaneous
emission is the leading quantized-field source of decoher-
ence. Let the laser beam �possibly including refocusing in
between atoms� be taken to define an effective single mode,
all the other modes being then in the vacuum state. Every
atom has a probability p to emit a photon in the course of the
interaction, and if the beam waist at the location of the atom
is w0, then the probability that the photon goes into the laser
mode is of the order of 3�2 /8�2w0

2	�2 /A, where the area A
is of the order of the cross section of the beam �see Eq. �1� of
�9��. Adopt a simple model in which a photon being emitted
outside of the laser mode, by any atom, leads to the total
failure of the operation. The overall failure probability of,
e.g., a collective � pulse can then be written �assuming
pN�1� as
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Pf � Np�1 −
�2

A
� + �1 − p�1 −

�2

A
��NN2

4n̄

� Np�1 −
�2

A
� +

N2

4n̄
, �17�

where the second term accounts for the result of the single-
mode analysis given above �Eq. �12��, in the case that all the
photons are emitted into the laser pulse, with n̄ being the
number of photons in the pulse. Now, it was shown in �9�
that for an operation such as a � or � /2 pulse, on resonance,
p was of the order of 1 / n̄ times a geometric factor of the
order of 2�4w0

2 /3�2=�2A /4�2, and so Pf becomes

Pf �
N

4n̄
��2A

�2 + N� . �18�

This exhibits a scaling that is quadratic in N for sufficiently
large N, but is only linear in N if �2A /�2	N, However, the
reason for this apparent “linearity” is that in this case, be-
cause of the suboptimal coupling between the atoms and the
field, one is already using many more photons than one
would have to in the optimal, single-mode case. Indeed, in
the single-mode treatment, the requirement to keep the over-
all failure probability smaller than N� is n̄�N /4�, whereas
from �18� one requires n̄� ��2A /4�2� /�, which is 	N /4� in
this limit.

In conclusion, we have shown that, in general, the mini-
mum field energy needed to carry out a quantum logical
operation on a set of N atomic qubits with a given overall
error probability scales as N2 or, equivalently, that in order to
ensure a constant error rate per operation per qubit �say, ��,
one needs to use, at least, the total energy of N “minimum-
energy” pulses, with n̄�1/�. In this sense, minimum-energy
pulses cannot be shared.

Overall, these results will need to be taken into consider-
ation when designing large-scale quantum computing de-
vices, especially in proposals that would rely on the simul-
taneous manipulation of many atoms by a single
electromagnetic pulse. Examples might include schemes for
cluster-state computation �18� and/or for quantum computing
with atoms in optical lattices �19�. �Note also that the results
presented here are not restricted to atomic systems; they
would apply equally well to, e.g., superconducting qubits
manipulated by radio-frequency pulses.� “Bang-bang”
schemes for decoherence suppression �20� may also envision
the simultaneous flipping of many qubits by a single pulse;
the results presented here clearly place a constraint on the
minimum energy required to carry out such operations with
an acceptable error rate.
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