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A relation between entanglement and criticality of spin chains is established. The entanglement we exploit is
shared between auxiliary particles, which are isolated from each other, but are coupled to the same critical
spin-1 /2 chain. We analytically evaluate the reduced density matrix, and numerically show the entanglement of
the auxiliary particles in the proximity of the critical points of the spin chain. We find that the entanglement
induced by the spin chain may reach 1, and it can signal very well the critical points of the chain. A physical
understanding and experimental realization with trapped ions are presented.
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Quantum entanglement lies at the heart of the difference
between the quantum and classical multiparticle world, and
can be treated as a useful resource in various tasks such as
cryptography, quantum computation, and teleportation �1�.
Quantum phase transitions �2� are transitions between quan-
titatively distinct phases of quantum many-body systems,
driven solely by quantum fluctuations. In the past decade, a
great effort has been devoted to understand the relations be-
tween entanglement and quantum phase transitions �3–9�. In
fact, it is natural to associate the quantum phase transition
and entanglement once correlations are behind both of them.
By sharing this point of view, one anticipates that entangle-
ment induced by a quantum critical many-body system will
furnish a dramatic signature of quantum critical points for
the many-body system.

On the other hand, we usually think of environment that
surrounds quantum system as a source of decoherence. Re-
cently researchers have started to investigate the positive ef-
fects �10–17� of environment, for example, environment as-
sisted information processing and environment induced
entanglement. These investigations pave a new way to engi-
neer mechanisms of preventing, minimizing, or using the
impact of environment in quantum information processing.
In those works, however, the environment was modeled as a
set of independent quantum systems, i.e., correlations among
particles in the environment were ignored. An interesting
open question is whether the correlation among environmen-
tal particles can affect the entanglement induced in a bipar-
tite system that couples to it.

In this paper, we show how to exploit entanglement in
auxiliary particles induced by a quantum critical many-body
system as an essential tool to reveal quantum phenomena in
the many-body quantum system. Indeed, quantum phase
transitions are accompanied by a qualitative change in the
nature of classical correlations, such drastic changes in the
properties of ground states are often due to the collectiveness
and/or randomness of interparticle couplings which are pos-
sibly reflected in entanglement between systems that couple
to it. Here we adopt a spin-chain system described by the
one-dimensional spin-1

2 XY model as the many-body system.
Another pair of spin-1

2 systems that couple to the spin chain
would act as the auxiliary particles. We observe that the en-
tanglement of the auxiliary particles changes sharply in the
proximity of quantum phase transition. This change can be

traced down to the presence of collectiveness in the domi-
nant couplings of the auxiliary particles to the chain, then it
reflects the critical properties of the many-body system. This
observation offers a new tool to study quantum critical phe-
nomena, in particular for more general systems, where ana-
lytical solutions might not be available. A possible realiza-
tion of this scheme is proposed with trapped ions. It utilizes
off-resonant standing-waves driven ions in traps �18,19� to
simulate the one-dimensional XY spin chain. The proposal
also could be realized with ultracold atoms superposed by
optical lattice �20�. This makes the study appealing for ex-
perimental test.

Consider a bipartite system consisting of two spin-1
2 par-

ticles a and b, and a quantum many-body system described
by the one-dimensional spin-1

2 XY model. The system Hamil-
tonian HS and the Hamiltonian HB of the chain read

HS =
�a

2
�a

z +
�b

2
�b

z ,

HB = − �
l=1

N �1 + �

2
�l

x�l+1
x +

1 − �

2
�l

y�l+1
y +

�

2
�l

z� , �1�

where N is the number of sites, �i
���=x ,y ,z� are the Pauli

matrices, and � is the dimensionless anisotropy parameter.
The periodic boundary condition �N+1=�1 is assumed for the
spin chain. Suppose the coupling of the auxiliary particles to
chain take the form

HI = �
l=1

N

�g�a
z�l

z + h�b
z�l

z� , �2�

where g and h denote the rescaled dimensionless coupling
constants. Clearly, �HS ,HI�=0, which implies that the energy
of the auxiliary particles is conserved, but the coherence may
not be conserved depending on the detail of the system-chain
coupling. This leads to the following form of the time evo-
lution operator U�t�, U�t�=�i,j=0,1Uij�t� � ij	
ij�, where �ij	
= �i	a � �j	b and �i	a��i	b , i=0,1� represent the eigenstates of
�a

z��b
z�. It is easy to show that Uij�t��i , j=0,1� satisfy

i� �
�tUij�t�=HijUij�t� with Hij =−�l=1

N � 1+�
2 �l

x�l+1
x + 1−�

2 �l
y�l+1

y

+
�ij

2 �l
z�, where �ij =�+ �−1�i+12g+ �−1� j+12h, i , j=0,1. If the

auxiliary particles are initially in state �ij	, the dynamics and
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statistical properties of the spin chain would be govern by
Hij, it takes the same form as HB but with modified field
strengths �ij. The Hamiltonian Hij can be diagonalized by a
standard procedure �21� to be Hij =�k�ij,k��ij,k

† �ij,k− 1
2

�,
where �ij,k��ij,k

† � are the annihilation �creation� operators of
the fermionic modes with frequency �ij,k=�	ij,k

2 +�2sin2 2
k
N ,

	ij,k= �cos 2
k
N −�ij�, k=−N /2 ,−N /2+1, . . . ,N /2−1. The fer-

mionic operator �ij,k was defined by the Bogoliubov trans-
formation as �ij,k=dk cos

�ij,k

2 − id−k
† sin

�ij,k

2 , where dk

= 1
�N

�lal exp�−i2
lk /N�, and the mixing angle �ij,k was de-
fined by cos �ij,k=	ij,k /�ij,k. Fermionic operators al were
connected with the spin operators by the Jordan-Wigner
transformation via al= ��m�l�m

z ���l
x+ i�l

y� /2. The operators
�ij,k parametrized by i and j clearly do not commute with
each other, this will lead to entanglement in the auxiliary
particles as shown later on. Before going on to calculate the
reduced density matrix, we present a discussion on the di-
agonalization of Hij. For a chain with periodic boundary con-
dition, i.e., �1=�N, boundary terms Hboun��aN

† a1+�aNa1�
+H.c.��exp�i
M�+1� have to be taken into account �21,22�.
In this paper, we would work with Hboun ignored �23�, be-
cause we are interested in finding a link between the critical-
ity of the chain and the entanglement in the auxiliary par-
ticles.

Having given an initial product �separable� state of the
total system, ��0�	= ��a�0�	 � ��b�0�	 � ��B�0�	, we can ob-
tain the reduced density matrix for the auxiliary particles as
�ab�t�=TrB�U�t� ��0�	
�0� �U†�t��, and it may be formally
written in the form

�ab�t� = �
i,j,m,n

�ij;mn�t��ij	
mn� . �3�

A straightforward but somewhat tedious calculation shows
that

�ij;mn�t� = �ij;mn�t = 0��ij;mn�t� ,

�ij;mn�t� = �
k

e�i/2���ij,k−�mn,k�t�1 − �1 − ei�ij,kt�sin2 �k − �ij,k

2

− �1 − e−i�mn,kt�sin2 �k − �mn,k

2

+ �1 − ei�ij,kt��1 − e−i�mn,kt�

��sin
�k − �ij,k

2
sin

�k − �mn,k

2
cos

�ij,k − �mn,k

2
�� ,

�4�

where cos �k= �cos�2
k /N�−�� /
��cos�2
k /N�−��2+�2sin2�2
k /N�. To derive this result,
the spin chain was assumed to be initially in the ground state
of HB. Discussions on Eq. �4� are in order. For g=h, one has
�ij =� when i=0 and j=1, or i=1 and j=0. Hence, �01	 and
�10	 expand a decoherence free subspace. Subsequently, the
entanglement of state in this subspace remains unchanged
due to �ij;mn�t�=1. The situation changes if h�g, where the
decoherence free subspace does not exist. The entanglement

shared between the auxiliary particles evolves with time ac-
cording to Eq. �4� in this situation.

With these expressions, we now turn to study entangle-
ment shared between the auxiliary particles a and b in state
�3�. To be specific, we choose ��a�0�	 � ��b�0�	=1/�2��0	a

+ �1	a� � 1/�2��0	b+ �1	b� as the initial state of the auxiliary
particles, while the spin chain is assumed to be in the ground
state of Hamiltonian HB. The entanglement measured by the
Wootters concurrence can be calculated and the numerical
result was shown in Figs. 1–4. The time t was rescaled di-
mensionless according to the coupling constants. The regions
of criticality appear when the ground and first excited states
become degenerate. We first focus on the criticality in the XX
model. The XX model, which corresponds to �=0, has a
criticality region along the line between �=1 and �=−1. The
criticality is reflected in the entanglement of the auxiliary
particles, which appear in Fig. 1 and 2. Figure 1 shows the
Wootters concurrence as a function of time and the aniso-
tropy parameter �, it is clear that the Wootters concurrence
has a sharp change in the limit �→0. This result can be
understood by considering the value of �ij,k, which take 0 or

 depending on the sign of cos�2
k /N�−�ij in this limit. In
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FIG. 1. �Color online� Wootters concurrence of auxiliary par-
ticles as a function of time and the anisotropy parameter �. The
figure was plotted for N=1502 sites, and g=h=0.05. �a�, �b�, �c�,
and �d� correspond to �=5, �=2, �=1, and �=0.8, respectively.
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FIG. 2. �Color online� Wootters concurrence versus time and �
with fixed �=10−4 �close to zero�. This corresponds to the XX
model, and the critical points with �= ±1 are clearly shown. The
figure on the left is a contour plot for the right. The other param-
eters chosen are N=1502 and g=h=0.05.

BRIEF REPORTS PHYSICAL REVIEW A 74, 054102 �2006�

054102-2



either case ��ij;mn�t� � =1, which indicates that the norm of
any element of the reduced density matrix remains un-
changed. Figure 2 shows the entanglement of the auxiliary
particles near the criticality region with �=0 and �= ±1. The
entanglement changes sharply along the line of �= ±1 in the
time-� plane. This is a reflection of the critical phenomena in
the entanglement of the auxiliary particles.

Next we turn to study the criticality in the transverse Ising
model. The structure of the transverse model ground state
changes dramatically as the parameter � is varied. The de-
pendence of the entanglement on � is quite complicated �2�.
Here we present analyses for the �→�, �=1, and �=0 lim-
its. In the �→� limit the ground state of the chain ap-
proaches a product of spins pointing the positive z direction.
The mixing angle �ij,k and �k tend to −
 in this limit. This
leads to �ij;mn�t�=1, which indicates that the initial state does
not evolve with time, i.e., the auxiliary particles remain in
separable states. The �=0 limit is fundamentally different
from the �→� limit because the corresponding ground state
is doubly degenerate under the global spin flip by �l=1

N �l
z.

This symmetry breaks at �� � =1 and the chain develops a
nonzero magnetization 
�x	�0 which grows as � is de-
creased. This dramatic change in the ground state of the spin
chain can be found in the entanglement of auxiliary particles
in Fig. 3. In fact, the ground state of the XY models is very
complicated with many different regimes of behavior
�24,25�. With whatever �, there is a sharp change in the
entanglement across the line �� � =1 �Fig. 4�. This signals the
change in the ground state of the spin chain from paramag-
netic phase to the others. Although the entanglement in both
cases with �=0 and �=1 shares the same properties along

the line of �� � =1, i.e., it changes dramatically across this
critical region, the two case are quite different in its nature.
The two auxiliary particles never evolve in the case of �
=0, while the two will eventually evolve into the pointer
states in another case �except for �→��, hence no entangle-
ment share between the auxiliary particles in the later case in
the t→� and N→� limit.

The connection between the entanglement in auxiliary
particles and the criticality of spin chain may be understood
as singularity in one or more �ij;mn�t� �the elements of the
reduced density matrix� at the critical points. To show this
point, we recall that

�ij;mn�t� =
1

4

�B�0��e−iHijteiHklt��B�0�	 , �5�

with the same notations and initial states given before Eq.
�3�. Notice that ��B�0�	 was taken as the ground state �0	B of
HB, but it is not an eigenstates of Hij with �ij��. Expanding
�0	B in terms of eigenstate ��	B

ij of Hij , ��=0,1 , . . . , �

�0	B = c0
ij�0	B

ij + �
��0

c�
ij��	B

ij , �6�

one can easily prove that �c��0
ij � h ,g when g�1 and h

�1. This is exactly the case under our consideration. Where
�0	B

ij denotes the ground state of Hij. Therefore,

�ij;mn�t� 
1

4
c0

ij�c0
kl�*

B
kl
0�0	B

ije−i��ij−�kl�t, �7�

up to first order in g and h. Here �ij stands for the ground-
state energy of Hij. As observed in �26�, a sudden drop in

B
kl
0 �0	B

ij can signal the regions of criticality in the spin
chain. Therefore the entanglement as a function of �ij;mn�t�
can signal the criticality of the chain.

This discussion, apart from its theoretical interests, offers
a possible experimental method to study critical phenomena
without the need to identify the state of the system, in par-
ticular in the presence of degeneracy. The XY model can be
realized with trapped ions under the action of off-resonant
standing waves �19� as follows. Consider a system of trapped
ions, whose physical implementation corresponds to Cou-
lomb chains in Penning traps or an array of ion microtraps.
The Coulomb repulsion together with the trapped potential
and ions’ motion yield a set of collective vibrational modes,
these collective modes can be coupled to the internal states
of ions by conditional forces. The directions of the condi-
tional forces �19� would determine the effective couplings
between the effective spins. To simulate the XY model, we
apply two conditional forces in both directions x and y. The
effective coupling is proportional to 1/r3, where r represents
the relative distance between ions. Although the couplings
are distance dependent, the critical properties are shown to
be similar to these ideal models �19,27� considered in this
paper. The coupling of the auxiliary particles to the chain,
which share another trapping with the ions in the chain, can
be simulated in the same way, where a conditional force in
the z direction is applied. The particles in the chain may
circle the auxiliary particles, such that the couplings of the
auxiliary particles to the particles in the chain are equal. The
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FIG. 3. �Color online� Entanglement �measured by Wootters
concurrence� induced by the transverse Ising spin-1

2 chain, which
may be obtained from the XY model by setting �=1. The numerical
calculation was performed with N=1502 sites, and g=h=0.05.

−1 1
0

0.5
1
0

0.1

0.2

λγ −2 −1 0 1 2

0.2

0.4

0.6

0.8

1

λ

γ

FIG. 4. �Color online� Wootters concurrence at time t=0.75. The
locations of peaks on the � axis do not change with time. Various
parameters are N=1502, g=h=0.05.
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proposal could also be realized with ultracold atoms in opti-
cal lattice by the method represented in �28�. We would like
to note that preventing any energy exchange between the
chain and the auxiliary particles might be a challenging task
in experiments. The requirement of uniform coupling also is
experimentally very challenging. Nevertheless, this paper es-
tablished a link between the entanglement and criticality
from the other aspect, which might shed light on the under-
standing of criticality from the auxiliary particles, and it may
open up a way to characterize and experimentally detect
quantum phase transition from the viewpoint of quantum in-
formation theory �29�, where two ancillas coupled to two
particles at different sites in the chain are considered. By this
model, the relation between the state transfer quality and the
spectral gap of the chain was established.

To conclude, we have proposed a method to study critical
phenomena in many-body systems. The criticality was found
to have a reflection in the entanglement of auxiliary particles
that couple to it. Indeed, we have found that the entangle-

ment change dramatically along the line of critical points.
This dramatic change has been explained in terms of reflec-
tion of quantum phase transitions, which lead to the collec-
tiveness in the couplings of the spin chain to the auxiliary
particles. Quantum critical many-body system can also make
a reflection for its criticality in decoherence of a quantum
system which couples to it �30�. In addition to shedding light
on the role of environment in quantum information process-
ing, these pave a way to study critical phenomena in many-
body systems. The generalization of these results to a wide
variety of critical phenomena and their relation to the critical
exponents is a promising and challenging question which
deserves extensive future investigation.
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