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We obtain the ground-state energy level and associated geometric phase in the Dicke model analytically by
means of the Holstein-Primakoff transformation and the boson expansion approach in the thermodynamic
limit. The nonadiabatic geometric phase induced by the photon field is derived with the time-dependent unitary
transformation. It is shown that the quantum phase transition characterized by the nonanalyticity of the geo-
metric phase is remarkably of the first order. We also investigate the scaling behavior of the geometric phase
at the critical point, which can be measured in a practical experiment to detect the quantum phase transition.
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The Berry phase �1� with relaxation of its original restric-
tion conditions �2–5� has been extensively generalized along
various directions �6–9�. Recently, the geometric phase �GP�
has been regarded as an essential way to implement the op-
eration of a universal quantum logic gate in quantum com-
puting �10–15� and as an important tool to detect a quantum
phase transition �QPT� �16–20�, which describes a structural
change in the properties of the ground-state energy spectrum
associated with variation of a controlling parameter �21� and
originates from the singularity of the energy spectrum �22�.
A single 1/2 spin driven by a classical rotating magnetic
field is a well-studied model to generate the Berry phase.
Recently a quantized magnetic field has been considered and
shown to induce the GP which reduces to the standard Berry
phase in the semiclassical limit �23,24�. The generation of
this framework of Berry phase to a many-body two-level-
atom system interacting with a single bosonic mode known
as the Dicke model �25,26� is certainly of interest, particu-
larly in connection with the QPT. The Dicke model displays
an interesting superradiant phenomenon describing the col-
lective and coherent behaviors of atoms and exhibits the
QPT from the normal to the superradiant phases �27–29�
induced by variation of the coupling strength between the
atom and field. It has been known that the atomic ensemble
in the normal phase is collectively unexcited while it is
macroscopically excited with coherent radiation in the
so-called superradiant phase. The QPT has been related to
the emergence of chaos in a corresponding classical
Hamiltonian �30,31� and the logarithmic diverges of the
von Neumann entropy at the critical transition point which
describes the quantum entanglement between the atoms and
field �32–34�.

In this Brief Report we derive the nonadiabatic GP of a
many-body atom-system driven by a quantized field. The
ground state and corresponding GP are obtained with the
Holstein-Primakoff transformation �35� and the boson expan-
sion approach �36� in the thermodynamic limit. We demon-
strate that the GP can serve as a critical criterion to charac-
terize the QPT. The scaling behavior of the GP at the critical
point is also studied.

The Dicke model of N two-level atoms in a single-mode
light field is given in the rotating-wave approximation by

H = �a†a + �
j=1

N ��0

2
�z

j +
�

�N
��+

j a + �−
j a†�� , �1�

where a and a† are the photon annihilation and creation op-
erators, �+

j and �−
j are the pseudospin operators for the jth

atom defined as �±
j =�x

j ± i�y
j with �x and �y being the Pauli

matrices, � denotes the coupling strength between the atom
and the field, � is the frequency of the electromagnetic wave,
and �0 is the energy difference between two levels of the
atom in the unit �=1. The prefactor 1 /�N is inserted to have
a finite free energy per atom in the thermodynamical limit
N→�. The Hamiltonian �1� is actually considered in a rotat-
ing frame along with the light field and becomes

H��t� = R�t�HR†�t� − iR�t�
dR†�t�

dt
�2�

in the laboratory frame with the time-dependent unitary
transformation

R�t� = exp�− i��t�a†a� , �3�

where ��t�=�t denotes the rotating angle. The nonadiabatic
GP induced by the light field can be found by solving the
time-dependent Schrödinger equation

i
d	�n��t�


dt
= H��t�	�n��t�
 , �4�

and the result is

�n = i�
0

2	 ��n�„��t�… d

d�
�n�„��t�…�d� = 2	��n	a†a	�n
 ,

�5�

where 	�n�(��t�)
=R�t�	�n
 with 	�n
 being the eigenstate of
the Hamiltonian H such that H	�n
=En	�n
, which is equal
to the Berry-phase formula in Refs. �23,24�. We are inter-
ested in the critical property of the GP associated with the
ground state 	�0
 of the many-body system. Using collective
giant-spin operators Jz=� j=1

N �z
j and J±=� j=1

N �±
j , which satisfy

the usual SU�2� commutation relations �Jz ,J±�= ±J± and
�J+ ,J−�=2Jz with total spin quantum number j=N /2, the
Hamiltonian �1� becomes
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H = �a†a +
�0

2
Jz +

�

�N
�J+a + J−a†� . �6�

The system undergoes a QPT at a critical value of the atom-
field coupling strength �c �to be determined below� from the
normal phase when �
�c to the superradiant phase when
���c in the thermodynamical limit. By means of the boson
expansion approach and the Holstein-Primakoff transforma-
tion of the collective angular momentum operators defined as
J+=b†�N−b†b, J−=�N−b†bb, and Jz= �b†b−N /2�, where
the new boson operators satisfy the commutation relation
�b ,b†�=1 �35�. With this transformation the Hamiltonian be-
comes

H = �a†a +
�0

2
�b†b − N/2� +

�

�N
�b†�N − b†ba

+ �N − b†bba†� . �7�

Following the procedure of Refs. �31,36�, we introduce the
shifting boson operators c† and d† with properly scaled aux-
iliary parameters � and  such that

c† = a† + �N�, d† = b† − �N �8�

to evaluate the critical transition point �c and the ground-
state energies of both phases. It should be noticed that the
displacements c†=a†−�N� and d†=b†+�N also lead to the
same result except for the change of sign. Expanding Hamil-
tonian �7� with the displacement boson operators c† and d† as
power series of 1 /�N we can obtain

H = NH0 + N1/2H1 + N0H2 + ¯ , �9�

with

H0 = ��2 +
�0

2
�2 −

1

2
� − 2���k ,

H1 = �− �� + ��k��c† + c�

+ ��0

2
− ���k�1 − 22���d† + d� ,

H2 = �c†c +
�0

2
d†d + ���kd† −

2

2�k
�d† + d��c

+ ���kd −
2

2�k
�d† + d��c†

+
��

2�k
�4d†d + �d†�2 + d2 +

2

2k
�d† + d�2� ,

where k=1−2. The first term of H gives rise to the Hartree-
Bogoliubov ground-state energy �37�

E0 = ��0	NH0	�0
 = �− N�0/4, � 
 �c,

− N� �2

4�
�1 − �2� +

�0�

4
� , � � �c, �

�10�

and the critical value

�c = ��0�/2, �11�

where 	�0
= 	0
at	0
ph is the vacuum of the quasiboson op-
erators such that c	0
ph=0 and d	0
at=0 �correspondingly,
a	0
ph=�N�	0
ph and b	0
at=−�N	0
at� with �=��0 /2�2.
The auxiliary parameters

� = �0, � 
 �c,

��1 − �2/2� , � � �c,
� �12�

 = �0, � 
 �c,

��1 − ��/2, � � �c,
� �13�

are determined from minimizing the ground-state energy
�10�. In the normal phase ��
�c� the system is essentially in
the lower-energy state and is only microscopically excited,
whereas above the transition point both the field and atomic
ensemble acquire macroscopic excitations.

The GP of the many-body system associated with the
ground state 	�0
 is obtained in terms of the quasiboson
operator �8� as

�0 = 2	��0	a†a	�0
 = �0, � 
 �c,

	N

2�2��2 −
�c

4

�2� , � � �c. �
�14�

The scaled GP �0 /N and its first-order derivative with re-
spect to the coupling parameter � are shown in Fig. 1 with
the resonant condition �=�0=1. It can be seen that the GP
vanishes when �
�c and increases abruptly with � when
���c, indicating a first-order phase transition at the critical
point �c. It is apparent that the GP can be used to detect the
quantum criticality in systems described by the Dicke model.
The quantum criticality is also shown to relate the quantum
entanglement governed by the von Neumann entropy which
has a cusplike behavior at the critical transition point �32,33�.
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FIG. 1. The scaled ground-state geometric phase �0 /N �in the
units of �0

−2� as a function of the coupling parameter � �in units of
�0� in the resonant condition �=�0. Inset: the first-order derivative
of �0 /N with respect to the coupling parameter �.
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The scaling behavior of the GP at the critical point can be
found in the thermodynamical limit as

�0

N
�� → �c� =

2	�c

�2 	� − �c	 . �15�

On the other hand, the first-order derivative of the GP di-
verges linearly with the atom number N at the transition
point �c as

lim
N→�

d�0

d�


�=�c

=
2	�c

�2 N , �16�

which is different from the logarithmic divergence of the
first-order derivative of the Berry phase in the XY model
�16–18�.

In recent years it has been shown that some
nanosystems—for example, semiconductor quantum dots—
coupled with a high-quality single-cavity mode can be a
promising candidate for implementing the Hamiltonian of
the Dicke model and realistic parameter values are given by
��0.1–1.5 �38–40� in units of �0. While �0 is of the order

of the underlying bulk band gap with a value range from
1.5 eV in GaAs-like semiconductors down to 0.1 eV in
narrow-gap semiconductors. The value of � is also variable
in a wide range from weak- to strong-coupling regimes based
on current nanotechnology. The GP can be observed directly
by measuring the mean photon number out of the cavity.

In conclusion, we have investigated the critical property
of the nonadiabatic GP in terms of a time-dependent unitary
transformation in the single-mode super-radiant Dicke
model, which displays a first-order QPT. The GP is shown to
be proportional to the mean photon number and therefore is
calculated analytically for the ground state of the Dicke
model in the thermodynamical limit. We also provide the
scaling behavior of the GP as a probe to test the QPT.
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