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We present a detailed description of small displacement and tilt measurements of a Gaussian beam using
split detectors and TEM;, homodyne detectors. Theoretical analysis and an experimental demonstration of
measurements of these two conjugate variables are given. A comparison between the experimental efficiency of
each scheme proves that the standard split detection is only 64% efficient relative to the TEM;, homodyne
detection, which is optimal for beam displacement and tilt. We also demonstrate experimentally that squeezed
light in the appropriate spatial modes allows measurements beyond the quantum noise limit for both types of
detectors. Finally, we explain how to choose the detection scheme best adapted to a given application.
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I. INTRODUCTION

Measuring the transverse position of a laser beam seems
to be a very basic task. One could think that the best way to
retrieve such a simple information has been found years ago.
However, we have proven recently that the detection devices
which are traditionally used—split and quadrant detectors—
are limited to an efficiency of 64% [1]. This is a question of
potentially great interest as they are used in many ultrasen-
sitive applications including optical tweezers, atomic force
microscopes, beam positioning for gravitational wave detec-
tors and satellite alignment [2—4].

The aim of this paper is to present a detailed analysis of
beam displacement and tilt measurements, for a given beam
power and profile, by considering two detection devices: a
split detector, and a homodyne detector with an optimal local
oscillator. The strength of the work presented here lies in the
direct comparison of the performances of each scheme, un-
der the same experimental conditions. Note that similar is-
sues are addressed on the limits to the measurement of beam
rotation about its propagation axis in Ref. [5]. We will first
focus on the detection device, and will therefore analyze ex-
perimentally a split-detection and a homodyne-detection
scheme with a TEM,, local oscillator (see Fig. 1), introduced
theoretically in Ref. [1]. At the same time, we will present
measurements of the quantum conjugated variable of the
transverse displacement of the beam, the laser beam tilt [6].
Finally, we will focus on the laser beam itself, and show
measurements beyond the fundamental limit imposed by the
photon statistics of laser beams, using nonclassical beams.
This demonstration allows displacement and tilt measure-
ments that were masked or altered by quantum noise.

The paper is organized in the following way. We first give
a brief definition of displacement and tilt of a TEM,;, mode
beam, and introduce the notions of position and momentum
of a Gaussian beam, which are two conjugate transverse ob-
servables. In Sec. III, we quantitatively discuss the QNL for
displacement and tilt measurements and show the improve-
ment that can be achieved with squeezed light. In Sec. IV, we
present how this new set of quantum variables can be ac-
cessed with a split detection, the conventional scheme used
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for beam displacement measurements. The results obtained
provide a reference for a homodyne detector with a TEM,,
local oscillator presented in Sec. V. In Sec. VI, we show how
to perform sub-QNL measurements with both schemes and
present experimental homodyne-detection results in this re-
gime. In Sec. VII, a comparison between both schemes is
presented, in perfect agreement with theoretical predictions,
and showing an improvement with the homodyne detection
that matches the predicted detection efficiency of 64%.

II. DISPLACEMENT AND TILT OF A GAUSSIAN BEAM

Displacement and tilt of a single-mode TEMy, laser beam
are very intuitive notions, they refer to macroscopic proper-
ties of a beam, as shown in Fig. 2. We assume here that the
beam is constrained to one dimension, namely the figure
plane of the paper, considering that the nonrepresented trans-
verse component is Gaussian. A displacement corresponds to
a translation of the beam by a distance d along the transverse
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FIG. 1. (Color online) Block diagram of our experimental setup.
We compare the performances of two measurement schemes—split
detection and homodyne detection with a TEM,;, local
oscillator—to retrieve displacement and tilt of a Gaussian beam. We
show how to modify the input beam using quantum correlations to
perform measurements beyond the quantum noise limit.
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FIG. 2. (Color online) Displacement and tilt definition. In the
two-dimensional case, the displacement d corresponds to a transla-
tion of the beam in the transverse direction. The tilt 6 corresponds
to a angular displacement of the propagation axis.

direction, whereas a tilt corresponds to an angular displace-
ment of the propagation axis by an angle 6. The tilt of a laser
beam is linked to the transverse momentum of the beam, in
the limit of small angles, given by the following expression:

B 277 sin 6 _ 20

P=T T M

where N is the optical wavelength. Note that displacement
and tilt are defined relative to a particular transverse refer-
ence plane. For instance, in Fig. (2), we have chosen the
beam waist plane as reference transverse plane.

In the case of small displacement and tilt, i.e., for d
<w, and 8<<N/wy—where w is the beam waist of the in-
cident TEM,, mode, we can Taylor expand the displaced
E,(x) and tilted E,(x) Gaussian field to first order, yielding
[1.6]

Ef() = E(x) + d%"), 2)
E,(x) = E(x) + ipxE(x). (3)

The equations can be rewritten into

Ed,p(x):AO|:u0(x)+ (i*‘iM)Ml(x)], 4)
W 2

where u,,(x) refers to the Hermite Gauss TEM,,, mode [7]. A,
is the amplitude of the incident TEM,,; mode and identifies
with the one of the displaced and tilted beam at first order in
d and p. Equation (4) shows that the information of displace-
ment and tilt of a TEM, laser beam can be extracted by
measuring the TEM,, mode component of the field. Any
displacement modulation is transferred to the in-phase am-
plitude of the TEM,, mode relative to the “carrier” (TEMy,
mode), whereas any tilt modulation is transferred to the
TEM,, component in quadrature relative to the TEM,, mode.
Note that all transverse modes defined here need a reference
frame, which is provided by the axis of the detection device.
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Displacement and tilt are thus measured relative to this ref-
erence.

In order to give a quantum mechanical description of dis-
placement and tilt of a laser beam, we need to take into
account the quantum noise of all the optical modes of the
beam, including the vacuum modes. We can write the posi-
tive frequency part of the electric field operator in terms of
photon annihilation operators d. The field operator is then
given in its more general form by

N R
g+(x) =1 26007—,% anun(x)’ (5)

where  is the field frequency, 7T is the integration time,
u,(x) are the transverse beam amplitude functions of the
TEM,,y modes, and d,, are the corresponding annihilation op-
erators. d, can be written in the linearization approximation
in the form of d,,={a,)+ &d,, where {d,) describes the coher-
ent amplitude and éa, corresponds to the small quantum
fluctuations.

We write now the quantum counterpart of Eq. (4), still in
the small displacement and tilt regime, in the transverse basis
for which u is the mean field TEMy, mode and u, is the
TEM,, mode, and all the other modes are filled with
vacuum:

Er(x) =i/ 2f:c)T \W{uo(x) + (wio + i%)ul(x)}

+ 2 8d,u,(x) (s (6)
i=0

where [(dy)|>=N is the mean photon number in the entire
beam at first order, and where we have introduced the mean
value of position and momentum quantum operators of a
laser beam, d=(X) and p=(p), respectively. These quantum
operators are given by

XA = /—X:l- N (7)
24 !
= — % (8)
p= )
Wo\”% “

where we see that position and momentum are linked to the
amplitude and phase quadrature of the TEM,, mode compo-
nent of the field, respectively, given by

X} =(a+aj), )
X =i(a,-al). (10)

a4y

Moreover, position and momentum are conjugate observ-
ables and satisfy the following commutation relation [6]:

i
8p]=—. 11
x,p] N (11)

In this section, we have defined displacement and tilt of a
Gaussian beam, given the general quantum description of
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FIG. 3. (Color online) Measuring displacement and tilt of a
Gaussian beam with a split detector. Taking a reference plane where
displacement and tilt components are needed, displacement can be
measured directly with a split detection in the near field (NF) of the
reference plane, whereas tilt can be accessed in its far field (FF).

such a field, and show that these former quantities were
closely linked to position and momentum, two quantum ob-
servables. Using this interesting property, Ref. [6] already
proposed a scheme for continuous variable spatial entangle-
ment for bright optical beams, involving two beams, respec-
tively, squeezed in position and momentum mixed on a 50:50
beam-splitter.

III. QUANTUM NOISE LIMIT FOR DISPLACEMENT AND
TILT MEASUREMENTS

The use of classical resources (i.e., coherent laser beams)
sets a lower bound to detection performances, which is
called the quantum noise limit (QNL) and arises from the
random time arrival of photons on the detector. In the case of
displacement measurement of a laser beam, the transverse
displacement dgy;, of a TEM, laser beam corresponding to a
signal to noise ratio (SNR) of 1, is found to be [8,9]

Wo
donL= "> (12)
QN 2\N

where wy is the waist of the beam, and N its total number of
photons detected in the interval 7=1/B,.,, where B, is the
resolution bandwidth. Ideally, T is maximized according to
the stability of the physical system. For instance in the case
of bits read-out in optical disc devices, B,., roughly corre-
sponds to the scanning frequency. For a 100 wum waist,
1 mW of power at a wavelength of A=1 um, with B,
=100 kHz, the quantum noise limit is for instance given by
doni=0.2 nm. Note that during test or characterization pro-
cedures, the precision can be increased by averaging with the
spectrum analyzer, for instance by reducing the video band-
width (B,;4). The QNL effectively corresponds to the mini-
mum measurable displacement when B,;y=B,.,, without av-
eraging.

Similarly, the QNL for momentum measurements can be
defined as [6]
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N (13)

In the same conditions as the ones defined above, the QNL
for momentum measurement is pox.=4X 102 m™!, corre-
sponding to a tilt angle of fgy;, =7 nrad.

In order to perform measurements beyond the QNL, i.e.,
for a given T, we have shown in Ref. [10] that filling the
appropriate transverse mode of the input field with squeezed
light is a necessary and sufficient condition. We call this
mode the noise-mode of detection [11].

For example, using 3 dB of squeezing in the appropriate
component of the beam for a displacement measurement
leads to a noise reduction of a factor 2. The SNR is quadratic
in d as the signal corresponds to the intensity of the TEM,,
component of the displaced field, and the new quantum limit
is thus given by dgqz=dgni/ \2. It is important to note that,
as imposed by Heisenberg inequalities, the measurement of
the conjugated observable—the momentum in this case—is
degraded.

IV. SPLIT DETECTION
A. Theory

The conventional way to measure the displacement of a
laser beam is to use a split detector. As shown in Fig. 3(a),
the difference between the intensity on each side of the split
detector yields a photocurrent proportional to the displace-
ment. This technique is widely used notably for beam align-
ments, particle tracking and atomic force microscopy. Nev-
ertheless, such a detection device only accesses the beam
position in the detector plane, and is totally insensitive to the
orientation of the propagation axis of the beam (i.e., tilt).
Consider the evolution of the field operator of Eq. (6) under
propagation along the z axis, we get

. h d w
Ef(x,z) =i/ @ \Wuo(x,z) + vﬁ(— + iip)
2epcT Wy 2

[}

Xul(x,z)eiQSG(Z) + 2 Ednun(x,z)ei"‘l’G(Z) , (14)
i=0

where u,(x,z) is the Hermite Gauss TEM,,, mode, ¢;(z) is
the Gouy phase shift, such as ¢(z)=arctan(z/zg), where zg
is the Rayleigh range of the beam. The amount of displace-
ment and tilt in the split-detector plane varies according to
the position of the detection device along the axis z, because
of the Gouy phase shift (i.e., diffraction). Note that the dis-
placement ratio is exactly inverted between near field, for
which ¢(0)=0, and far field, for which ¢g()=7/2. This
Fourier transform relation is a well-known result in classical
optics, for which a displacement in the focal plane of a
simple lens is changed into an angular displacement relative
to the propagation axis. Therefore, if the exact amount of tilt
and displacement is needed in a particular transverse plane,
for instance at z=0, displacement can be measured in this
plane (or in its near field), whereas tilt can only be accessed
in its far field, as presented in Fig. 3(b).
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The field presented in Eq. (14) is detected via a split de-
tector whose position is varied along the z axis. The photo-
current is directly proportional to the difference of intensity
incident on the two halves of the detector,

oo 0
1(z)= f E(x,2)E (x,2)dx - f E¥(x,2)E (x,7)dx
O —00

(15)

where the center of the split detector itself is chosen as the
reference frame, i.e., as the origin of the transverse axis x.
The beam displacement is thus measured relative to the po-
sition of the split detector. Any perturbation modifying this
position will create artificial beam displacement. Conse-
quently, we have performed our measurements at an RF fre-
quency (4 MHz as presented later on), far from the usual
mechanical or thermal instabilities in optical setups, that
would potentially generate classical noise on the detector
position.

Replacing é’*(x,z) with the previous expression yields, for
very small displacement and tilt

sm qu(z))

0

A hw d
I(2)= [2Nc1<— cos ¢g(2) + 2P
2epcT w

/_ A
AN oy 5X5}i’1*”"’6(”] , (16)
p=0

where 6X?=8d,e7 ¢+ 8dle'? refers to the noise of the
quadrature of the TEM,, ; mode defined by the angle ¢, and

9] 0 o
Cp= f - j un(x)uo(x)dx = f Mn(x)uf(x)dx’ (17)
0 —00 0

where u; is the flipped mode, which is a TEM,, mode whose
transverse profile has a 7 phase shift at the origin for z=0
[13]. Its decomposition in the TEM,,, basis during propaga-
tion is given by

oo

"‘f(x,z) = E 62p+1u2p+1(x»Z)ei(2p+l)¢G(z)a (18)
p=0

and the fluctuations of its amplitude quadrature operator are
found to be

5X+ 2 c2p+1 2p+l > (1 9)

where 5X‘£ .1 corresponds to the fluctuations of the ampli-
tude quadrature of the mode uy,(x,2).

Experimentally, we measure the displacement for differ-
ent split-detector positions. This displacement is induced by
a modulating device generating at z=0 displacement and tilt
modulations of amplitude d and p, respectively. A measure-
ment at the modulation frequency, using a spectrum analyzer
yields the modulation signal as well as the noise at this fre-
quency. As usual in quantum optics, all equations are directly
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transposable into the frequency domain. Using Eq. (16), the
variance measured by a spectrum analyzer at the precise
modulation frequency is given by

2
VSD(Z):KNT( ho ) |:4(NT)%<iCOS $6(2)
2€ycT T\ Wy

2
+ ‘% sin d)G(z))

2
+ (E C2p+15 21(73-}71+l ¢ ) :| s (20)

where « is a constant depending only on the electronic gains
of the spectrum analyzer, T=1/B,, is the integration time
and c1=\e’ﬂ. The first and second bracketed term in Eq.
(20), respectively, correspond to modulation signal and
noise. In the plane of the modulating device (i.e., for z=0),

the noise term can be written (5)2}“2> and corresponds to the
noise of the amplitude quadrature of the flipped mode. The
flipped mode is therefore the only mode contributing to the
noise in this particular plane. Note that this is not the case all
along the propagation axis. For a coherent incoming beam,
this noise term defines the shot noise level, and is equal to 1.

Note that using nonclassical resources for which (5)2}72)<1
in the detection plane results in noise reduction. This case
will be discussed in Sec. VI.

The SNR for a coherent beam is found from Eq. (20),

2 d w 2
SNRgp = 4NT—<— cos ¢glz) + 20 in ¢G(z)> .
T\ Wy 2
As stated in Sec. III, the SNR has a quadratic dependence in
displacement d and momentum p.

B. Experiment

We have performed split-detection measurements of dis-
placement and tilt of a Gaussian beam, by moving the posi-
tion of the detector along the propagation axis, as shown in
Fig. 4. Displacement and tilt are produced by a piezoelectric
element (PZT) modulated at 4 MHz. A modulation signal at
such a high frequency has two main advantages. The first
one is to operate far from mechanical instabilities, as stated
previously. The second one is to be insensitive to the techni-
cal noise of our laser source, which is shot noise limited
above 1 MHz. Each measurement along the propagation axis
refers to a different quadrature of the modulation (i.e., a dif-
ferent mixture of displacement and tilt modulation). The re-
sults are normalized to the shot noise and taken with a
4.2 mW incident beam, ensuring 7 dB of clearance between
the shot noise and the electronic noise level. From these
measurements, we can infer the displacement and tilt relative
amplitude modulation in the PZT plane where the waist is
106 um. The displacement signal, accessible in the near field
of the PZT, is found to be much smaller than the tilt signal,
and even so that it cannot clearly be distinguished from the
shot noise. This unusual behavior of the piezoelectric mate-
rial arises from the operation regime, where the modulation
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FIG. 4. (Color online) Modulation measurement normalized to
the shot noise along the propagation axis of a tilted and displaced
beam, using a split detector. The modulation was produced by a
PZT at 4 MHz, the near field image is located 1.6 cm after the waist
plane which is taken as the reference position z=0. The modulation
detected in this plane (NF) corresponds to the displacement modu-
lation and represents only 10% of the overall modulation strength.
The tilt information lies in its far field (FF). Classical and nonclas-
sical experimental and theoretical results are presented.

is generated via an accidental mechanical resonance of the
PZT. The theoretical curve has been plotted for a coherent
illumination, using Eq. (20) for 10% displacement modula-
tion, and 90% tilt modulation, ratio determined with the
more accurate results presented in Sec. IV. There is a very
good agreement with the experimental data. The last experi-
mental point in Fig. 4 lies below the theoretical prediction, as
the beam started to be apertured by the split detector, leading
to a smaller measured modulation. Note that for technical
reasons, our experimental setup is slightly different from the
simplest setup presented in Fig. 3, where the reference plane
coincides with the beam waist position. As shown on Fig. 4,
the waist position lies at 1.6 cm for the near field of the PZT
in our imaging setup.

We have shown in this section how to retrieve displace-
ment and tilt information from a Gaussian beam with a split
detector, and have taken experimental results which will be
used as a reference in the following sections.

V. HOMODYNE DETECTION WITH A TEM,, LOCAL
OSCILLATOR

We have proved theoretically in Ref. [1] that split detec-
tion was nonoptimal to retrieve displacement information, as
it is only sensitive to the flipped mode instead of the TEM,
mode component of the input field. In order to extract all the
displacement and tilt information with up to 100% efficiency,
we propose a homodyne detector involving a TEM,, mode
local oscillator, which selects the TEM |, mode component of
the field.

In the homodyne detection scheme, two beams are mixed
on a 50:50 beam-splitter. The first one is the signal beam
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containing the displacement and tilt modulations, whose field
operator is given by Eq. (6). The second one is the local
oscillator (LO), whose field operator is

X ho [ — .
Eol =i T“}( Wigi()+ 3 &iLo,,un(x)) :

i=0

where N| o denotes the number of photons per second in the
beam, and ¢, g is the local oscillator phase. This definition of
the LO profile, namely its axis and spatial extension, sets a
spatial reference for beam displacement and tilt measure-
ments, similarly to the position of the split detector in the
preceding section. Since displacement and tilt modulations
are very small and the local oscillator is much brighter than
the signal beam (i.e., N; o> N), the usual calculation of the
intensity difference between the two homodyne detectors at
the modulation frequency gives

A

ho —( d wop .
I_= 2VNNio| — cos ¢ o+ — sin ¢ o
260CT %) 2

+ \/NLoéfq”w} : (1)

and similarly to Eq. (20), its variance at the displacement and
tilt modulation frequency is therefore

fiw \2 d
Vin(éro) = KNLOT< B T) [4NT(COS(¢LO)_
Wo

€0C
2 2
+ sin(gbm)’%> + <5f(;ﬁw>} , (22)

where the constant « is identical to the split-detection part as
long as the spectrum analyzer settings have not been
changed. The first bracketed term corresponds to the modu-
lation signal. The second one refers to the noise of the
TEM,;, component of the detected field, and its variation

A 42
with the local oscillator phase ¢ is given by (6Xf’L0)

:(z‘)‘)A(]Lz}cos2 ¢LO+(5}2“12)sin2 &0, Where <5)A(Jf2) and (5)qu>
are the noise of the amplitude and phase quadrature of the
TEM,, mode, respectively. Scanning the local oscillator
phase allows to measure all the quadratures of the displace-
ment and tilt modulation. We have omitted the Gouy phase
shift in the previous expression, as it can be incorporated as
a constant term in the local oscillator phase. This phase is
still defined so that ¢; =0 corresponds to a displacement
measurement in the PZT plane.

Only the TEM;, mode of the incoming beam contributes
to the noise, as it matches the local oscillator transverse
shape. All the other modes contributions cancel out since
they are orthogonal to the local oscillator. The TEM;, mode
is thus the noise mode of the homodyne detection [11], and
precisely matches the information to be extracted. We can
show, using a Cramer Rao bound estimation, that the TEM;,
homodyne detection is an optimal displacement and tilt de-
tection, as no other device can possibly perform such mea-
surements with a better SNR [12].
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For a coherent incoming TEM,, mode, the previous noise
term defines the shot noise level, and is equal to 1. Using
squeezed light in the TEM,, mode component of the incom-
ing beam would result in noise reduction, and will be dis-
cussed in Sec. VI.

The SNR for a coherent incoming beam can be derived
from Eq. (22) in the homodyne detection case

( d pwy . )2
SNRyp =4NT| — cos ¢ o+ —— sin o] . (23)
Wo 2

Comparing the split and homodyne detections schemes
yields certain similarities between Egs. (20) and (22). First, a
variation of the local oscillator phase ¢ in the homodyne
scheme is equivalent to a propagation along the z axis induc-
ing a Gouy phase shift ¢ in the split detection case. Second,
an additional 2/ geometry factor in the split-detection case
arises from the imperfect overlap between the flipped mode
and the TEM,, mode, as discussed in Ref. [1]. The compari-
son between the two SNRs in the coherent case yields a
theoretical efficiency ratio given by

SNRgp,

_ 2 Nsp
" SNRyp

b
7TNHD

h (24)

where Ngp and Nyp refer to the number of photons per sec-
ond in the displaced and tilted beam, for the split-detection
and the homodyne-detection case, respectively. For identical
signal beams powers, this means that the split detection is
only 2/m=64% efficient compared to the homodyne detec-
tion. Using the homodyne detection thus corresponds to an
improvement of (100-64)/64=56%. Note that this power
efficiency corresponds to the 80% amplitude efficiency of
the split-detection stated in Refs. [1,11]

Eventually, the intensity factor before the bracketed term
in Eq. (22) and Eq. (20) can be much bigger in the
homodyne-detection case, as it corresponds to the local os-
cillator intensity instead of the input beam intensity in the
split-detection case. It is thus easier to have more electronic
noise clearance in the homodyne case for weak signals.

In this section, we have shown—still theoretically—how
to retrieve displacement and tilt using a homodyne detector
with a TEM,, local oscillator. Moreover, we have proved a
56% theoretical improvement of this scheme compared to
the split detection.

VI. DISPLACEMENT AND TILT MEASUREMENTS
BEYOND THE QUANTUM NOISE LIMIT

When the information to be retrieved is below—or of the
order of—the quantum noise, nonclassical resources (i.e.,
squeezed laser beams) can help extract the information. For
each type of detection (i.e., homodyne and split detection),
the only transverse mode component within the incident field
which contributes to the noise has been identified in the pre-
ceding sections. The noise modes of the split and homodyne
detection are the flipped mode and the TEM,, mode, respec-
tively. Since displacement and tilt of a TEM,, beam lies in

(a)Squeezed

flipped mode/I/

vacuum
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FIG. 5. (Color online) Schematic of displacement and tilt modu-
lation measurement beyond the quantum noise limit. (a) With a split
detector and (b) with a homodyne detector. Prior to the modulation
generated via a PZT at a few MHz, a bright TEM,), beam is com-
bined without losses with a squeezed vacuum noise mode. This was
done with a special Mach-Zehnder which has an additional mirror
in one arm. A mirror leakage is used to lock the relative phase
between both input modes. All different combinations of displace-
ment and tilt modulations are accessible when (a) the position of the
split detector along the propagation axis z is varied, and (b) when
the local oscillator phase ¢ g is scanned.

the TEM,, component of the beam, noise mode and infor-
mation encoded are matched for the homodyne detection
only, accounting for the nonoptimal split detection.

Subshot noise measurements with both schemes can be
performed using the setups shown in Fig. 5, by filling the
noise mode of the input beam with squeezed light. A mode
combiner must be used to merge the signal beam—in our
case a bright TEM,,, beam—with the noise mode of detec-
tion, filled with squeezed vacuum. Note that it must be a
vacuum mode, or a very dim field not to contribute to the
signal, but only to reduce the quantum noise properties. The
combination of beams cannot be done with a sheer beam-
splitter as the squeezing is not robust to losses. Instead, we
used a special Mach-Zehnder interferometer with an addi-
tional mirror in one arm, see (Fig. 5). This mirror has no
effect on even transverse profiles, but induces an additional
7 phase shift to odd transverse profiles. Therefore, thanks to
this asymmetry, orthogonal even and odd modes, which are
incident on the two input ports of the Mach-Zehnder, inter-
fere constructively on the same output port without experi-
encing any losses. The integrality of the bright beam and the
squeezing of the squeezed vacuum mode—i(a) flipped mode
or (b) TEM,, mode—are thus preserved at the output of the
interferometer. Note that other devices can be used [9,14,15].

In order to make a direct comparison of the performances
of the split detection and the homodyne detection, we have

053823-6



TEM,, HOMODYNE DETECTION AS AN OPTIMAL...

PHYSICAL REVIEW A 74, 053823 (2006)

Source ii) Local iii) Homodyne
Mode Oscillator Detector
e Converter
|
)
<C
1 @ 1|
LO B
N\ Jz2--
N 7 & [ Rp—
|
00—-+10 |
/N
g il .
<I)rel | iv) Split
Signal |, Detector
ﬁ% v Q% Beam i H i
J) I_—_ —
U
/ V i
U
i iv) Displaced and
Squeezed i Tilted Beam
Vaccum |
Mode IS
u 1
I Converter i
wv : ( d
+ —
il S <, | ol = |
Q gy
OPA 7 | . TO.W
N —_
m Mode 4 | 1 A H
Squeezer W ;
q 00—10 , i) PZT
actuator

FIG. 6. (Color online) Experimental scheme to measure displacement and tilt with a split detector and a homodyne detector with the same

operating conditions.

built the experimental setup sketched in Fig. 6, where both
schemes are tested in the same operating conditions. In ad-
dition to a simple comparison involving only classical re-
sources, we designed the experience in order to allow mea-
surements beyond the QNL. At this stage, we were unable to
produce directly a squeezed TEM,, mode, we have therefore
chosen to generate a squeezed flipped mode, which also cor-
responds to a squeezed TEM,, mode having experienced
36% losses. Indeed, the amount of squeezing in the ampli-
tude quadrature of the TEM,, component of the flipped
mode can be deduced from

(5%}) = %<5>2;2>+ (1 - %) (25)

as all the modes except the flipped mode are filled with co-
herent light. If the flipped mode is a classical coherent beam,

<6)A(}'2>= 1, which also implies that the TEM,, component is

coherent (5)2‘; 2): 1, as expected. In the end, if we start with
3.6 dB of squeezing in the amplitude quadrature of the
flipped mode as discussed below, we get 2 dB of squeezing
in the TEM,, mode, which is exactly what can be measured
experimentally by using the homodyne detection with a
TEM, local oscillator.

We used the following experimental procedure. First we
generated a 3.6 dB squeezed TEM,; mode from a monolithic
optical parametric amplifier (OPA) pumped by a frequency
doubled YAG laser delivering 600 mW at 1064 nm, and
seeded by a TEM,, mode. This very low power (nW)
squeezed beam then experiences a mode conversion into the

flipped mode thanks to a special wave-plate made of two
half-wave plates whose optical axis have been rotated 90°
relative to each other [13]. A beam incident on such an op-
tical element yields a 7 phase shift on one-half of its trans-
verse profile.

Thanks to the special Mach-Zehnder interferometer for-
merly presented, we combine this beam with a bright TEM,
beam, therefore preserving their potential nonclassical prop-
erties. To achieve this experimentally, we first mode matched
both input beams of the interferometer without the special
wave plate, reaching 99.5% visibility on the first beam split-
ter of the interferometer. The squeezed beam, although very
dim, is still bright enough to be mode matched with the other
bright TEM,, beam. The interferometer is then aligned on
the OPA beam without the wave plate with 98% visibility
and then the wave plate is slid in the center of the beam to a
maximum visibility of 97.8%. Note that we purposely intro-
duced a leakage in one of the mirrors to lock the relative
phase ¢, between the two input modes with a split detector
(SD), as drawn in Fig. 5. In the end, the global mode com-
biner efficiency is still higher than 97%.

The multimode squeezed beam hereby generated is then
displaced and tilted with a PZT, as presented in Sec. IV, and
the information is detected with either one of the split or
homodyne detection schemes. Let us first briefly concentrate
on the results obtained with the split detector, in presence of
the squeezed flipped mode. We see in Fig. 4 that we were
able to measure a modulation below the QNL. These mea-
surements precisely correspond to detection in the near field
of the mode converting wave-plate—which is also the far
field of the PZT—as the flipped mode is not stable with
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propagation, and the squeezing degrades very quickly along
the z direction. Note that the excess noise expected far from
the near field plane cannot be resolved because of the strong
detected modulation in this region.

We now focus on the TEM,; homodyne detection. The
TEM;,, local oscillator is produced with a misaligned ring
cavity locked to resonance on the TEM,, mode represented
in Fig. 6. The cavity has been designed such that it delivers a
pure transverse output mode (i.e., high order modes are not
simultaneously resonant in the cavity). We mode matched
this local oscillator beam to the signal beam by previously
locking the ring cavity to the TEM,,, mode resonance, reach-
ing a visibility of 98.9% with the TEM,,, input mode.

The experimental results, obtained with the spectrum ana-
lyzer in zero-span mode at 4 MHz, are presented in Fig. 7(a)
and Fig. 7(b), when the TEM,, local oscillator phase is
scanned and locked for displacement (¢;o=0) and tilt
(¢ro=m/2) measurement. The electronic noise is 11.7 dB
below the shot noise level. All traces are corrected for this
noise. Without the use of squeezed light, the displacement
modulation cannot clearly be resolved, as in the split detec-
tion case. Improvement of the SNR for displacement mea-
surement beyond the quantum noise limit is achieved when
the squeezed quadrature of the TEM,, mode is in phase with
the displacement measurement quadrature (i.e., in phase with
the incoming TEM,y, mode). Since we are dealing with con-
jugate variables, improving the displacement measurement
degrades the tilt measurement of the same beam, as required
by the antisqueezing of the other quadrature. The displace-
ment measurement is improved by the 2 dB of squeezing,
whereas the tilt measurement is degraded by the 8 dB of
antisqueezing. Theoretical curves calculated with 2 dB of
noise reduction and 8 dB of antisqueezing, and 90% of tilt
modulation and 10% of displacement modulation—
continuous curves in Fig. 7(a)—are in very good agreement
with experimental data. In our experiment, we have a TEMj,
waist size of wo=106 um in the PZT plane, a power of
170 uW, B.,=100 kHz and B,;4=100 Hz, corresponding to
a QNL of dgn=0.6 nm. The measured displacement lies
0.5 dB above the squeezed noise floor, yielding a displace-
ment modulation 0.08 times larger than the QNL. As the
modulation has a square dependence on the displacement d,
we get deyy=10.08dgn =0.15 nm. This would correspond to
a trace 0.3 dB above the QNL [trace MOD: ¢ =0 in Fig.
7(a)]. The use of squeezed light thus allows a more accurate
determination of the displacement signal. The ratio between
displacement and tilt modulations can be inferred from the
theoretical fit in Fig. 7, giving a measured tilt of 0.13 urad.

We have in this section demonstrated measurements of a
pair of quantum conjugate variables—displacement and
tilt—with a homodyne detector involving a TEM;, mode lo-
cal oscillator, and performed subshot noise displacement
measurements.

VII. COMPARISON

Split-detection and homodyne detection efficiencies
would ideally be compared exactly in the same regime.
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FIG. 7. (Color online) Demonstration of subshot noise measure-
ments of (a) displacement and (b) tilt modulations using spatial
homodyne detector. The figures show an example with 90% of tilt,
and 10% of displacement modulations. Left-hand side of the figures
shows the scanning of the local oscillator phase ¢y that continu-
ously access the pure displacement (at ¢ =0 and ) to pure tilt (at
¢ro=m/2 and 37/2) information of the beam. QNL, quantum
noise limit. SQZ, quadrature noise of squeezed light with 2 dB of
squeezing and 8 dB of antisqueezing on the TEM;, mode, but with-
out any modulation signal. MOD, measured modulation with coher-
ent light. MOD-SQZ, measured modulation with squeezed light.
Right-hand side of the figures shows the corresponding locked local
oscillator phase to the (a) displacement or (b) tilt measurement.
SQZ, at ¢ =0 the squeezed noise level is 2 dB below the shot
noise and at ¢ o=1r/2 there is 8 dB of antisqueezing noise. DISP:
MOD-SQZ curve locked to ¢ =0 for displacement measurement.
TL, MOD-SQZ curve locked to ¢ o=m/2 for tilt measurement.
Displacement measurement is improved by the 2 dB of squeezing,
while the tilt measurement is degraded by the 8 dB of
antisqueezing.

However, the optimum operating regimes for both schemes
are not compatible. Indeed, on the one hand, in the split-
detection case, the incident beam power must be “intense” in
order to have enough clearance relative to the electronic
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noise level, i.e., several mW for our split-detection device.
On the other hand, in the homodyne-detection case, the local
oscillator must to be the “intense” beam, and is the one
whose power must ensure an electronic noise clearance. Its
power must thus be of the order of the mW for our homo-
dyne detectors. In this case the power of the incident dis-
placed and tilted beam should beat at least 10 times less than
the power of the LO beam, i.e., its power cannot exceed
about 100 uW. In order to provide a comparison, we use Eq.
(24) which takes into account the power discrepancy be-
tween both experiments. Note however that all other param-
eters are identical, as shown by the symmetry of the system
shown in Fig. 6.

The experimental efficiency ratio can be accessed by the
ratio of maximum modulation power relative to the shot
noise Modgp, and Modyp, respectively, detected with the split
detection and the homodyne detection,

MOdSD

t= .
xp MOdHD

(26)

The two experimental curves presented in Figs. 4 and 7(a)
(MOD) read Modgp=23 dB and Modyp=11.3 dB, for beam
powers of Psp=4.2 mW and Pyp=170 uW, respectively.
Using Egs. (24) and (26), we can compare our theoretical
prediction and the experimental efficiency ratio with the fol-
lowing ratio:

R
—SXBt =1 40.05, (27)
th

where the uncertainty is mainly due to the determination of
the maximum modulation values. We therefore report an ef-
ficiency improvement of 56%, in perfect agreement with the
theoretical value calculated in Ref. [1].

Let us now compare the advantages or drawbacks of both
detection devices. Although we have proven that the homo-
dyne scheme is more efficient, it is not always the most
convenient or the most appropriate to operate in some ex-
perimental setups.

The main advantage of the split detector is obviously its
simplicity for a single displacement measurement. When the
beam to be analyzed is intense enough to be distinguished
from the electronic noise, such a simple device must be pre-
ferred. However, as soon as both conjugated variables are
investigated, several split detections are required, potentially
involving a displacement of the detector itself in between
two consecutive measurements. There are additional limita-
tions to the use of a split detector due to its gap and to its
finite size, which are imposing constraints when the variation
of the modulation on the propagation axis is measured. The
accessible range to a good detection on the z axis is small, as
the beam can neither be too small (because of the gap), nor
too large because of the finite size of the detector.

When it comes to ultrasensitive measurements, the gain in
efficiency provided by the homodyne scheme relative to the
split detection is a simpler technique than the use of nonclas-
sical light with a split detector. In order to perform measure-
ments beyond the QNL, one must carefully image the
squeezed flipped mode onto the sample with which the beam
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is interacting, and also onto the detector, as the flipped mode
is not stable in propagation. As a 56% improvement roughly
corresponds to the use of 3 dB of squeezing, homodyne de-
tection with coherent illumination should be preferred in this
case. Another advantage of the homodyne device is to allow
measurements of displacement and tilt of a beam without
changing the position of the detector, just by varying the
local oscillator phase, which has to be carefully mode
matched to the incoming beam. High measurement rates of
both variables can thus be achieved. Moreover, weak signals
that would have been drowned in the electronic noise of a
split detector are measurable as the noise clearance is deter-
mined by the intense local oscillator. Nevertheless, using this
detection device requires coherent illumination as it relies on
interference measurement. Additionally, implementing a lo-
cal oscillator beam is sometimes impossible, typically when
the source of the beam to be analyzed cannot be accessed.

In order to further improve the measurement sensitivity,
for instance when the signal is so weak that it cannot be
distinguished from the quantum noise, a nonclassical beam
with a squeezed TEM,, component can be generated. The
homodyne detection noise will be reduced either for dis-
placement or tilt measurement, according to the relative
phase between squeezed beam and carrier beam. Such detec-
tion can for instance be applied to track the position and
orientation—at high frequency not to have thermal and me-
chanical perturbations—of a phase object or a biological
sample—we recall that the use of nonclassical light is limited
to transparent propagation media, as the squeezing rapidly
decays with losses.

VIII. CONCLUSION

We have demonstrated a homodyne-detection scheme in-
volving a TEM,, mode local oscillator in order to measure
the displacement and tilt of a Gaussian beam. We report a
detection efficiency improvement of 56% relative to the split
detection, in perfect agreement with the theoretical value.
Our detection setup is very simple and could thus easily
replace split and quadrant detectors in many applications,
particularly when tilt and displacement are needed at the
same time. Moreover, further developments using nonclassi-
cal are possible, as we have presented measurements beyond
the QNL with these devices. Note that we are now able to
generate the squeezed TEM,, mode directly, without the use
of a wave plate, with a misaligned optical parametric ampli-
fier [16], allowing a simplification of the setup.

Quantum measurements in the transverse plane such as
the ones presented in this paper potentially open the way to
parallel quantum information processing. Indeed, instead of
using amplitude and phase quadratures or Stokes operators,
conjugated quantum operators are now available in the trans-
verse plane. The generation of spatial entanglement between
position and momentum of two laser beams will be consid-
ered as a first step towards this goal. Note that spatial en-
tanglement has already been demonstrated with orbital angu-
lar momentum in the single photon regime [17,18]. Other
types of experiments that could follow are dense coding and
teleportation of spatial information and spatial holography.
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