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In electromagnetically induced transparency, the scattering rate of a probe beam is greatly reduced due to
destructive interference between two dressed atomic states produced by a strong laser beam. Here we show that
a similar reduction in the single-photon scattering rate can be achieved by tuning a probe beam to be halfway
between the resonant frequencies of two modes of a cavity. This technique is expected to be useful in
enhancing two-photon absorption while reducing losses due to single-photon scattering.
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In electromagnetically induced transparency �EIT� �1,2�,
an atomic medium with a large scattering rate at one fre-
quency can be made transparent by applying a laser beam at
a different frequency. The reduction in the scattering rate is
due to destructive interference between the scattering ampli-
tudes from two dressed atomic states that are created by the
laser beam. Here we show that a similar effect can be ob-
tained without the need for a laser beam if the frequency of
an incident beam of light is tuned to be halfway between two
of the resonant modes of a cavity. This allows the two-
photon absorption rate to be enhanced while simultaneously
reducing the loss due to single-photon scattering. Aside from
its fundamental interest, this effect is expected to be of prac-
tical use in the design of Zeno logic gates based on
two-photon absorption �3�.

The system of interest here is illustrated in Fig. 1. An
optical waveguide containing a small number of incident
photons is coupled to a ring resonator, which in turn is
coupled to NA three-level atoms via its evanescent field. It
will be assumed that there is no direct coupling of the pho-
tons in the waveguide to the atoms, so that no loss can occur
unless a photon has been coupled into the resonator. The
atoms are located near the coupling to the waveguide in or-
der to ensure that the matrix elements are the same for adja-
cent resonator modes. Our goal is to achieve strong absorp-
tion when two photons are present in the waveguide with
little or no loss due to scattering when only a single photon is
present. It will be found that the loss due to single-photon
scattering can be eliminated if the frequency of the incident
photons is tuned to be halfway between two adjacent cavity
modes.

Ring resonators can have large intrinsic quality factors �Q
values�, in which case there would be very little response to
an incident field tuned between two of the resonant modes. If
the coupling between the waveguide and the ring resonator is
very strong, the Q can be reduced �spoiled� to the point that
the linewidth is comparable to the free spectral range of the
cavity.

Johnsson et al. �4� considered the use of EIT in two-
photon absorption based on a conventional approach in
which a strong laser beam is applied to a double-lambda
atomic system. Opatrny and Welsch �5� have previously dis-
cussed an enhanced form of EIT using the coupled modes of
two different cavities and a strong pump beam �laser�. Clas-
sical interference effects involving two different cavities �but
no atoms� that are somewhat analogous to EIT have also

been investigated �6–8�. Our approach has the potential ad-
vantage of avoiding any background counts due to the laser
beam, which may be important when dealing with single-
photon signals. In addition, confining the photons to the
small mode volume of the ring resonator enhances the mag-
nitude of the two-photon absorption and is well-suited for
quantum computing applications �3�.

The energy-level diagram for the system of interest here is
illustrated in Fig. 2. The ring resonator has resonant modes
labeled lR that correspond to lR�=C, where C is the circum-
ference of the ring and � is the wavelength. Neglecting dis-
persion, the energy E�lR� of a single photon in the state �lR� is
given by E�lR�= lR��0, where � is Planck’s constant divided
by 2� and �0 is the angular frequency of the fundamental
mode. The energy ��� of the incident photons can be written

as ���= Ē+�, where � is an adjustable parameter and Ē
= �lR��0+mR��0� /2 is the average energy of two adjacent
modes lR and mR= lR+1, as shown in Fig. 2. The resonator
state �lR ,mR� with one photon in modes lR and mR has an

energy of 2Ē, and the state �2mR� with two photons in mode
mR will also play an important role. For simplicity, the other
modes of the ring resonator are not shown in Fig. 2.

The ground state and first two excited states of the atoms
will be denoted by �0A�, �1A�, and �2A�, respectively. The en-

ergy E1 of �1A� is assumed to be detuned by �1 from Ē, while

the energy E2 of �2A� is detuned by �2 from 2Ē.
All of the atoms are confined to a sufficiently small region

that exp�i�k�lR�−k�mR��x��1, where x is the distance around
the ring. In that case the exponential phase factors can be

FIG. 1. Reduction in the single-photon scattering rate by tuning
the photons in a waveguide halfway between the resonant frequen-
cies of two adjacent resonator modes �lR� and �mR�. The single-
photon loss is greatly reduced due to destructive interference be-
tween the probability amplitudes to excite an atom, while strong
two-photon absorption can still occur.
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neglected and the Hamiltonian for a single atom in the dipole
approximation is given �5� by

Ĥ = âW
† âW � �� + 	

l

âl
†âl � �l + E1	̂01

† 	̂01 + E2	̂12
† 	̂12

+ MW	
l

âl
†âW + M1	

l

	̂01
† âl + M2	

l

	̂12
† âl + H.c.

�1�

Here âW
† and âl

† create photons in the waveguide and ring
resonator, respectively, 	̂01 produces a transition from �1A� to
�0A�, and 	̂12 produces a transition from �2A� to �1A�. The
value of the coefficient MW is determined by the coupling
�evanescent field� between the waveguide and the ring
resonator, while the atomic matrix elements are given by

M1= 
d�1 ·E� � and M2= 
d�2 ·E� �,where d�1 and d�2 are the corre-

sponding dipole moments and E� is the electric field in the
resonator �9�.

We will first consider the case in which the atomic density
is sufficiently low that perturbation theory can be used, and
then return later to consider the implications of higher atomic
densities. To lowest order in perturbation theory, the rate of
single-photon scattering due to the presence of the atoms is
given �10� by

R1 = 2NA

Mef f
2

���� − E1�2 + ���1�2�1. �2�

Here �1 is the half-width of state �1A� due to spontaneous
emission and collision broadening and Mef f is the effective
matrix element from second-order perturbation theory �11�.
There are two probability amplitudes leading to the excita-
tion of state �1A� corresponding to the virtual excitation of
resonator states �lR� or �mR�. The effective matrix element for
this process is thus the sum of two terms

Mef f = � M1MW

� − ��0/2
+

M1MW

� + ��0/2
� , �3�

where �±��0 /2 is the detuning in the two intermediate
states and we assume that ����0.

Combining Eqs. �2� and �3� gives

R1 = 2NA� �1

�1
2 + ���1�2�� M1MW

� − ��0/2
+

M1MW

� + ��0/2
�2

, �4�

where we have used ���1. The same results were also ob-
tained using a more lengthy density matrix calculation,
which gives a small correction for the intrinsic linewidth of
the resonator which is negligible for the high-Q cavities of
interest here �12�.

The rate of single-photon scattering as a function of the
tuning parameter � is indicated by the solid line in Fig. 3 in
arbitrary units. �The numerical values as a function of atomic
density will be discussed below.� It can be seen that the
scattering rate goes to zero for �=0 due to the cancellation
between the two intermediate states. Since the cancellation
occurs between two existing states, this effect is more analo-
gous to a Fano resonance �13� than EIT. The scattering rate is
further reduced by the large value of �1, regardless of the
cancellation of amplitudes. The scattering amplitudes from
the modes not shown in Fig. 3 are smaller in magnitude and
they also cancel out in pairs.

Our goal is to achieve a large rate of two-photon absorp-
tion, and the energy levels are such that two photons in the
waveguide could be resonantly absorbed into the state
�lR ,mR� of the resonator for �=0. However, to lowest order
in perturbation theory, that process is also suppressed by the
cancellation of probability amplitudes, since the intermediate
states for two-photon absorption of that kind are the same as
in Eq. �3�.

This problem can be avoided if we include the possibility
of two-photon absorption via the resonator state �2mR�, for
example. There is only one probability amplitude for this
transition since both photons are absorbed into mode m of
the ring resonator, and no cancellation of probability ampli-
tudes occurs. Two-photon absorption can occur in fourth-
order perturbation theory via the transition

�2W� → �1W,mR� → �2mR� → �mR,1A� → �2A� . �5�

FIG. 2. Energy-level diagram for the ring resonator and three-
level atoms. Quantum interference between the resonator modes �lR�
and �mR� eliminates single-photon scattering by the atoms in anal-
ogy with EIT, while strong two-photon absorption can still occur
via intermediate states such as �2mR�.

FIG. 3. Single-photon scattering rate �solid line� and two-photon
absorption rate �dashed line� as a function of the photon detuning
� / ��0 �in arbitrary units�.
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Here �2W� is the initial state with two photons in the wave-
guide, and �1W ,mR� corresponds to one photon in the wave-
guide and one in resonator mode m, etc. The probability
amplitude A2 for this transition is given �11� by

A2 =
M2

�2� − �2�

2M1

�1

2MW

�2� − ��0�
MW

�� − ��0/2�
, �6�

where we have assumed ���1. There is a similar fourth-
order probability amplitude A2� to excite the upper atomic
state via resonator states �l� and �2l�:

A2� =
M2

�2� − �2�

2M1

�1

2MW

�2� + ��0�
MW

�� + ��0/2�
. �7�

It is important to note that the detunings in the first two
virtual states are both positive or both negative for either
process �for �� � 
��0 /2�, so that these two amplitudes have
the same sign and constructively interfere. Adding these two
amplitudes gives a two-photon absorption rate from Eq. �2�
of

R2 = 8NA

M1
2M2

2MW
4 �2

�1
2��2��2 + ���2�2�

�� 1

�2� − ��0�
1

�� − ��0/2�
+

1

�2� + ��0�
1

�� + ��0/2��
2

.

�8�

Here �2 is the width of the upper atomic level due to
collisions and we have taken �2=0.

Equation �8� includes only the contribution from the two
intermediate states with the smallest detunings, which give
most of the contribution to the probability amplitude. The
total probability amplitude was determined by numerically
summing the contributions from all possible intermediate
states �li� and �lj , lk�, which gave a two-photon absorption rate
that is 52% larger than that from Eq. �8�. The dashed line in
Fig. 3 shows the total two-photon absorption rate as a func-
tion of the photon tuning parameter � for the case of
��2=0.05���0. It can be seen that the two-photon absorp-
tion rate is a maximum at �=0 where the single-photon
scattering rate is zero.

The coupling between state �2mR� and the states �1A� for
each of the NA atoms will be too large for standard perturba-
tion theory to be valid if the density of atoms is sufficiently
large �14�. In that case, the rate of two-photon absorption can
be determined by first calculating the exact eigenstates of the

Hamiltonian Ĥ0, defined to include the diagonal elements of

Ĥ as well as the M1 term that couples those states. Perturba-
tion theory can then be performed using those eigenstates as

a basis with a perturbation Hamiltonian Ĥ� that includes the
remaining MW and M2 terms, which are independent of
the atomic density. The probability amplitude for an atom to
be in state �1A� will be denoted by c1A, while c2m will denote
the probability amplitude for state �2mR�. Schrodinger’s

equation for Ĥ0 gives

i � ċ2m = �2Ē + ��0�c2m + 2NAM1c1A

i � ċ1A = �2Ē + ��0/2 + �1�c1A + 2M1c2m. �9�

If we make a change of variables to c2m� �NAc2m and
M1��NAM1, then Eq. �9� can be rewritten as

i �
d

dt
�c2m�

c1A
� = ��2Ē + ��0� 2M1�

2M1� �2Ē + ��0/2 + �1�
��c2m�

c1A
� ,

�10�

which is equivalent to an effective two-level system. The
eigenstates of Eq. �10� were found analytically and combined
with the remaining states ��0R� and �2A�� to form a new set of
basis states for the perturbation calculation in MW and M2.

In order to estimate the magnitude of these effects, we
considered a simple example of a ring resonator formed from
a fused silica fiber with diameter d in the shape of a ring
�toroid� of diameter D�d. This provides an approximation
to the whispering gallery modes of toroidal resonators �15�.
In the limit D�d, the electric field is that of a straight fiber
for which there is an exact solution to Maxwell’s equations
�16�. This allows a determination of the matrix elements

M1= 
d�1 ·E� � and M2= 
d�2 ·E� �. For this example, we assumed
that d=0.35 �m and D=50 �m, which corresponds to a
mode spacing of �0 /2�=1.8�1012 Hz and an effective
mode volume Vm=7.6�10−17 m3 �9�. The coupling between
the waveguide and the cavity was taken to be MW= ��0 /3.

It was also assumed that the resonator is surrounded by
rubidium vapor at density  with NA=Vm. The levels �1A�
and �2A� were taken to be the usual rubidium S→P→D
transition �17� used in precise wavelength measurements
with �1=�2���108 s−1. For this series of transitions,
the two-photon absorption resonance is at 778 nm and the
detuning �1 corresponds to a wavelength difference of
2.1 nm.

The two-photon absorption rate calculated in this way is
shown in Fig. 4. At densities up to �1015 cm−3, the straight-
line nature of the plot is identical to Eq. �8�, while R2
saturates at a value of 4.7�109 s−1 for larger densities.
Roughly speaking, the saturation is due to the fact that a

FIG. 4. Plot of the two-photon absorption rate R2 as a function
of the density  of rubidium vapor. The saturation at high densities
is due to the fact that a single photon can be absorbed in a virtual
process by at most one atom at a time.
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single photon can be absorbed in a virtual process by at
most one atom at a time, regardless of how many atoms
are present. For comparison purposes, the single-photon
scattering rate at =1015 cm−3 is R1=2.3�107 s−1 for
� / ��0=0.2, which can be effectively eliminated using the
quantum interference effects discussed above. The intrinsic
losses in a high-Q ring resonator can be below 105 s−1,
which suggests that two-photon absorption rates that are or-
ders of magnitude larger than the single-photon loss should
be experimentally achievable using these techniques.

In summary, tuning between two resonant modes of a
cavity with a small mode volume can result in two-photon

absorption rates that are much larger than the single-photon
loss. These techniques are expected to be of practical use
in the implementation of Zeno logic gates �3� and single-
photon sources based on two-photon absorption. Although
we have not discussed it here, similar techniques could
also be used to produce nonlinear phase shifts with low
single-photon loss.
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