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We present an optical frequency-down-conversion process of the image of an object illuminated with chaotic
light in which also the low-frequency field entering the second-order nonlinear crystal is chaotic. We show that
the fulfillment of the phase-matching conditions by the chaotic interacting fields provides the rules to retrieve
the object image by calculating suitable correlations of the local intensity fluctuations even if a single record of
down-converted chaotic image is available.
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I. INTRODUCTION

Stochastic image restoration is a challenging task with
applications in many fields, such as astronomy, underwater
sensing, and medical diagnostics. Specific methods have
been developed over the years for each application. Only to
mention the procedures that are suitable for speckle images
of astronomical objects we span from 1980 to 2005, that is
from the “shift and add” method of Bates and Cady �1� to the
“self-deconvolving data reconstruction algorithm” of Sudo
and Baba �2�. Today we know that suitable spatial intensity
correlations are important ingredients of protocols for nonlo-
cal image retrieval that work at high photon-flux densities
and are either based on quantum-entangled or on classically
correlated thermal light �see the review by D’Angelo and
Shih �3� and other recent works �4–6��. In any of these pro-
tocols two optical arms are recognizable, in which momen-
tum and/or position of the photons are measured, and the
computation of a correlation function between these two sets
of data allows retrieving the image �7�.

In this paper we address the restoration of the image of an
object illuminated with incoherent �pseudothermal� light that
is frequency-down-converted �FDC� by using a chaotic low-
frequency input field in a ��2� nonlinear medium. Image re-
trieval is achieved by calculating the correlation coefficients
of the local intensity fluctuations in the FDC chaotic images
with the intensity fluctuations of one Fourier component of
the low-frequency input field. Similar methods of spatial in-
tensity correlation are widely adopted in scheme of image
transfer, both classical and nonclassical, and at any photon
flux density. Our FDC images are chaotic as the low-
frequency field entering the crystal is ideally stochastic �8�,
whereas the light in the two measuring arms is classically
correlated as it is produced by a seeded frequency down-
conversion process �9�. We show that the computation of the
correlation function takes advantage of the phase-matching
�PM� condition in which the spatially broadband chaotic

fields interact in three dimensions �3D�. In fact, repeating the
calculations of the correlation coefficients in parallel for
many components of the Fourier transform of the low-
frequency input field yields as many spatial intensity corre-
lation maps, in which the image is reconstructed at different
positions that can be related to each other. We derive these
relations from the fulfillment of the PM conditions in 3D and
exploit them in new procedures for image recovery that are
fast, as they work with correlation maps involving ensemble
averages on relatively small numbers of chaotic-image
records, and allow nonlocal image recovery. Our results
could lead to protocols for secure and fast transmission of
images.

II. EXPERIMENT

With the experimental setup that is sketched in Fig. 1, we
realize the frequency down-conversion at frequency degen-
eracy of the object field produced by an amplitude modulat-
ing mask �noncollinear type-I interaction in a �-BaB2O4
crystal, BBO I, �cut=32°�. The mask, which is shown in the
photograph in Fig. 1�a�, is back irradiated by a ns-pulsed
field at �3=�1+�2=2� �second harmonic output �SH� of a
Q-switched Nd:YAG laser, 10 Hz repetition rate�. All other
equipment and optical components are as in Ref. �5�. The
input field at �1 is made pseudothermal by a moving ground-
glass plate �D in Fig. 1� �10�. As in previous works of ours
�5,11�, we record the local intensity distributions, I2�i� , j��, of
single-shot FDC chaotic images in the “image plane, PIM” by
a charge-coupled device �CCD� camera, which is synchro-
nized with the Nd laser, and correlate the fluctuations
�I2�i� , j�� with those, �I1�i , j�, of the content of the CCD
pixel �i , j� recording the Fourier transform �“Fourier trans-
form plane, PFT”� of the �1 field at the same shot. Such a
partition of the CCD sensor is sketched in Fig. 1�b�. We
consider two distinct cases for the field at �3 that impinges
onto the object mask: �i� the field is provided by the SH
output of the laser as it is; and �ii� the field is made incoher-
ent by further inserting the moving ground glass plate D� on
the SH output as shown in Fig. 1. Actually, in both cases, we
calculate
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Gi,j�i�, j�� = ��I1�i, j��I2�i�, j���

� �I1�i, j�I2�i�, j��� − �I1�i, j���I2�i�, j��� , �1�

which, when I1�i , j� represents the intensity carried by a
single spatial Fourier component of the low-frequency input
field, is known to reproduce the FDC image generated by the
interaction of this component �wave vector k1� with the ob-
ject field at �3 �wave vector�s� k3�. Obviously this holds for
wave vectors fulfilling the PM condition with the tolerance
set by the bandwidth of the interaction. As the interaction is
most conveniently described in the crystal reference frame
�X ,Y ,Z�, in which the BBO I optical axis is the Z axis �see
panel �c� of Fig. 1�, it is worth mentioning that in our experi-
ment the �Y ,Z� plane is horizontal, while the CCD sensor of
panel �b� lies in a vertical plane. Beams, mirrors, and CCD
are oriented in such a way that, when the diffusing plates D
and D� are removed, both k1 and k2 get the sensor at normal
incidence.

The experimental results �i.e., thousands of I1�i , j� and
I2�i� , j�� intensity maps recorded for as many single shots�
lead to Gi,j�i� , j�� spatial intensity correlation maps averaged
over 1000 repetitions such as those displayed in Figs. 2�i�
and 2�ii� for nonchaotic and chaotic field at 2�, respectively.
In the two panels of Fig. 2, the maps are organized in col-
umns and rows according to the values of i and j. Each map,
framed in gray, displays 60�100 �i.e., i�� j�� correlation
coefficients. Comparing panels �i� and �ii� provides evidence
that, in case �ii�, the Gi,j�i� , j�� maps allow image retrieval
for �i , j� pixels that cover a region in the PFT plane that is
much wider than that in case �i�: in the latter case we find an

image of good quality virtually only for i=57, j=95; in case
�ii� all Gi,j�i� , j�� maps calculated for i between 28 and 43
and for j between 36 and 63 show clearly recognizable im-
ages. In Fig. 2�ii� a subset of these maps is displayed. More-
over, once we fixed the �i , j� pixel, we obtain virtually iden-

FIG. 1. Schematic of the experimental setup. Lens L1 produces the 1-to-1 virtual image O� of the object O, which is frequency
downconverted into a real image on focus at plane PIM, right-hand side part of the CCD sensor. The spatial spectrum of the low-frequency
input beam is detected on plane PFT, which is the focal plane of lens L2 �f =15 cm�. The distance of BBO I to O� is 40 cm, that to PIM is
20 cm �Ref. �15��. �a� Microphotograph of object O, an opaque mask with three holes of �256 �m diameter. �b� Partition of the CCD sensor
�pixel size: 16 �m�16 �m�. �c� Crystal reference frame with Z parallel to the optical axis, O.A., horizontal in the real setup of main panel.

FIG. 2. Collections of Gi,j�i� , j�� spatial intensity correlation
maps averaged over 1000 single-shot repetitions �namely, from the
10 000th to the 10 999th� of the 20 000 recorded frames. The maps
in the two panels refer to �i� nonchaotic and �ii� chaotic fields at 2�.
The maps are organized in columns and rows according to the val-
ues of i and j, respectively. Each map, framed in gray, displays
60�100 �i.e., i�� j�� correlation coefficients.
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tical Gi,j�i� , j�� maps by using any thousand of the recorded
frames to calculate the ensemble average in Eq. �1�. An ef-
fect that cannot be perceived in Fig. 2�ii� is that the retrieved
images undergo regular shifts in the plane �i� , j�� when either
i or j is changed in regular steps.

III. THEORETICAL MODEL

To explain these results we first demonstrate that, by
working with a diffused high-frequency light in the presence
of a diffused low-frequency input field, as in case �ii�, we
actually have difference-frequency light that reaches PIM at
any position being generated in condition of PM.

In the crystal reference frame �X ,Y ,Z� we consider three
phase matched wave vectors, k1, k2, and k3, generally lying
in a plane not containing the Z axis. For these wave vectors,
which we write in the spherical coordinates of Fig. 1�c�,

kn = kn sin �n cos �nX̂ + kn sin �n sin �nŶ + kn cos �nẐ

�n = 1,2,3� , �2�

the PM relation, k1+k2=k3, translates into

k3 sin �3 cos �3 = k1 sin �1 cos �1 + k2 sin �2 cos �2,

k3 sin �3 sin �3 = k1 sin �1 sin �1 + k2 sin �2 sin �2,

k3 cos �3 = k1 cos �1 + k2 cos �2, �3�

and, after simple manipulations, into

k3
2 = k1

2 + k2
2 + 2k1k2�sin �1 sin �2 cos��1 − �2�

+ cos �1 cos �2� ,

k2
2 = k3

2 + k1
2 − 2k1k3�sin �1 sin �3 cos��1 − �3�

+ cos �1 cos �3� ,

k1
2 = k3

2 + k2
2 − 2k2k3�sin �2 sin �3 cos��3 − �2�

+ cos �2 cos �3� . �4�

Writing the PM condition in the form of Eq. �4� emphasizes
the invariance of PM for rotations about the optical axis Z, in
agreement with the rotational symmetry of the k surfaces of
our uniaxial crystal �12�. Moreover, being k1=k2�k=ko���
for a type I interaction at frequency degeneracy, Eqs. �4�
further simplify to

k3
2

2k2 = �1 + sin �1 sin �2 cos��1 − �2� + cos �1 cos �2� ,

k3

2k
= sin �1 sin �3 cos��1 − �3� + cos �1 cos �3,

k3

2k
= sin �2 sin �3 cos��3 − �2� + cos �2 cos �3, �5�

in which �12,13�

k3 = 	 sin2 �3

ke
2�2��

+
cos2 �3

ko
2�2�� 
−1/2

. �6�

If we consider a particular k2=k2�k ,�2 ,�2� that brings in-
tensity to the pixels of PIM, we observe that, for �2	�3c,
where �3c corresponds to collinear PM, according to Eqs. �5�
many pairs of k1 and k3 wave vectors give rise to phase-
matched interactions with the chosen k2. In fact, with the
definitions

Yr =
k3

2k sin �2
�k3 − 2k cos �2 cos �3� �7�

and

r = �k2 − �k3 cos �3 − k cos �2�2�1/2, �8�

the wave vectors

k1 = „k,sin−1�r/k�,�2 ± cos−1��Yr − k sin �2�/r�… ,

k2 = �k,�2,�2� ,

k3 = „k3��3�,�3,�2 ± cos−1�Yr/�k3��3�sin �3��… , �9�

which are expressed in terms of the independent variables
�2, �2, and �3, fulfill the PM conditions.

According to Eqs. �9� many pairs of k1 and k3 wave vec-
tors give rise to phase-matched interactions with any k2
bringing light to PIM. For instance, in a plane containing the
optical axis, that is for �1=�2=�3, say �Y ,Z� without loss
of generality as in Fig. 3�a�, we find two pairs of k3 and
k1 which, together with the same k2, fulfill Eqs. �5�. In fact,
according to Eq. �6� and to the last one of Eqs. �5�, it should
be �2k��sin2 �3 /ke

2�+ �cos2 �3 /ko
2��1/2�−1=cos��3−�2� to

achieve PM in this plane. In Fig. 3�c� we plot the first and
second members of this equation as functions of �3, for �2
constant. For the open-dot curve we choose �2=34°, that is
the experimental value �see �cut=32° and �1

ext−�3
ext=30° in

the main panel of Fig. 1 and the BBO data of Ref. �13��.
The k3 wave vectors at the angles marked as �3a and �3b in
Fig. 3�c� and, correspondingly, the k1 wave vectors with
�1a,b=2�3a,b−�2 in Fig. 3�a� ensure noncollinear PM.
On the contrary, Fig. 3�c� shows that any k3 with an inter-
mediate �3 value, say �3i with �3a
�3i
�3b, yields
�2k��sin2 �3 /ke

2�+ �cos2 �3 /ko
2��1/2�−1
cos��3i−�2� in agree-

ment with the existence of two �3 values, �3±
=� /2±cos−1�Yr / �k3��3i�sin �3i�� provided by the last of
Eqs. �9�. The projections of these k1 and k3 phase-matched
wave vectors are shown in Fig. 3�b�, in which the quantity Yr
is indicated and r is the radius of �1�.

From Eqs. �9� we can also obtain the rules governing the
shifts in plane PIM among images recovered by correlation
coefficients Gi,j�i� , j�� calculated for different �i , j�. We first
transpose the results in Eqs. �9� from the crystal reference
frame �X ,Y ,Z� into the laboratory reference frame �x ,y ,z�
depicted in Fig. 3�d� in which x�X, plane �y ,z�, which lies
horizontally, contains the optical axis Z, and the z axis is
along the normal to the crystal entrance face. If V,n and H,n
denote the latitude and longitude angles in the �x ,y ,z� frame
of the wave vectors out of the crystal, we have
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V,n = sin−1�nn sin �n cos �n� �10�

and

H,n = sin−1 nn
�1 − sin2 �n cos2 �n

�1 − nn
2 sin2 �n cos2 �n

�sin	�cos−1 cos �n

�1 − sin2 �n cos2 �n
� − �cut
� ,

�11�

in which nn are the refractive indices n1=n2=no��� and n3

=n3�2��. Upon writing Eqs. �10� and �11� in terms of the
independent variables �1, �1, and �3 we calculate the ex-
pressions of dV,n and dH,n with n=1, 2 for constant �3.
The results for �n�� /2 as in our experimental condition are

dV,1 � − n1 sin �1d�1,

dV,2 � − dV,1, �12�

and

dH,1 �
n1 cos��1 − �cut�

�1 − n1
2 sin2��1 − �cut�

d�1,

dH,2 � − n1 sin �1
cos��2 − �cut�
cos��1 − �cut�

�
�1 − n1

2 sin2��1 − �cut�
�1 − n2

2 sin2��2 − �cut�
dH,1. �13�

.
Since maps belonging to a row in Fig. 2�ii�, i.e., fixed j

and varying i values, correspond to dV,1=0, the images re-
trieved by these maps are produced by k1 wave vectors with
equal �1 values as, according to the first of Eqs. �12�, d�1
=0 for any �1. As also dV,2=0, they are displayed at equal
vertical positions on plane �i� , j��. Moreover Eqs. �12� pro-
vide one-to-one links �j�↔�j↔d�1 �14�. On the other
hand, Eqs. �13� tell that maps belonging to a column in Fig.
2�ii�, i.e., fixed i and varying j values, which correspond to
dH,1=0, refer to images retrieved by correlations with k1
wave vectors with constant �1 angles. Also, for the horizon-
tal direction dH,2=0, but the links �i�↔�i↔d�1 are more
complex.

IV. DISCUSSION

On the grounds of Eq. �9� we can explain the result in Fig.
2�ii� as compared to that in Fig. 2�i�. In case �ii� the I2�i� , j��

FIG. 3. �Color online� �a� Intersections of k surfaces �� ellipsoid, �’s spheres� with the �Y ,Z� plane and phase-matched wave vectors
lying on the �Y ,Z� plane, i.e., �1=�2=�3=� /2. Collinear phase matching at �3c. k2 is at any fixed �2	�3c. The two pairs of k3 and k1

wave vectors are phase matched to k2, being the values of angles �3a and �3b those in �d�. Radii of �1 and �2: ko���. Radius of �3: 2ko���.
�b� Projections of phase-matched wave vectors on the �X ,Y� plane. k2 is the same wave vector, k2��2�, as in �a�, while both k3 wave vectors
are at angle �3i, being �3a
�3i
�3b. The two pairs of k3 and k1 wave vectors phase matched to k2 are symmetrical with respect to the
�Y ,Z� plane. Traces �� and �1�: projections of the � and � intersections with plane Z=k3��3i�cos �3i. The radii are R=k3��3i�sin �3i for ��
and r= �ko

2���− �k3��3i�cos �3i−ko���cos �2�2�1/2 for �1�. �c� Plots of the functions f1= �2k��sin2 �3 /ke
2�+ �cos2 �3 /k0

2��1/2�−1 �full line� and
f2=cos��3−�2�, for �2=34° �open dots�. The values �3a�28° and �3b�48° of the intersections correspond to noncollinear phase matching
��1a�22° and �1b�62°�. Full dots: as above for �2=22.8° =�3c �collinear phase matching�. �d� Crystal reference frame �X ,Y ,Z� and
laboratory reference frame �x ,y ,z�.
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values exhibit stronger correlations with the I1�i , j� values for
any �i , j� that allows PM because any of the k2 components
of the field generated at the difference frequency participates
to phase-matched interactions with more pairs of k1 and k3
wave vectors. Thus, for a given far-field distribution of the
low-frequency input field I1�i , j� measured on plane PFT, the
broader the angular spectrum of the high-frequency field �k3
wave vectors�, the better we recover the image by using Eq.
�1�. In our experiment the V,n and H,n angles are centered
at 0° and, as the shift by one pixel on plane PFT corresponds
to p / f =6.1�10−3 deg, where f is the focal length of lens L2
and p is the linear size of the pixels �see Fig. 1�, the full
angular spreads of k1 wave vectors that we can use to re-
cover the image information carried by the k2 wave vectors
are �V,1=�j�p / f�=0.165° �j=36 to 63, see Sec. II�,
�H,1=�i�p / f�=0.092° �i=28 to 43�. These �V,1 and
�H,1 values should be compared with the 6.1�10−3 deg
covered by the single pixel �57,95� for which the image is
recovered in Fig. 2�i�.

According to Fig. 3�c�, the broad angular spectrum that
leads to image recovery in case �ii� should present sharp
edges in correspondence with the �1a and �1b values calcu-
lated from those of �3a and �3b. Since, with the 2� and �
beams entering BBO I as shown in the main panel of Fig. 1,
we operated with angles in the vicinity of �1b and �3b, we
could observe this effect as shown in Fig. 4. Here we plot a
subset of Gi,j�i� , j�� spatial intensity correlation maps �aver-
aged over 1000 repetitions, incidentally from the 5000th to
5999th� organized as those in Fig. 2 for i comprised between
41 and 47 �j=57 to 63� and notice that the image is recov-
ered only for i up to 43. Nothing similar can be observed in

the vertical direction �index j, angle �1�, where the images
are recovered over a broader range of �1 angles ��V,1

=0.165° � and the disappearance of the image occurs very
smoothly.

We now verify that the shifts between the images recon-
structed by Gi,j�i� , j�� and Gi+�i,j+�j�i� , j�� agree with Eqs.
�12� and �13�. In the experiment we measure dV,1 and dV,2
as �jp / f and �j�p /�, where � is the BBO I distance from
the CCD sensor while f and p were already defined. Simi-
larly we measure dH,1 and dH,2 as �ip / f and �i�p /�.
From Eqs. �12� we get �j�=−�j� / f , while from Eqs. �13�
we get �i��−0.949�i� / f , being � / f =4/3, n1=n2
=1.65451, �1=62°, �2=34°, and �cut=32°, in our case.
Thus, we expect that any image recovered by Gi,j�i� , j�� is
also recovered by Gi+�i,j+�j�i�+�i� , j�+�j��, where the
shifts are such that 3�j�=−4�j and 4�i�=−5�i, being 5/4
our best approximation of 0.949� / f . We have chosen an al-
ternative method to demonstrate the correctness of these
shifts, which is less trivial but useful for the applications. We
consider four series of Gi+�i,j�i� , j�� for �i=0,4 ,8 , . . . start-
ing from i , i+1, i+2, i+3 and, for each i, three series of
Gi,j+�j�i� , j�� for �j=0,3 ,6 , . . . starting from j , j+1, j+2;
summing the contents of these maps according to the rule
Gi,j�i� , j��+Gi+4,j�i�+5, j��+Gi+8,j�i�+10, j��+. . . produces
four columns of maps, Si,j�i� , j��, Si+1,j�i� , j��, Si+2,j�i� , j��,
Si+3,j�i� , j�� that we number by the values of i , i+1, i+2, i
+3. If we further sum according to the rule Si,j�i� , j��
+Si+1,j�i�+1, j��+Si+2,j�i�+2, j��+Si+3,j�i�+3, j���Sj�i� , j��,
we find a single column of maps that we could compare
to the ith column in Fig. 2�ii�. By applying the same
procedure to the Sj�i� , j�� maps in the j direction, that is by
calculating the three sums Uj�i� , j���Sj�i� , j��+Sj+3�i� , j�
+4�+Sj+6�i� , j�+8�+. . . �similarly for Uj+1�i� , j�� and
Uj+2�i� , j��� and then Uj�i� , j��+Uj+1�i� , j�+1�+Uj+2�i� , j�
+2��U�i� , j��, we should arrive at a map in which the image
of the three holes is visible. Moreover, the three holes in
U�i� , j�� should be at the same positions as those in
Gi,j�i� , j��.

We applied this protocol to Gi+�i,j�i� , j�� for �i=0,4 ,8
starting from i=30,31,32,33 and, for each i, to Gi,j+�j�i� , j��
for �j=0,3 ,6 starting from j=57,58,59. To calculate these
108 maps of correlation coefficients, Gi,j�i� , j��, we per-
formed the averaging operation of Eq. �1� on an ensemble of
nine recorded intensity maps in that 108�9 is approximately
equal to the number of records, namely 1000, we used to
calculate all previously shown correlation maps, including
the one, G34,61�i� , j�� of Fig. 2�ii�, that we replot in Fig. 5�a�
as typical. We obtained the U�i� , j�� that is plotted in Fig.
5�b�, in which the three holes appear at the expected posi-
tions. Such an image recovery is not due to an increase in the
correlation coefficients, which are lower in �b� with respect
to �a�. It is rather attributable to the smearing out of the noise
in the background. The shifts operated as described in agree-
ment with the relations between the angles actually play a
key role for obtaining a recovered image such as that in Fig.
5�b�: if the procedure leading from the Gi,j�i� , j�� maps to
U�i� , j�� is applied without shifts, that is, if the 108 maps are
simply summed pixel by pixel, we obtain the map shown in

FIG. 4. Collection of Gi,j�i� , j�� spatial intensity correlation
maps averaged over 1000 recorded frames �namely, from the
5000th to 5999th�. Each map displays 60�100 �i.e., i�� j�� corre-
lation coefficients.
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Fig. 5�c� in which the noise prevents image recovery. Note
that the content in a pixel �i� , j�� of any of the maps in Figs.
5�a�–5�c� comes from about 1000 experimental determina-
tions of local intensity �values recorded by the CCD pixels�.
In Fig. 5�a� these values are the content of as many pixels in
the same position, namely �34, 61�, of the 1000 recorded
intensity maps I2�i� , j��; in the others they come from 108
correlation maps calculated by averaging over nine recorded
intensity maps. The correlation coefficients were suitably
shifted in position before summing to obtain Fig. 5�b�, but
were kept at the same positions to obtain Fig. 5�c�. Finally, in
Fig. 5�d�, we show the Gi,j�i� , j�� map out of the 108 used to
obtain the results in Figs. 5�b� and 5�c�, in which the three
holes are most visible.

V. APPLICATIONS

We have demonstrated that a detailed knowledge of the
rules set by PM on the recovery of our FDC images allows
one to use a smaller number of recorded chaotic intensity
maps for calculating the spatial intensity correlations in Eq.
�1�. If the randomization of the image is performed as a
measure to impair visibility prior to transmission, this result
could be exploited in a procedure for nonlocal image recov-
ery.

As an extreme application of the rules in Eqs. �12� and
�13�, we point out that we could substitute the N chaotic
images to be used in Eq. �1� with as many shifted replicas of
a single I2�i� , j�� map and nevertheless achieve image recov-
ery. Actually, one could realize an experiment of image re-
construction in the limit case that only one chaotic intensity
map I2�i� , j�� and the corresponding I1�i , j� be available, if
the pixels are sorted as shown below to calculate

Gi,j�i�, j�� =
1

N
�
m=0

mMAX

�
n=0

nMAX

I1�i − m, j − n�I2�i� + m, j� + n�

−
1

N2	 �
m=0

mMAX

�
n=0

nMAX

I1�i − m, j − n�

�	 �

m=0

mMAX

�
n=0

nMAX

I2�i� + m, j� + n�
 , �14�

in which N=mMAXnMAX. Note that this calculation is equiva-
lent to that in Eq. �1� in that the statistical ensemble we
consider here to calculate the correlation coefficients of Eq.
�1� is given by the N shifted maps, I1�i−m , j−n� and I2�i�
+m , j�+n�, which are at most shifted by mMAX and nMAX. In
our case, for the sake of comparison with the results in Figs.
5�a� and 5�b�, we should cover up to N�1000 when calcu-
lating the sums in Eq. �14�.

Since with our setup the PM bandwidth is not as broad as
it should be to allow light detection in so many pixels on
plane PFT, we present a demonstration based on a Monte
Carlo numerical simulation. We constructed a 75�75 matrix
of complex numbers with random real and imaginary parts
�two Gaussian distributions with equal standard deviations
and zero mean values� to be used as the Fourier components,
E1�i , j�, of the chaotic low-frequency input field. We calcu-
lated the I1�i , j� intensity map displayed in Fig. 6�a� as
�E1�i , j��2. We generated a two-level object mask in which the
transparent holes were three squares of two-pixel sides lo-
cated as in the real mask of Fig. 1�a�. This “transparency”
was used to calculate the transmitted portion of each field
component �complex value of E1 “recorded” at pixel �i , j��.
All these maps of transmitted fields were displaced relative
one to each other according to �i�=−�i and �j�=−�j and
the pixel contents were summed afterwards to simulate the
field impinging on the PIM plane. The squared magnitudes of
the cell values of the resulting matrix, which are plotted in
Fig. 6�b�, were then used as I2�i� , j�� to calculate Gi,j�i� , j��
according to Eq. �1�, that is Eq. �14�. As shown in Fig. 6�c�
the Gi,j�i� , j�� map satisfactorily recovers the original image,
which is displayed in Fig. 6�d�.

FIG. 5. �a� Enlarged view of the spatial intensity correlation
map, G34,61�i� , j��, of Fig. 2�ii�. �b� Map of the U�i� , j�� matrix
calculated by using an ensemble of only nine recorded intensity
maps and the shift-and-add procedure. �c� Map of the matrix calcu-
lated as in �b� without shifts. The linear eight-level gray scale cov-
ers the same range of values in �b� as in �c�. �d� Map of the corre-
lation coefficients G37,58�i� , j�� chosen among the 108 maps used to
obtain the U�i� , j�� matrix plotted in �b�. Criterion for the choice:
highest visibility of the holes. The gray scale of �d� covers a range
whose mean value is equal to that of �b� divided by 108. The range
is �108 times narrower.
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VI. CONCLUSIONS

We have shown that the wave vectors in Eq. �9� fulfilling
PM condition in 3D are linked to each other by rules that we
exploited to devise a procedure to retrieve the FDC image
from a limited number of records of chaotic FDC images.
The method is based on the calculation of the correlations of
the fluctuations of the local intensity of a set of chaotic im-
ages with those of the spatial Fourier components of the field
used as the low-frequency input field in the crystal perform-
ing the downconversion process. Correlating with different
Fourier components the same set of chaotic images and
knowing the relative positions at which each correlation re-
constructs the image can lead to successful retrieval even in
the limit case that a single chaotic image �and spatial spec-
trum� is available, as we have shown by the numerical simu-
lation in the last section. In the experiments we demonstrated
the advantages of the procedure for a number of records

greater than one. With our procedure, whichever is the num-
ber N of recorded images and spectra, shifting and adding the
maps of correlation coefficients calculated for different com-
ponents is always convenient: the signal-to-noise ratio in-
creases as the background noise smears out, though the num-
ber of data is still N. Finally we note that the procedure can
be applied not only to FDC images but to any case in which
recording the chaotic �noise-disturbed� images can be ac-
companied by the acquisition of the spatial Fourier spectrum
of a field correlated to that producing the image.
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FIG. 6. Simulation of image
recovery by using a single “re-
corded” FDC chaotic image,
I2�i� , j��. �a� Map of I1�i� , j�� of
the chaotic low-frequency input
field. �b� Map of I2�i� , j��, see
text. �c� Map of the correlation co-
efficients Gi,j�i� , j�� calculated by
the shift-and-add procedure as
specified in Eq. �14�. �d� “Object
mask” used to calculate I2�i� , j��
for the field in �a�.
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