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Molecule condensate production from an atomic Bose-Einstein condensate
via Feshbach scattering in an optical lattice: Gap solitons
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We propose a scheme for making a Bose-Einstein condensate (BEC) of molecules from a BEC of atoms in
a strongly confining two-dimensional optical lattice and a weak one-dimensional optical lattice in the third
dimension. The stable solutions obtained for the order parameters take the form of a different type of gap
soliton, with both atomic and molecular BECs, and also standard gap solitons with only a molecular BEC. The
strongly confining dimensions of the lattice stabilize the BEC against inelastic energy transfer in atom-
molecule collisions. The solitons with atoms and molecules may be obtained by starting with an atomic BEC,
and gradually tuning the resonance by changing the external magnetic-field strength until the desired atom-
molecule soliton is obtained. A gap soliton of a BEC of only molecules may be obtained nonadiabatically by
starting from an atom-only gap soliton, far from a Feshbach resonance and adjusting the magnetic field to near
Feshbach resonance. After a period of time in which the dimer field grows, change the magnetic field such that
the detuning is large and negative and Feshbach effects wash out, turn off the optical lattice in phase with the
atomic BEC, and turn on an optical lattice in phase with the molecules. The atoms disperse, leaving a gap
soliton composed of a molecular BEC. Regarding instabilities in the dimension of the weak optical lattice, the
solitons which are comprised of both atoms and molecules are sometimes stable and sometimes unstable—we
present numerically obtained results. Gap solitons comprised of only molecules have the same stability prop-
erties as the standard gap solitons: stable from frequencies slightly below the middle of the band gap to the top,
and unstable below that point. Instabilities are only weakly affected by the soliton velocities, and all instabili-

ties are oscillatory.
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I. INTRODUCTION

External magnetic fields, and confinement in a strong ex-
ternal potential that can effectively reduce the dimension
from three-dimensional (3D) to 2D or 1D, can be used to
control atomic interactions in trapped ultracold quantum
gases. An example of the former is the tuning of a magnetic
field for a system with a diatomic Feshbach resonance [1,2]
to convert fermionic atoms into weakly bound bosonic mol-
ecules (which in some cases were remarkably long-lived)
[3]. Magnetic fields have also been used to tune the scatter-
ing near a Feshbach resonance for bosonic atoms in a Bose-
Einstein condensate (BEC) [4—13]. However, a high rate of
atom loss exists and, unlike for fermions, only a small frac-
tion of molecules have been observed in the bosonic case.
The loss has been attributed to collisional decay of the na-
scent highly excited vibrationally excited molecular state via
inelastic collision processes, e.g., vibrational-to-translational
energy transfer [14]. For fermionic atoms this loss mecha-
nism is suppressed due to Pauli blocking [15]. An example of
confinement control is the confinement-induced resonances
predicted [16] and experimentally observed [17] in a quasi-
one-dimensional fermionic atom gas confined in an optical
lattice.

Here we propose a scheme for production of molecular
BECs in the form of gap solitons. The suggested system has
a deep 2D optical lattice (OL) and a relatively shallow peri-
odic optical lattice perpendicular to the deep 2D lattice.
There is an external magnetic field with strength such that
the atom and dimer BECs have zero (or large) detuning [and,
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as a consequence, a Feshbach resonance can serve to
strongly (weakly) couple atoms to molecules]. The deep 2D
OL reduces the effective dimensionality of the dynamics
from 3D to 1D, and the shallow 1D lattice perpendicular to it
induces band gaps at the edge of the Brillouin zone. Because
of the quadratic nature of the Feshbach interaction the fre-
quency and wave vector of the molecular BEC are double
those of the atomic BEC. Consequently, for both the atomic
and molecular BECs to be in forbidden gaps, the shallow
optical lattice should have two spatial frequencies, one in
phase with the atomic BEC, and a second with a period
shorter by the factor 2, in phase with the dimer BEC.

The optical lattice has a critical role in stabilizing molecu-
lar BECs. Confinement of the system to effectively one di-
mension reduces the inelastic energy transfer collision pro-
cesses between atoms and molecules which have plagued
attempts to create long-lasting molecular BECs. Reduction
of collisional loss as a result of confinement in the transverse
dimensions is actually a generic property of ultra cold gases
[18], and is not unique to the specific model herein. For
example, Ref. [19] predicted that the second- and higher-
order local correlation functions would vanish in quasi-1D
systems, which was strikingly confirmed experimentally in
Ref. [20] which reported measurements of the three-body
recombination rate for a BEC in a magnetic trap in one di-
mension (where the 1D behavior of the dynamics is due to
application of a strong 2D optical lattice) and found it to be
strongly reduced relative to the 3D rate. Several papers have
reported molecule production in 3D optical lattices. Refer-
ence [21] demonstrated controlled production of molecules
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in optical lattices (though with considerable loss). In contrast
to the present work, the molecules were created starting from
atoms in the Mott insulating phase and a two-photon Raman
transition created single molecules on the lattice sites occu-
pied by two atoms. References [22-24] reported production
of stable molecules in 3D optical lattices, the first two using
8Rb, and the third producing a heteronuclear molecule from
87Rb and *°K. Damski er al. [25] had also considered optical
lattices with BECs to create a Mott insulator, and from that
further manipulated the atomic BEC to create a dipolar BEC.
There has been work on using Feshbach resonances to obtain
BECs of molecules from BECs of atoms without any use of
solitons [26,27].

In our system, the fact that the molecules sit in the gap
has the potential to further reduce inelastic collision pro-
cesses between atoms and molecules, and between mol-
ecules, because of the reduction of phase space for molecules
in other vibrational states that could be produced by such
deleterious collisions. Moreover, the weak 1D optical lattice
allows an additional degree of tuning of the system, provid-
ing a useful additional degree of control.

We develop a mean-field (Gross-Pitaevskii) treatment of
the system, and analyze the collective dynamics within this
framework, where the Feshbach interactions, and the mean-
field interactions between atoms, between molecules, and be-
tween atoms and molecules are nonlinear. The existence of
nonlinear effects opens the possibility of nonlinear structures
existing where the linear dispersion relation forbids linear
solutions. Numerical analysis of the dynamical equations in-
deed shows that, over a range of optical lattice and magnetic-
field strengths, the system supports two types of gap solitons,
i.e., stable nonlinear localized structures within band gaps
[28-30]. The solitons here share some similarities with two-
component optical gap solitons that were studied in a non-
linear waveguide with a Bragg grating [31]. There are gap
solitons made up of both atoms and molecules, and there are
gap solitons consisting entirely of molecules. We find a
nonadiabatic route by which gap solitons with molecules
only can be obtained from an initially purely atomic BEC.

The paper is organized as follows: Section II describes the
system under study, presents the mean-field equations for the
atomic and molecular BEC and develops the 1D mean-field
equations. Section IIT discusses soliton solutions of these
equations and describes the numerical results. Section IV
shows how to dynamically prepare the gap solitons from an
initial atomic BEC state. Summary and conclusion are in
Sec. V.

II. REDUCED DIMENSIONAL OPTICAL LATTICE
SYSTEM

We derive the mean-field equations starting from the
many-body Hamiltonian for the 3D system with condensed
atoms, condensed molecules, periodic optical potentials, an
external trapping potential, and a Feshbach coupling term
between atoms and molecules:
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Here 1,71 is the atom field operator, <2> is the molecule field
operator, m, is the atomic mass, V[rap and Vtrap are the trap
potentials for the atoms and molecules that include the deep
2D optical lattice that traps the BECs (so that the atomic and
molecular BECs are effectively 1D), the external magnetic-
field potentials that are used to tune the relative energies of
the atom and molecular BECs (and so also the Feshbach
resonance), and the 1D optical lattice potentials V4!, Vor,
VIl VM2 for the atoms and molecules due to the optical
fields at wave vectors k and 2k, and the potentials that modu-
late the dynamics of the BECs in the remaining nontrivial
dimension, creating an effective band gap. The parameter
g3p 1s the Feshbach coupling coefficient.

If there are sufficient atoms and dimers in the BECs, the
dynamics are well described by simplest level of description
consisting of a mean-field approximation, and are given by
the Gross-Pitaevskii (alias nonlinear Schrodinger) equations
for the atom and molecule order parameters ¢ and ¢,
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An effectively 1D gas can be produced by applying a
strong 2D optical lattice, which confines the 3D gas in two of
its dimensions, forming an array of cigar-shaped clouds. If
the radial confinement energy fw, is large compared to
other relevant energies in the system (“tight confinement”),
atoms are restricted to move only in the direction of the
cigars (the z axis) [20]. The system’s dynamics are effec-
tively 1D. With no radial excitations for tight confinement,
the transverse cross section is constant. We can integrate
over the radial coordinates to reduce the governing equations
to 141 nontrivial dimensions [16,32-34]. The effective 1D
scattering lengths, ay,, a4y, and ay, which describe the
atom-atom, atom-molecule, and molecule-molecule interac-
tion strengths, respectively, are functions of the 3D s-wave
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FIG. 1. (Color online) Quasi-1D Feshbach bound-state energy
vs ay | /ay, in a 2D confining harmonic potential.

scattering lengths, ay 4, asy, and a,g, (Which themselves de-
pend on the magnetic field), and the transverse harmonic
lengths a, |, =\hA/myw |, ay , =Vh/myw . The 1D Feshbach
coupling coefficient g;p can be obtained similarly from the
3D Feshbach coefficient g5, (defined below) and the trans-
verse lengths. For example, the 1D atom-atom interaction
strength takes the form [16,32]

2424 a 1
Qg = ma;“‘( "Az(lfz)) , 3)

€

where {(-) is the Riemann zeta function [35]. Confinement-
induced resonances can result in this 1D limit when the de-
nominator in Eq. (3) becomes large: The 1D scattering length
ay, diverges when the 3D scattering length takes the value
agpla,  =1/{(1/2)=0.6848. The hard-core  Tonks-
Girardeau gas regime is accessed in this regime for ayy
>n,pla, ,)? where n,p is the maximum atom density.

For strong confinement, the two-body bound state has di-
mensionless binding energy &z, which depends on the
bound-state energy Ep and the confining frequency w, ac-

cording to
Ep=(hw, —Ep)2hw, = (kgay 12)%, (4a)

where «p is the inverse longitudinal size of the dimer, which
is determined by the condition [16,32],

5(1/2’53)+QAL/aAA=0’ (4b)

where the Hurvitz zeta function {(1/2,€) may be expressed

as an integral [36],
Zodr [ e
el w
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Since £(1/2,£) is monotonic in &, there is precisely one such
bound state for any given ay,/ay,. Figure 1 shows the
bound-state energy Eg as a function of a, | /a,,. As long as
Ez<fiw |, there is a bound state. The figure shows that even
for a,4 <0 (the BCS side of resonance for the fermion atom
case), there is a confinement-induced resonance bound state.

More quantitatively, for tight confinement, the transverse
(x,y) and longitudinal (z,7) dimensions can be separated,

‘ﬂ(t’x’y’z)=lﬁ(t’z)lﬂl,A(X’)’), ¢(t7x7y7z)=d)(t?Z)d)J_,A(-xay)'
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Then integration over the transverse coordinates leaves the
nontrivial dynamics in the 1+ 1 dimensions of the longitudi-
nal coordinates, with mean-field equations having modified
coupling constants [16,32-34]
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Suppose the atomic BEC order parameter ¢ has compo-
nents in the vicinity of wave numbers +k and energy 7w,
=h2k>/(2m,). And suppose, since we wish to treat atoms and
molecules which are coupled by the Feshbach resonance,
that the dimer BEC ¢ goes as the square of the atomic BEC,
with wave numbers near +2k and frequencies (energies di-
vided by #) near 2w,. The dynamics may be then expressed
in terms of slowly varying envelopes (SVEs), i.(7,2),
W (t,z), ¢.(t,2), ¢_(t,7), about carrier waves with those
wave numbers and frequencies [37]. We assign SVEs about
carrier waves with positive wave numbers the subscript plus
(“+7), and SVEs about carrier waves with negative wave the

ER)

subscript minus (“—"),

Wt,z) = P, (1,2)exp(— iwt + ikz) + _(1,2)exp(— iw;f — ikz),
(6a)

P(t,z) = d.(t,7)exp(= 2iw 1 + 2ikz) + ¢_(1,2)
Xexp(—2iw,t — 2ikz). (6b)

We insert Eq. (6) into the general governing Egs. (5), and
then separate out the parts of the equation in the relevant
frequency bands. The SVEs obey a set of equations which
are lengthier than the more general equations (5), but which
are qualitatively simpler, since the SVEs contain only narrow
energy and momentum component spreads:
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Here ¢ and z are time and distance, subscripts ¢ and z after a
comma stand for partial derivatives, and an asterisk means
complex conjugation. Equations (7a) and (7b) govern the
evolution of ¢, which are SVEs of the atomic BEC centered
about carrier waves with frequency w; and wave vectors +k;
(i.e., forward- and backward-moving SVEs). Equations (7¢)
and (7d) are for ¢,, which are SVEs of the dimer BEC
centered about carrier waves with frequency 2w, and wave
vectors +2k (they are forward- and backward-moving SVEs).
The dispersion due to the optical lattice (first derivative
terms in z together with linear coupling between the forward-
and backward-moving SVEs) can be much stronger than the
dispersion that is due to the kinetic energy terms (second
derivatives in z), in which case the terms with second deriva-
tives in z may be neglected. A dc magnetic field contributes
different energies to the atom and dimer fields and this re-
sults in a detuning of the energy of the molecules relative to
the energy of the atoms. We will see that the difference in the
lowest-order components of the trap plus lattice also contrib-
utes to the detuning. We may therefore fold the effects of the
flat magnetostatic field into the variables Vﬁgp and Vf‘é%. The
system of equations (7) can also describe propagation of
light in a nonlinear waveguide, with the variables represent-
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ing different physical quantities [33,38]; since the BEC and
optical cases are described by the same equations, they ex-
hibit the same behavior.

It is helpful to rescale the governing equations (7) as fol-

lows:
1677hzaAA o
= /—VA l2) explilw; + (Vﬁ2p+ VE‘,IL/Z
A
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+ VA2 )] (8a)
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[167h*a .
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Here we choose w;=(Vﬁgp+VglL/2+ngL/2)/ﬁ as the fre-

quency of the carrier wave of the atom SVEs and half the
frequency of the carrier wave of the dimer SVEs. This yields
normalized coupled-mode equations,

. . 3a
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Many of the dimensionless parameters in Egs. (9) are, in
practice, adjustable; however, there are insufficient indepen-
dent experimental variables to adjust all of the dimensionless
parameters. The experimental parameters that can be varied
are the components of the optical lattice at spatial frequen-
cies k and 2k (in phase with the atom and dimer BECs,
respectively), the spatially flat dc magnetic-field strength,
and the strength of the 2D optical lattice that confined the
BECs to 1D cigar shapes. In the resulting dynamics, the
detuning A acts to change the frequency difference between
the atoms and dimers, and this parameter can be changed as
a function of time by tuning the external magnetic field. «
expresses the ratio of the strength of the Bragg scattering—
forward-moving light being bounced backwards by the opti-
cal lattice, and vice versa—of the molecules compared to the
atoms (in which the Bragg scattering coefficient is normal-
ized to unity). ¢ is a Feshbach term, which causes atoms to
bind and form molecules and causes dimers to interact with
atoms and split up. The nonlinearities are normalized such
that the atom’s self-mean-field coefficient is unity; ¢ repre-
sents the ratio of the Feshbach to self-mean-field coefficients.

III. GAP SOLITONS

We find solutions using the relaxation method [39]. Con-
sider eigenvector solutions having a given energy. For this
system, that means ,(¢,z)=exp(—iwt) i, (z), _(t,2)
=exp(—iwn)y(2), @1, 2)=exp(-2iwnd,(2),  ¢(1.2)
=exp(-2iwt)p_(z). Hence the time derivatives in the dy-
namical equations (9) can be turned into multiplication by
constants. Next, the spatial axis is discretized, changing the
derivatives in space to differences. The system is then a set
of algebraic difference equations, rather than partial differen-
tial equations. The algebraic equations are solved using
Newton’s method. Since the equations are nonlinear, there is
no fully automatic way to find a complete set of possible
solutions—one must use inferences and guesses. We begin
with solutions to known limits, and then evolve the system
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by small increments, using one solution as the initial guess in
Newton’s method for the next value. By thus gradually
evolving the solutions, we build up a description of the so-
lutions over a finite multidimensional section of the param-
eter space.

In the absence of Feshbach resonances (§=0), the equa-
tions support (well-known) gap soliton solutions. The quies-
cent (zero-velocity) gap solitons of atoms take the form
[28,29]

singQ sech(z sin Q — iQ/2)exp[—i cos(Q)t],
V’

¢+(Z9t) =

(11a)

y(z,1)=— % sech(z sin Q +iQ/2)exp[— i cos(Q)t].
N

(11b)

With (or without) a nonzero Feshbach resonance (g,g #0),
there are gap solitons (we will refer to all solitary wave so-
lutions as solitons, regardless of stability) with essentially the
same shape as the gap soliton of atoms, but scaled differ-
ently,

b, (z,1) = 1/ 3XK sin Q sech(2kz sin Q —iQ/2)

spm
Xexp[—i(A + cos Q)kt], (12a)
[ K
¢_(z,1) =— sin Q sech(2kz sin Q +iQ/2)
3Xspm
Xexp[—i(A + cos Q)kt], (12b)

where Xypm=auu/ (2a,,) is the coefficient of self-mean-field
in Egs. (9¢) and (9d). The variable Q, which takes values 0
<Q<m, parametrizes the entire family of gap soliton
solutions—width, amplitude, frequency, phase, etc. There are
also known families of solitons in systems that have
Feshbach-like terms and that lack self- and cross-mean-field
nonlinearities [30]. Our numerical simulations took as start-
ing points the solutions for the equations with mean-field and
without Feshbach terms (rather than vice versa). We illustrate
the two type of solutions by showing all the complex-valued
solutions of each of the components. Figure 2 is a gap soliton
with dimers only, and Fig. 3 is a gap soliton with both atomic
and dimer BECs.

For the direct numerical simulations herein, we arbitrarily
take the ratios of scattering lengths as follows: ayy,
=1.09a,, and aMM/a,,, independent of the magnetostatic
field.

To illustrate the behavior, we give two planar cross sec-
tions of the higher-dimensional parameter space. Figure 4
shows that for a particular set of coefficients, gap solitons
with both atoms and molecules exist only if the gap for the
molecular BEC is larger than the gap of the atom BEC—the
strength of the OL component at higher spatial frequency, in

053613-5



TASGAL, MENABDE, AND BAND

N
-10 -8 -6 -4 -2 0 2 4 6 8 10
¢

FIG. 2. (Color online) Gap soliton with zero atomic BEC and
nonzero dimer BEC. Solid curves represent the magnitude of the
order parameters, dashed and dotted curves are the real and imagi-
nary parts of the order parameters.

phase with the molecular BEC, must be at least about three
times stronger than the component of the OL at lower spatial
frequency, in phase with the atom BEC.

Figure 5 shows the existence and stability of gap solitons
over a slice of the parameter space w-A in energy and detun-
ing. It is likely that the very top region (near w=1) is stable
and the “instability” shown in the figure is a numerical arti-
fact due to the finite grid size.

When gap solitons are moving (V# 0) they have different
shapes and stability properties than quiescent (V=0) gap
solitons. For example, Fig. 6 shows that for gap solitons with
both atoms and molecules, at a given set of parameter
values—detuning, Feshbach, and Kerr coefficients—the
faster the gap solitons are moving, the smaller is the percent-
age of the gap in which there exist soliton solutions. At ap-

FIG. 3. (Color online) Gap soliton with nonzero atomic and
dimer BECs. Solid curves represent the magnitude of the order
parameters, dashed and dotted curves are the real and imaginary
parts of the order parameters.
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FIG. 4. (Color online) Existence and stability regions of quies-
cent gap solitons in parameter space of frequency w and relative OL
strength parameter «, holding other parameters constant—detuning
coefficient A=0.8, nonlinear coefficients ay,=-2, ayy/as4=0.82,
aym! apa=1.22 and dimensionless Feshbach coefficient ¢/ayy
=0.5.

proximately half the maximum velocity, this type of gap soli-
ton does not exist at all. There are fewer gap solitons at
frequencies in the lower half of the band gap than in the
upper half, with the most soliton solutions twice as close to
the top of the band gap as to the bottom of the gap. The
solitons are stable in the region of low velocity, but lose their
stability with increased velocity. In the region of negative
frequencies, solitons are unstable at lower velocities then
solitons with positive frequencies. Soliton mass (or the num-
ber of atoms in the soliton) decreases with growth of (the
absolute value of the) velocity, especially the components
moving opposite to the direction of propagation—the sym-
metry about the center of the soliton is broken at nonzero
velocity. Figure 7 shows a stable soliton, and Fig. 8 shows an
unstable soliton.

no solitons |

FIG. 5. (Color online) Existence and stability regions of quies-
cent gap solitons in parameter space of frequency w and detuning
A, holding other parameters constant—Bragg coupling coefficient
k=5, nonlinear coefficients ay,=-2, 0.75a4y/ay4=0.82,
aym! @qa=122, and dimensionless Feshbach coefficient ¢/,
=0.5.
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FIG. 6. (Color online) Existence and stability regions of moving
gap solitons in parameter space of frequency w and velocity V),
holding the rest of the parameters constant at dimensionless detun-
ing A=0.6, Bragg coupling coefficient k=5, nonlinear coefficients
aya=-2, 0.75a,p/ ay2=0.82, ay/ ay,=1.22, and dimensionless
Feshbach coefficient g/a,,=0.5.

IV. DYNAMICAL PREPARATION OF DIMER GAP
SOLITONS FROM AN ATOMIC BEC

We predict that pure dimer gap solitons can be obtained
starting from a BEC of atoms only. The two families of gap
solitons—one with a mix of both atom and dimer BECs, the
other with dimers only—are distinct, and we do not know
how to transform one into the other adiabatically. Instead, we
give a nonadiabatic route from an atom BEC to a dimer gap
soliton. We begin with a BEC of atoms, in a system with a
very large detuning between atoms and molecules. Although
at any given point in time, the Feshbach resonance causes
some of the atoms to bind with one another (become dimer
molecules), the large detuning ensures that the molecular
BEC field does not accumulate. Hence we start with an ap-
proximation of the exact gap soliton [Egs. (11)] for the sys-
tem (9) with zero Feshbach (£=0), atoms only. These are,

PHYSICAL REVIEW A 74, 053613 (2006)

mathematically, the standard gap solitons [28]. In our direct
simulations of the equations (using a split-step fast Fourier
transform scheme [33]), we do not take the initial conditions
to be the exact gap solitons (11), which are hyperbolic se-
cants. Rather, since Gaussians are likelier to be available in
experiment, we take as initial conditions Gaussians, with the
correct initial phases imprinted on the BEC by a short optical
potential [40],

YO (z,1=0) = Ag exp[— (2/Wg)? + ikgz], (13a)

J(z,1=0) = - Ag exp[— (/Wg)? — ikgz]. (13b)

The coefficients that give the Gaussian the same mass (num-
ber of atoms in the condensate), maximum density, and wave
numbers as the exact (hyperbolic secant) solution are

SN

(14a)

- Q
Wo=m P, 14b
G=T 1-cosQ (14b)
kg=1-cos Q, (14c)

where Q is the same parameter as in the exact expression
(I1) for the gap soliton of atoms. This is not exactly an
eigenstate, but it is very close and almost all of the BEC has
frequency w=cos Q. Also, note that for dimers, the Gaussian
parameters that fit the exact gap soliton solution (12) are
similar but scaled,

2
Ag= \/L—(l —cos Q), (15a)
Xspm3
77_1/2 Q
= _— 15b
7 2k 1-cosQ (155)

0.05

0.01

FIG. 7. (Color online) Propa-
gation of a stable moving solitary
wave (0=0.3, V=0.3).
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FIG. 8. (Color online) Propa-
gation of an unstable moving soli-
tary wave (w=-0.2, V=0.2).

_l—cosQ

kG_ > (ISC)

2K

where « is the Bragg coefficient and xqpm=app/(2a,,) is
the self-mean-field coefficient (i.e., the self-phase modula-
tion coefficient in the nonlinear optics context) in Egs. (9¢)
and (9d). The detuning was then, by altering the dc magnetic
field, abruptly changed to zero. The dimer BEC then started
to grow, and the growth was not washed out by a quickly
varying phase. In our simulations, we kept the OL compo-
nent in-phase with the dimers at zero (i.e., off) during this
stage (though having it nonzero is a degree of freedom that
may be employed to optimize the evolution). After a finite
time, we turned off the OL component in-phase with the
atom BEC, and we turned on the OL component in-phase
with the dimer BEC. We also changed the dc magnetic field
such that the atoms and molecules were strongly detuned.
We made an additional adjustment to the self- and cross-
mean-field terms via the confining OL. The OL lattices are
chosen such that the linear and nonlinear coefficients are
those that make the existing dimer field approximately a gap
soliton,

0=-Y (162)
=7, a
2|Amax2
k/2
K=—, (16b)
1—-cosQ
k
Xspm=m, (16c¢)

where M= [(|¢p,|>+|p_|*)dz is the area under the curve of the
dimer BEC (“mass™), |A,|* is the average of the density
maxima of the dimer BEC components in the forward- and

backward-moving directions (“peak density”), and k is half
the difference in wave numbers between the forward and
backward modes (“relative wave vector”). When the shape
of the dimer BEC is close enough to a Gaussian or hyper-
bolic secant, the nonlinearity and the dispersion caused by
the OL hold the molecules in the form of a gap soliton, with
just a small amount of excited modes due to the nonexact
initial gap soliton conditions. At the same time, the OL com-
ponent that is in-phase with the atoms is turned off, which
lets the atoms escape to the left and to the right. For this
scheme to work, the dimer BEC must be within the stable
regime of the gap soliton, or roughly Q=<1.01m/2, other-
wise, excitations will grow and eventually destroy the gap
soliton. The process is illustrated in Fig. 9. We started out
with an atomic BEC gap soliton (approximate, based on
Gaussians). For one unit of dimensionless time, the detuning
was reduced to zero, and from time equal to one the OL in
phase with the atoms was turned off, the OL in phase with
the dimers was turned on and the OL strengths were adjusted
to give the dimers as a gap soliton. The result was a portion
of the atom BEC converted to a gap soliton comprised of
dimers, with some amount of extra energy, manifested in a
small oscillation of the gap soliton, while the remainder of
the atom field, which did not go into dimers, escaped either
forward or backward.

So, by knowing the formulas connecting the parameters
of a gap soliton pulse with the experimentally adjustable
coefficients of the equation, we were able to allow the Fes-
hbach term to cause a growth of a dimer BEC pulse. We
identified where it the dimer pulse would be stable, and then
changed the experimental parameters so that the system
would capture (approximately) a stable gap soliton pulse
comprised of a pure dimer BEC and allow excess atomic
BEC to escape.
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FIG. 9. (Color online) Evolu-
tion of an atomic BEC into a
dimer BEC in the form of a gap
soliton, and some atom BEC scat-
tered away from the center. The
top graphs are the atom BECs,
and the bottom graphs are dimer
BECs. The left graphs are the
backward-moving BEC compo-
nents, and the right graphs are the
forward-moving BEC compo-

nents. An initial atom BEC gap
soliton with cos 0=0.75, Fesh-
bach coefficient g=1, and zero de-

tuning A=0 from dimensionless
time from O to 1, and from time 1,
the optical lattices release the
atom BEC and trap the dimer
BEC into a gap soliton plus a
small perturbation. From dimen-
sionless time 1, the OL compo-
nent in-phase with the dimer BEC
has Bragg coefficient k=0.42. and
the longitudinal, or trapping, OL
is such that the self-mean-field co-

V. SUMMARY AND CONCLUSION

We analyzed systems of Bose-Einstein condensates
(BECs) confined to one dimension by a strong (“tight-
binding”) trapping two-dimensional optical lattice (OL), and
with a weak OL perpendicular to it which creates a band gap.
The BECs are subject to self- and cross-mean-field and a
Feshbach term which couples atoms to dimer molecules. We
derived coupled mode equations for the system, searched for
solutions by a relaxation method [39], and analyzed the dy-
namics by direct numerical simulations using the split-step
fast Fourier transform method [33].

We found that this system can support stable gap solitons
comprised of atomic and/or molecular BECs. There are two
distinct families of gap soliton solutions. One gap soliton
solution, which is mathematically well known in the optics
literature, has only a dimer BEC and no atom BEC. This
limit is identical to that in Refs. [28]. The other family of
soliton solutions is comprised of both atomic and dimer
BECs, coupled together in position and in phase by the op-
tical lattice, Feshbach resonance, and mean-field effects. We
described these gap solitons in quantitative detail, delineat-
ing regions of stability and instability.

efficient of the dimer BEC is
t Xspm=4-3.

We also describe a procedure by which the system can
start with an atomic BEC and produce a gap soliton com-
posed only of a dimer BEC. This is done by starting with an
atomic BEC pulse, suddenly adjusting the magnetostatic
field such that the detuning is nearly zero (A=0), and allow-
ing the dimer BEC to grow. After a period of time, the OL
component that causes Bragg scattering of the atom field is
turned off; the OL component that causes Bragg scattering in
the dimer BEC is adjusted, and the strength of the confining
2D optical lattice is adjusted, so that the dimer BEC pulse is
approximately a gap soliton of the system. The atom BEC
escapes forward and backward, and the molecular BEC re-
mains in the center in the form of a gap soliton.
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