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We derive a system of nonpolynomial Schrödinger equations for one-dimensional wave functions of two
components in a binary self-attractive Bose-Einstein condensate loaded in a cigar-shaped trap. The system is
obtained by means of the variational approximation, starting from the coupled three-dimensional �3D� Gross-
Pitaevskii equations and assuming, as usual, the factorization of 3D wave functions. The system can be
obtained in a tractable form under a natural condition of symmetry between the two species. A family of vector
�two-component� soliton solutions is constructed. Collisions between orthogonal solitons �ones belonging to
the different components� are investigated by means of simulations. The collisions are essentially inelastic.
They result in strong excitation of intrinsic vibrations in the solitons, and create a small orthogonal component
�“shadow�� in each colliding soliton. The collision may initiate collapse, which depends on the mass and
velocities of the solitons.
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I. INTRODUCTION

Bose-Einstein condensates �BECs� with attractive interac-
tions between atoms can form stable wave packets in nearly
one-dimensional �1D� “cigar-shaped� traps, which provide
for tight confinement in two transverse directions, while
leaving the condensate almost free along the longitudinal
axis. This trapping geometry made it possible to create stable
bright solitons �1� and trains of such solitons �2� in the 7Li
condensate, in which the interaction between atoms was
made weakly attractive by means of the Feshbach-resonance
technique. In the 85Rb condensate trapped under similar con-
ditions, stronger attraction between atoms leads to control-
lable collapse and creation of nearly 3D solitons �3�.

This experimentally relevant situation is described by ef-
fective 1D equations which may be derived from the full 3D
Gross-Pitaevskii equation �GPE� under various conditions
and by means of different approximations �4–8�. In some
cases, the deviation of the effective equation from a straight-
forward 1D variant of the GPE amounts to keeping an extra
self-attractive quintic term in the equation, which may be
sufficient to essentially alter properties of the corresponding
solitons �6,9,10�. A more consistent derivation, that starts
with the factorization of the 3D wave function into the prod-
uct of a transverse one �it actually represents the ground state
of the 2D harmonic oscillator� and arbitrary slowly varying
longitudinal �one-dimensional� wave function, and then uses
the variational approximation �11�, leads to a more sophisti-
cated but also more accurate nonpolynomial Schrödinger
equation �NPSE� for the longitudinal wave function �5,12�.
The above-mentioned simplified equation featuring the com-
bination of cubic and quintic terms can be then obtained by
an expansion of the NPSE for the case of a relatively weak
nonlinearity �10�. The ratio of the coefficients in front of the
cubic and quintic terms in the model derived in Ref. �6� is
not the same as follows from the expansion of the NPSE,
which is explained by a coarser character of the approxima-

tion used in that work �the approximation did not allow a
deviation of the nonlinearity from the cubic-quintic form�.

A physically significant generalization of the above-
mentioned equations is a system of two nonlinearly coupled
equations for a binary BEC, which can be created in the
experiment by means of the sympathetic-cooling technique
�13�. Accordingly, a relevant problem is to derive a system of
effective 1D equations for a mixture of two BEC species in
the cigar-shaped trap, starting from the two coupled GPEs in
the 3D space. In this work, we aim to derive such a system in
the form of coupled NPSEs, using a generalized version of
the method elaborated in Refs. �5,12,14�.

The paper is organized as follows. The derivation of the
coupled NPSE system, which is based on the variational ap-
proximation, is presented in Sec. II. In the most general case,
it leads to a cumbersome system. However, we demonstrate
that, under a natural condition of the symmetry between the
two species, the equations may be reduced to a tractable
closed system of two NPSEs for longitudinal wave functions
of the two components. Then, in Sec. III, we consider solu-
tions for vector solitons �i.e., two-component ones� gener-
ated by this system; the solutions are found in an implicit
analytical form up to a point where they cease to exist due to
collapse.

A natural application of the thus derived NPSE system is
to consider collisions between two orthogonal solitons,
which belong to the two different components. This analysis,
based on numerical simulations, is reported in Sec. IV. The
collisions are inelastic, which is manifested in the excitation
of intrinsic oscillations in the solitons after the collision, and
generation of small “shadows� in them �each soliton captures
and keeps a small share of atoms from the other species�.
The strongest manifestation of the inelasticity, as we demon-
strate in Sec. IV, is a possibility to initiate collapse by the
collision between two orthogonal solitons �which depends on
their relative velocity�. The paper is concluded by Sec. V.
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II. COUPLED NONPOLYNOMIAL SCHRÖDINGER
EQUATIONS

The system of 3D GPEs for a dilute binary condensate,
confined in the transverse direction by a strong harmonic
potential with frequency �� and in the axial direction by a
generic weak potential V�z�, can be derived from the La-
grangian density,

L = �
k=1,2

�k
*�i�t +

1

2
�2 −

1

2
�x2 + y2� − V�z� − �gk��k�2��k

− 2�g12��1�2��2�2. �1�

Here �k�r , t� is the macroscopic wave function of the kth
species, which is subjected to the normalization condition,

	 	 	 ��k�x,y,z��2dxdydz = Nk, �2�

where Nk is the number of atoms in the kth species, and

gk 
 2ak/a�, g12 
 2a12/a� �3�

are strengths of the intra- and interspecies interactions, where
ak and a12 are the scattering lengths, and a�=�� / �m��� is
the transverse harmonic-confinement length. Here we con-
sider the binary condensate with attraction between atoms,
which implies that both a1,2 and a12 are negative. In the
Lagrangian density, lengths, time, and energy are written in
units a�, ��

−1, and ���, respectively.
The ordinary variational procedure applied to Eq. �1�

gives rise to the coupled 3D GPEs,

i�t�k = �−
1

2
�2 +

1

2
�x2 + y2� + V�z� + 2�gk��k�2

+ 2�g12��3−k�2��k, k = 1,2. �4�

Our objective here is to derive a system of effective 1D
NPSEs, following the lines of the derivation of the NPSE for
the single-component condensate developed in Ref. �5�
�its generalization for an axially nonuniform trapping poten-
tial, with ��=���z�, was reported in Ref. �8��. Using the
cylindrical coordinates �r ,�� in the transverse plane �x ,y�,
we adopt the usual ansatz for the wave functions strongly
localized in this plane, and weakly confined in the axial di-
rection z:

�k�r,z,t� =
1

���k�z,t�
exp�−

r2

2�k�z,t�2
 fk�z,t� , �5�

where real �k�z , t� and complex fk�z , t� are dynamical fields,
the latter ones obeying normalization �−�

+��fk�z��2dz=Nk, as it
follows from Eqs. �2� and �5�.

Inserting this ansatz in Lagrangian density �1�, performing
the integration in the transverse plane, and neglecting deriva-
tives of ��z , t� �for the same reasons as in Refs. �5,8��, one
can derive the following effective Lagrangian:

L̄ = �
k=1,2

fk
*�i�t +

1

2
�z

2 −
1

2
� 1

�k
2 + �k

2� − V�z� −
1

2

gk

�k
2 �fk�2� fk

− 2
g12�f1�2�f2�2

��1
2 + �2

2�
.

This Lagrangian gives rise to a system of four Euler-

Lagrange equations, obtained by varying L̄ with respect to fk
*

and �k:

i�t fk = �−
1

2
�z

2 + V�z� +
1

2
� 1

�k
2 + �k

2� +
gk

�k
2 �fk�2

+ 2
g12

��1
2 + �2

2�
�f3−k�2� fk, �6�

�k
4 = 1 + gk�fk�2 + 4g12�f3−k�2

�k
4

��1
2 + �2

2�2 , �7�

with k=1,2 in both Eqs. �6� and �7�. This is a full system of
the coupled NPSEs describing the two-component nearly 1D
BEC.

Note that the ansatz �5� is relevant when the transverse
confinement size is much smaller than a characteristic axial
length of a structure �in particular, soliton� to be obtained as
a solution of the axial equation. Physically, this means that
the quantum pressure in the transverse direction is much
stronger than the nonlinear self-attraction in the condensate.

III. VECTOR BRIGHT SOLITONS

In the subsequent analysis of the coupled NPSEs, we fo-
cus on the most natural symmetric case, when the �negative�
effective nonlinearity coefficients accounting for the intra-
and interspecies interactions are equal, namely,

g12 = g1 = g2 
 g . �8�

As follows from Eqs. �3�, this relation takes place, in particu-
lar, when the all scattering lengths are equal. In the symmet-
ric case, we assume that numbers of atoms in the two species
are equal too. We note that, for the self-repulsive binary
BEC, with g	0 �recall here we are going to consider the
case of g
0�, Eq. �8� may pose a formal problem, as it
precisely corresponds to the miscibility-immiscibility thresh-
old in the infinite system. Nevertheless, the problem does not
really take place, as the pressure exerted by the external po-
tential shifts the equilibrium towards the miscibility �see,
e.g., Ref. �15��, hence the case corresponding to relation �8�
in the repulsive binary BEC is not going to be a degenerate
�i.e., structurally unstable� one.

If constraint �8� holds, Eqs. �7� take the form

�k
4 = 1 + g�fk�2 + 4g�f3−k�2

�k
4

��1
2 + �2

2�2 , �9�

and admit an exact symmetric solution:

�1
2 = �2

2 = �1 + g��f1�2 + �f2�2� 
 �0
2. �10�

Of course, there remains a question if some additional asym-
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metric solutions to Eqs. �9� may also exist. One may assume
that an asymmetric solution, if any, branches off from the
symmetric one through a bifurcation. Then, close to the bi-
furcation point, one will have �1,2

2 =�0
2�1+�1,2�, with some

infinitesimal �1��2 ��0 is the symmetric solution given by
Eq. �10��. Substituting this in Eqs. �9� and linearizing them in
�1 and �2, one arrives at a system

2�k = Fk��k − �3−k�, k = 1,2, �11�

Fk 
 g�fk�2/�0
4. �12�

The resolvability condition for linear system �11� �equating
its determinant to zero� takes the following form, after
simple calculations: F1+F2=2. However, this condition can-
not hold for the attractive BEC, with g
0, because expres-
sions F1 and F2, as given by Eq. �12�, are negative in this
case. This means the bifurcation giving rise to asymmetric
solutions is impossible in the attractive binary condensate
�provided that constraint �8� is valid�, which substantiates the
use of symmetric solution �10�.

The substitution of Eq. �10� in Eqs. �6� leads to closed-
form equations for the complex amplitude functions f1
and f2,

i
�fk

�t
= �−

1

2

�2

�z2 + V�z� + g
�f1�2 + �f2�2

�1 + g��f1�2 + �f2�2�

+
1

2� 1
�1 + g��f1�2 + �f2�2�

+ �1 + g��f1�2 + �f2�2��� fk.

�13�

Equations �13� reduce to the familiar integrable Manakov’s
system �MS� �17�,

i�t fk = �−
1

2
�z

2 + V�z� + g��f1�2 + �f2�2�� fk, �14�

if g��f1�2+ �f2�2��1. Only under this condition may the sys-
tem be considered as truly one-dimensional, and only in
this limit it is integrable. Nevertheless, in the general case
Eqs. �13� share the “isotopic invariance� with the Manakov’s
system: the nonlinearity appears solely through the invar-
iant combination �f1�2+ �f2�2. Due to this fact, Eqs. �13� con-
serve an additional dynamical invariant �“isotopic spin”�,
S=�−�

+��f1�z�f2
*�z�+ f1

*�z�f2�z��dz, with an asterisk standing for
the complex conjugate.

In the case of attraction, g
0, vector �two-component�
bright solitons are looked for as fk=exp�−i
kt��k�z�, where
�1 and �2 are real localized functions obeying the following
coupled equations:


k�k = �−
1

2
�k� + V�z��k + g

�1
2 + �2

2

�1 + g��1
2 + �2

2�

+
1

2� 1

�1 + g��1
2 + �2

2�
+ �1 + g��1

2 + �2
2����k.

�15�

Due to the isotopic invariance, the solitons with equal chemi-
cal potentials of their components are tantamount to the

single-component �scalar� one, with �2=0 and �1
��z�
being a solution of a single equation,

�−
1

2

d2

dz2 + V�z� +
1 + �3/2�g�2

�1 + g�2 �� = 
� . �16�

If a soliton solution to Eq. �16� is found, the corresponding
vector soliton can be constructed in an obvious way,

� f1�z,t�
f2�z,t� 
 = �cos �

sin �

�exp�− i
t�

exp�− i
t� 
��z� , �17�

with an arbitrary “isotopic angle,” 0���� /2. More general
vector solitons, with different chemical potentials in their
components, are possible too. However, in the symmetric
case that we are dealing with here, it is obvious that the
vector solitons with unequal chemical potentials cannot real-
ize the ground state, therefore they are not considered here.

For V�z�=0 and g
0, a family of soliton solutions to Eq.
�16� was constructed in Refs. �5,12�. In this case, setting
��z�=�N��z�, with N1=N2
N, and

� 
 N�g� , �18�

the field ��z� and the chemical potential 
 are given by
implicit formulas,

z =� 1

2�1 − 
�
Arctanh���1 − ��2 − 


1 − 

�

−
1
�2
� 1

1 + 

tan−1���1 − ��2 − 


1 + 

� , �19�

� =
2�2

3
�2
 + 1��1 − 
 . �20�

and the wave function satisfies the normalization condition
�−�

+����z��2dz=1. The family is then characterized by the de-
pendence of � on 
. The inverse of Eq. �20� demonstrates
that, in terms of the 
��� dependence, there are two branches
of the soliton family, but only one of them, that satisfies
condition d
 /d�
0 �which is nothing else but the known
Vakhitov-Kolokolov stability criterion �20� in the present no-
tation�, is stable. In addition, there is a critical nonlinearity
strength, �c=4/3 �which corresponds to 
=1/2�, above
which the solution does not exist, because of the longitudinal
collapse �5,16�, which is a manifestation of the 3D collapse
possible in the underlying system of GPEs, Eqs. �4�. In the
limit of weak nonlinearity, �→0, Eq. �19� reduces to the
ordinary soliton wave form, ��z�= ��� /2�sech��z /2� �5,14�.

IV. COLLISIONS BETWEEN SOLITONS

A straightforward application of the system of NPSEs
�13� is to study collisions between two orthogonal solitons,
taken in the form of Eq. �17�, with equal values of 
 and
isotopic angles �=0 and �=� /2. Using the Galilean invari-
ance of the equations, the velocities of the two solitons are
taken to be ±v. The corresponding initial condition, at t=0, is
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��1
�0��z�

�2
�0��z� 
 = � eivz��z − z0/2�

e−ivz��z + z0/2� 
 , �21�

with large initial separation z0. To determine the time evolu-
tion of the fields �k�z , t�, k=1,2, we solved both nonlinear
Schrödinger equations �NLSEs� and NPSEs, i.e., Eqs. �14�
and �13� respectively, numerically, by using a two-
component extension of a well-tested finite-difference code
based on the Crank-Nicolson predictor-corrector algorithm
�21�. In the MS �alias the NLSE system, Eqs. �14��, which is
integrable, collisions are always elastic. However, since
NPSEs �13� are not integrable, collisions described by these
equations are expected to be inelastic. This expectation is
borne out by Fig. 1, where we compare the collision out-
comes in the MS and NPSEs for identical sets of parameters.
The figure shows the peak densities nP of both colliding
solitons �which are equal, due to the symmetry of the con-
figuration� as a function of time. The outcome does not de-
pend on the initial separation z0 between the solitons in Eq.
�21�, provided that it is large enough �we took z0=200�. After
the collision the MS solitons remain undisturbed �dashed
lines�, while their NPSE counterparts come out from the col-
lision with excited intrinsic oscillations �solid lines�. This
result not only shows that the collision in the NPSEs is in-
elastic, but also suggests that the solitons supported by this
system, i.e., ones given by Eqs. �17�, �19�, and �20�, unlike
their counterparts in the integrable MS, feature an intrinsic
mode, with a well-defined eigenfrequency �. In fact, this
mode was predicted in Ref. �12�, by means of the variational
approximation. It was shown that � vanishes at �→0, and it
attains a maximum close to the above-mentioned collapse
threshold, �=�c
4/3.

As shown in Fig. 2, the amplitude and frequency ��� of
the oscillations excited by the collisions of solitons in the
NPSE system grow with interaction strength �. Contrary to
that, the simulations demonstrate that the amplitude and fre-
quency of the intrinsic oscillations do not depend on initial
velocity v �see Fig. 5 below�. The independence of � on v is

quite natural, as the frequency is determined solely by the
internal structure of the soliton.

In Fig. 3 we compare the intrinsic frequency � as found
from the direct simulations of the NPSEs, Eqs. �13�, to the
frequency calculated by means of the variational approach of
Ref. �12�. The figure shows that the variational approxima-
tion somewhat overestimates both the critical strength of lon-
gitudinal collapse �c and frequency �. For both quantities,
the relative error is about 15%.

Collisions between solitons in NPSEs give rise to another
noteworthy effect: after the collision, a small part of the field,
�1, which originally belonged to the first soliton remains
trapped in the second soliton, and vice versa, see Fig. 4. The
effect is visible only for �	1, in the velocity interval of
0.4
v
0.7 �outside this parameter range, the effects takes
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FIG. 1. Peak density nP of the two colliding solitons as a func-
tion of time �t�, in the nonintegrable system of NPSEs, Eqs. �13�
and in the integrable Manakov’s system �alias NLSEs�, Eqs. �14�. In
both cases, the initial velocity is v=0.6.
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FIG. 2. Peak density nP of the two colliding solitons as a func-
tion of time, found from numerical integration of the NPSEs, Eqs.
�13�, for different values of interaction strength �. The initial veloc-
ity is v=0.6.
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FIG. 3. Frequency � of the intrinsic oscillations of the two
solitons as a function of interaction strength �. Stars: � found from
the numerical solution of NPSEs, Eqs. �13�, as the frequency of
intrinsic oscillations excited by the collision between two solitons.
Solid line: a result of the variational approximation from Ref. �12�.
The collapse point, found from simulations of Eqs. �13�, is indi-
cated by the dashed vertical line. The initial velocity is v=0.8.
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place too but is very weak�. Note that a similar effect
�“shadow formation�� was observed in the model describing
the interaction of two polarizations of light in a nonlinear
optical fiber, which was based on a nonintegrable system of
two NLSEs with the cubic nonlinearity, see Refs. �18,19� and
references therein. An explanation of the trapping effect is
based on the fact that the soliton in each field �k�z , t� �k
=1,2� supports not only the above-mentioned mode of in-
trinsic vibrations in the same field, but also an external
eigenmode of small perturbations in the mate field, �3−k�z , t�.
The latter mode is excited as a result of the collision �18�.

The collisions feature a trend to be more inelastic at
smaller velocities, as illustrated by Fig. 5, which shows the
maximum and minimum values of the peak density, nP

�M� and

nP
�m�, in the oscillating solitons emerging from the collision.

The figure shows that, while nP
�M� does not depend on initial

velocity v, nP
�m� is smaller at smaller velocities, which implies

stronger inelasticity. The results are shown in Fig. 5 for �
=1, and similar trends are found for ��1. For completeness,
in Fig. 5 we also plot frequency � of the intrinsic-mode
excited by the collision, which confirms that � does not de-
pend on v.

An interesting issue is whether the collision may result in
collapse. As follows from Eqs. �13�, the collapse happens
when condition �g���f1�2+ �f2�2�=1 takes place at some point.
If the first maximum of the peak density is achieved when
the centers of the colliding solitons nearly coincide, this con-
dition can be estimated as nP

�M��1/ �2��. While Fig. 5 shows
that nP

�M� does not depend on collision velocity v at ��1, it
depends on v at �	1, and the collapse can thus been
reached by increasing v. In particular, Fig. 6 shows that, for
�=1.2, the maximum value of peak density, nP�t�, grows
with v, and the collapse takes place at v=0.9. Note that
collapse induced by the collision between two solitons in a
single NPSE was reported in Ref. �12�, but in that case the
onset of the collapse did not depend on the initial velocity.

V. CONCLUSIONS

In this work, we have derived a system of one-
dimensional coupled nonpolynomial Schrödinger equations
�NPSEs� for longitudinal wave functions of two components
in a binary BEC, in the case of attraction between the atoms.
The system was derived by means of the variational approxi-
mation, starting from the coupled 3D Gross-Pitaevskii equa-
tions for the two species and assuming �as usual� the factor-
ization of 3D wave functions into products of the strongly
confined transverse and slowly varying longitudinal ones.
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FIG. 4. The trapping effect in the collision of two solitons: small
parts of fields �2�z , t� and �1�z , t� remain bound, respectively, in the
first and second soliton after the collision. Top, central, and bottom
panels display the density configurations, n1,2�z�
��1,2�z��2, at t
=100, 180, and 240. The interaction strength is �=1.2, and the
initial velocity is v=0.6.
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FIG. 5. Dependence on the collision velocity v of the maximum
�triangles� and minimum �rhombuses� values of the peak density,
nP

�M� and nP
�m�, in solitons disturbed by the collision. The respective

frequency of the intrinsic mode, �, is shown by stars. The interac-
tion strength is �=1.
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FIG. 6. Peak density nP of the two colliding solitons as a func-
tion of time for different values of initial velocity v. The collapse is
induced by the collision at v=0.9 �the corresponding curve shoots
up vertically at the collapse moment, t= tc�110�. The interaction
strength is �=1.2, and the initial separation is z0=200.
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The system was cast in a tractable form under a natural sym-
metry constraint. Then, a family of two-component �vector�
soliton solutions was obtained, and collisions between or-
thogonal solitons �each belonging to one component only�
were studied in detail by dint of systematic numerical simu-
lations. It was found that the collisions are inelastic. They
lead to strong excitation of intrinsic oscillations in the soli-
tons emerging from the collision, and to formation of a small
orthogonal component �“shadow�� in each soliton. Eventu-

ally, the collision may initiate collapse of the solitons,
depending on their mass and velocities.
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