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We perform fully three-dimensional simulations, using the truncated Wigner method, to investigate the
reflection of Bose-Einstein condensates from abrupt potential barriers. We show that the interatomic interac-
tions can disrupt the internal structure of a cigar-shaped cloud with a high atom density at low approach
velocities, damping the center-of-mass motion and generating vortices. Furthermore, by incorporating quantum
noise we show that scattering halos form at high approach velocities, causing an associated condensate deple-
tion. We compare our results to recent experimental observations.
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I. INTRODUCTION

Recent experiments �1,2� have demonstrated quantum re-
flection of Bose-Einstein condensates �BECs� from a silicon
surface, and showed the potential applications of semicon-
ductor surfaces as atom mirrors and traps. This is very excit-
ing in the light of the intense interest in precise manipulation
of cold atoms with atom chips �3,4�, which have been used to
reflect, transport, split, and recombine atom clouds �5–10�. In
principle, semiconductor surfaces have many advantages
over conventional atom chips: they can be precisely pat-
terned, require no magnetic fields or currents, and hence
avoid the problems of fragmentation �11�. In order to op-
tomize the effective manipulation of atoms, theoretical work
is required to understand the reflection process, and in par-
ticular, how it may disrupt the cloud. Previous theoretical
work �12�, based on solving the cylindrically symmetric
Gross-Pitaevskii equation �GPE�, showed that interatomic in-
teractions can disrupt the internal structure of the cloud on
reflection, creating topological excitations such as solitons
and vortices. Recent theoretical work on colliding BECs
�13,14�, however, demonstrated that the bare GPE is insuffi-
cient for describing the production of scattering halos and the
associated depletion of the BEC, developing the truncated
Wigner method �TWM� �13–16�, which includes quantum
noise, as an alternative method to model this process. Fur-
thermore, the experimental results have confirmed that large
scattering halos are indeed created for particular parameter
regimes �2�.

In this paper, we reproduce the experimental results by
performing fully three-dimensional simulations using the
TWM. In contrast to the bare GPE, this method models
quantum fluctuations of the condensate, and can hence de-
scribe processes which require spontaneous initiation. One
such process is the pairwise scattering of condensate atoms
into unoccupied modes, which is the precursor for the for-
mation of a scattering halo. Once these previously unoccu-
pied modes have some finite occupation, further atoms enter
them via Bosonic stimulation, creating a scattering halo. By
comparing multiple simulations the TWM may also be used
to calculate the condensate depletion associated with the
halo.

We explore the role of the cloud geometry, density and
approach speed in the reflection of BECs from abrupt poten-
tial steps. We find that the disruption due to the interatomic
interactions, which we refer to as “interferential disruption,”
is most pronounced for cigar-shaped BECs with high atom
densities, approaching the potential barrier along its long
axis at low velocities. This effect generates vortices and
causes an associated damping of the center-of-mass motion.
The production of scattering halos is also enhanced by elon-
gating the cloud and increasing the density, but in contrast to
the interferential disruption, is most pronounced at high ap-
proach velocity. As mentioned previously, the creation of the
scattering halo causes a depletion of the condensate. We
compare our theoretical results to recent experimental obser-
vations of excited reflected clouds and scattering halos �1,2�.

We study two sets of 23Na BEC parameters, referred to as
A and B, taken from recent experiments on quantum reflec-
tion of BECs from silicon surfaces. BEC B is more than
twice as dense �its equilibrium peak density n0 is 5.2
�1012 cm−3� as BEC A �n0=2.0�1012 cm−3�. Both BECs
have different widths in each coordinate direction. The long
axis of BEC B is always perpendicular to the barrier, but we
examine the dynamics of BEC A in three orientations, in
which the cloud is accelerated in each of the three principal
coordinate directions. By studying the behavior of a single
BEC in different orientations we draw conclusions about the
role of BEC shape and orientation in determining the subse-
quent dynamics. We show that our theoretical predictions for
the two sets of parameters are in good agreement with the
experimental observations.

The paper is organized as follows. In Sec. II we discuss
the theoretical model used to simulate the BEC dynamics, in
Sec. III we present results for BEC A, in Sec. IV we present
results for BEC B, and in Sec. V we summarize our findings
and conclude.

II. THEORETICAL MODEL OF THE BEC DYNAMICS
AND QUANTUM FLUCTUATIONS OF THE FIELD

A. The truncated Wigner method

Heuristically, the TWM can be thought of as a classical
field technique which simulates quantum vacuum fluctua-
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tions by adding appropriate classical random fluctuations to
the coherent field of the BEC’s initial state. The added fluc-
tuations are referred to as “virtual particles” and the atoms in
the BEC initial state are referred to as the “real particles.”
This approach is valid for high densities of real particles.
Specifically, in a homogenous system, the number of real
particles must be much greater than the number of virtual
particles. The derivation of this method is outlined in Ref.
�13� and described in detail in Ref. �14�. The dynamical
equations of the TWM are identical to the projected GPE
�17�.

The wave function ��x , t� is modeled by the mode expan-
sion

��x,t� =
1

�V
�
j=1

j=M

� j�t�eikj·x, �1�

where t is time, V=LxLyLz is the volume contained in the
coordinate space, and � j�t� is the amplitude of the mode with
wave vector k j, normalized such that � j=1

j=M� j
*�t�� j�t� is the

total number of atoms N. The mode space is spherical, being
contained within a maximum cutoff wave vector modulus to
prevent Fourier aliasing �18�. The wave vectors are defined
as

k j =
2�pj

Lx
k̂x +

2�qj

Ly
k̂y +

2�rj

Lz
k̂z, �2�

where pj, qj, and rj are integers.
For t�0, the BEC is held in a magnetic trap of frequen-

cies �x, �y, and �z, centered at �−�x ,0 ,0�, with potential
profile

Utrap =
m

2
��x

2�x + �x�2 + �y
2y2 + �z

2z2� , �3�

where m is the mass of a single 23Na atom. The initial state is
determined by solving the three-dimensional GPE

i�
�	

�t
= �−

�2�2

2m
+ Utrap + U0�	�2		 , �4�

where

U0 =
4��2a

m
, �5�

in which a=2.9 nm is the s-wave scattering length, using an
imaginary time algorithm �19�. The quantum fluctuations are
introduced by combining this real particle field 	�x� with a
field of virtual particles 
�x� to create the total field ��x ,0�.
The virtual particle field is defined as


�x� =
1

�V
�
j=1

j=M


 je
ikj·x, �6�

in which the complex amplitudes 
 j have a Gaussian distri-
bution with the properties 

i

*
 j�= 1
2�ij and 

i
 j�=0 �13,14�.

This means that on average each mode is populated by half a
virtual particle, so that the total number of virtual particles is
approximately M /2.

The derivation in Ref. �14� yields the stochastic differen-
tial equation for each mode within the low energy subspace

i�
d� j

dt
=

�2kj
2

2m
� j +

1
�V

� e−ikj·x�Uext + U0���2��dx , �7�

where Uext is the total external potential. We compute the
dynamics of the BEC by solving these equations using the
fourth-order Runge-Kutta in the interaction picture algorithm
�RK4IP� �20�.

B. Application to the reflection problem

At t=0 the magnetic trap is displaced by a distance �x
along the x direction, such that it is now centered at �0,0,0�,
creating the new potential profile Utrap� . This accelerates the
BEC towards an abrupt potential step Uwall of height V,
which is positive, in the y-z plane at x=0, so that

Uwall = 
V , x � 0,

0, x � 0.
� �8�

Hence, the impact velocity of the cloud at the wall vx
��x�x �21�. If the mean kinetic energy of the atoms at the

barrier 
E��
mvx

2

2 
V, all atoms are reflected. If 
E��V, there
is finite transmission.

In this paper we compare our theoretical predictions to
experimental obvservations of quantum reflection from the
Casimir-Polder potential �1,2�. Unfortunately, it is impos-
sible to model the Casimir-Polder potential directly as this
accelerates atoms to large wave vectors which exceed our
maximum cutoff wave vector, which is limited by computer
memory. However, since the Casimir-Polder potential, and
particularly that of a pillared surface, varies over a distance
of less than the healing length �2�, it can be approximated to
an abrupt potential barrier. Furthermore, previous theoretical
work �12� has demonstrated that the BEC dynamics are
qualitatively independent of the form of the reflecting poten-
tial barrier.

Absorption of transmitted real particles. Transmitted at-
oms are absorbed by an imaginary potential, given by

Uimag = 
− Cx , x � 0,

0, x � 0,
� �9�

where C is a positive constant. The imaginary potential in-
troduces a damping term into the equations for the mode
amplitudes, which removes atoms for x�0. However, the
imaginary potential must only absorb the real particles, not
the virtual particles, hence maintaining the appropriate
amount of quantum noise. We overcome this problem by
calculating the damping rate of the imaginary potential, and
adding extra virtual particles by increasing each mode am-
plitude � j by

�� j =
�V
��V

�
�=1

�=�max

W�eikj·x�, �10�

every time step �t �22�, where �V is the volume around one
spatial grid point, and the complex spatial process W� has the
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properties 
W��=0, 
W�W��=0, and 
W�
*W��=

−�tUimag

�V �ij.
Hence the total external potential is Uext=Utrap� +Uwall
+Uimag.

III. DYNAMICS OF BEC A

For BEC A, N=3�105, �x=2��3.3 rad s−1, �y =2�
�2.5 rad s−1, and �z=2��6.5 rad s−1. For these parameters
n0=2.0�1012 cm−3. Figure 1�a� shows two views of a con-
stant density surface of the BEC initial state at t=0 without
added quantum fluctuations �the axes are included in the fig-

ure�. In this section V=10−30 J, which far exceeds
mvx

2

2 for all
vx considered, and hence all atoms are reflected.

Since the cloud is not symmetric, we can explore the role
of the BEC geometry by accelerating it in different direc-
tions. The parameters as defined above will be referred to as
orientation 1. We will later rotate the cloud such that �x
=2��2.5 rad s−1, �y =2��3.3 rad s−1, and �z=2�
�6.5 rad s−1, hence presenting its long axis towards the
potential barrier. This will be referred to as orientation
2. Finally, we will rotate the cloud such that

�x=2��6.5 rad s−1, �y =2��2.5 rad s−1, and �z=2�
�3.3 rad s−1, hence presenting its short axis towards the po-
tential barrier. This will be referred to as orientation 3.

A. Interferential disruption

We initially perform simulations without added quantum
noise in order to study the interferential disruption. Figure 1
shows constant density surfaces for BEC A in orientation 1
without quantum fluctuations undergoing reflection from the
potential barrier at t=75 �b�, 100 �c�, and 125 ms �d�, for
vx=1.2 mm s−1. The left and right-hand columns show views
of the cloud from and towards the wall, respectively �see
axes in Fig. 1�a��. Figure 1�b� shows the midpoint of the
oscillation, at which time the cloud is modulated by the
standing wave created by the superposition of the incident
and reflected matter waves. The left-hand figure shows the
flat constant density surface against the potential barrier. Pre-
vious theoretical work �12� demonstrated that the interatomic
interactions in the high-density peaks of the standing wave
cause the momentum of some atoms to be transferred into
the radial direction. These atoms appeared as jetlike “lobes.”
In three dimensions, the “lobes” can be seen to form more of
a “doughnut” �Fig. 1�c��. The trap causes the “doughnut” to
collapse as it rebounds away from the wall, disrupting the
internal structure of the cloud �Fig. 1�d��. At the end of the
oscillation �t=150 ms�� /�x�, the radial momentum of the
“doughnut” has created vortex lines which pierce the BEC,
roughly parallel to the y axis �Fig. 2�a��. The circular arrow
in Fig. 2�a� shows the direction of quantized circulation.
These theoretical findings are in agreement with experimen-
tal observations of “excited and sometimes fragmented” re-
flected clouds �1�.

(a)

(b)

(c)

(d)

FIG. 1. Constant density surfaces of BEC A without quantum
fluctuations in orientation 1, reflecting from a barrier of height V
=10−30 J for vx=1.2 mm s−1 at t=0 �a�, 75 �b�, 100 �c�, and 125 ms
�d�. The left and right-hand columns shows views from and towards
the barrier, respectively �axes are shown in �a��. The vertical bar
shows the scale.

(a) (b)

(c) (d)

(e) (f) (g)

FIG. 2. Constant density surfaces of BEC A without quantum
fluctuations in orientation 1 ��a� and �b��, orientation 2 ��c� and �d��,
and orientation 3 ��e� and �f�� after one complete oscillation, having
reflected from a barrier of height V=10−30 J. The left and right-hand
figures show results for vx=1.2 and 2.1 mm s−1, respectively. The
circular arrow in �a� indicates the direction of circulation around a
vortex line. The vertical bar shows the scale, the axes are shown in
�a�. �g� 
x� versus t for orientation 1 �solid curves�, orientation 2
�dotted curves�, and orientation 3 �dashed curves�. In all cases the
upper and lower curves correspond to vx=1.2 and 2.1 mm s−1,
respectively.
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The excitation of the internal structure of the cloud re-
moves energy from the longitudinal motion, and hence this
effect is associated with a damping of the center-of-mass
motion. The upper solid line in Fig. 2�g� is the mean BEC x
position 
x� as a function of t for these parameters, and it is
clearly strongly damped. The effect is described as “interfer-
ential disruption,” since it arises from an interference pattern,
in this case produced by the superposition of the incident and
reflected matter waves.

The “lobes” form if atoms can move radially outwards
from the center of the BEC to its extremities before the re-
flection process is complete �12�. The time taken for this to
occur has the lower limit tl= lr /vs, where lr is the radial half-
width of the cloud and vs��h2n0a /�m2 is the average speed
of sound, if the atoms are to travel through the cloud without
exciting the BEC. The reflection time is tR� lx /vx, where lx is
the BEC’s longitudinal half-width. Consequently we expect
to observe lobes and subsequent disruption if

vx � vs�lx/lr� . �11�

For the simulation described above, we have the interest-
ing situation that Eq. �11� is satisfied if lr is taken to be lz, but
not if lr is taken to be ly. Consequently, the “doughnut” is
particularly pronounced in the z-direction, and hence its mo-
mentum is largest in the z direction. This explains why the
resulting vortex lines are roughly parallel to the y axis.

As vx increases Eq. �11� is no longer satisfied. Figure 2�b�
shows the reflected cloud in orientation 1 at t=150 ms for
vx=2.1 mm s−1. For these parameters the “doughnut” does
not form. Hence, at the end of the oscillation the cloud con-
tains no topological excitations and its appearance is similar
to the initial state at t=0. Consequently, there is little damp-
ing of the center-of-mass motion, as shown by the lower
solid curve in Fig. 2�g�.

We may control the disruption by changing the geometry
of the cloud, i.e., by changing the ratio lx / lr in Eq. �11�. The
ratio lx / lr is largest for orientation 2, and smallest for orien-
tation 3, so we would expect more and less disruption for
these parameters, respectively. This is supported by our nu-
merical simulations. The BEC in orientation 2 is highly dis-
rupted for vx=1.2 mm s−1 and contains many topological ex-
citations �Fig. 2�c�� and is mildly disrupted for vx
=2.1 mm s−1 �Fig. 2�d��. However, the BEC in orientation 3
shows virtually no disruption at either impact velocity �Figs.
2�e� and 2�f��. Again we find that severe disruption of the
BEC internal structure is associated with strong damping of
the center-of-mass motion: the damping is largest for orien-
tation 2 �dotted curves in Fig. 2�g��, and smallest for orien-
tation 3 �dashed curves in Fig. 2�g��. These results illustrate
that we expect severe interferential disruption for large lx and
small lr, i.e., a cigar-shaped BEC with its long axis perpen-
dicular to the barrier, as predicted by Eq. �11�. Conversely,
we expect mild interferential disruption for small lx and large
lr, i.e., a pancake-shaped BEC with its short axis perpendicu-
lar to the barrier.

B. Inclusion of quantum fluctuations

We also investigated the role of quantum fluctuations of
the field by adding noise to the initial state at t=0, as de-

scribed in Sec. II. Figure 3 shows the resulting simulated
absorption images of the BEC in the y-x plane after one
complete oscillation for various orientations and approach
velocities. The interferential disruption has least effect in this
plane for the reasons explained in Sec. III A. For the param-
eters taken from the first BEC quantum reflection experi-
ments �1� �orientation 1�, the scattering halo is very weak for
an approach velocity of 1.2 mm s−1 �Fig. 3�a��. This is un-
surprising as scattering halos were not observed in the ex-
periments. For the larger approach velocity of 2.1 mm s−1

�Fig. 3�b�� the halo is much clearer, but still relatively faint.
This result is confirmed in Fig. 3�g�, which shows the coher-
ent number of atoms NC as function of t for vx=1.2 and
2.1 mm s−1 �upper and lower solid curves, respectively�, cal-
culated by the method described in Ref. �14�. As the BEC
reflects, coherent atoms from the BEC are transferred into
the incoherent scattering halo, depleting the condensate. The
final condensate fraction is much less �57% compared to
88%� for the larger vx of 2.1 mm s−1 than for vx
=1.2 mm s−1.

If the BEC is orientated such that its long axis is perpen-
dicular to the wall �orientation 2�, the scattering halo is much
more pronounced �Figs. 3�c� and 3�d��, and there is a greater
associated depletion of the condensate �dotted lines in Fig.
3�g��. Conversely, the halo is only just visible for the BEC in
orientation 3 �Figs. 3�e� and 3�f��. These results indicate that
the production of scattering halos is most pronounced for
cigar-shaped BECs, approaching the potential barrier along
their long axis with large vx.

IV. DYNAMICS OF BEC B

For BEC B, N=106, �x=2��4.2 rad s−1, �y =2�
�5.0 rad s−1, and �z=2��8.2 rad s−1. These parameters

(a) (b)

(c) (d)

(e) (f)
(g)

FIG. 3. Simulated absorption images of BEC A including quan-
tum fluctuations in orientation 1 ��a� and �b��, orientation 2 ��c� and
�d��, and orientation 3 ��e� and �f�� after one complete oscillation,
having reflected from a barrier of height V=10−30 J. The left and
right-hand figures show results for vx=1.2 and 2.1 mm s−1, respec-
tively. The horizontal bar shows the scale, and the dashed vertical
lines indicate the position of the barrier. �g� NC versus t for orien-
tation 1 �solid curves�, orientation 2 �dotted curves�, and orientation
3 �dashed curves�. In all cases the upper and lower curves corre-
spond to vx=1.2 and 2.1 mm s−1, respectively.
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give n0=5.2�1012 cm−3, which is more than double that in
BEC A. Figure 4�a� shows a constant density surface of BEC
B without added quantum fluctuations at t=0. In this section,

V is reduced below
mvx

2

2 , in order to investigate the effect of
finite transmission. Transmitted atoms are absorbed by an
imaginary potential, as described in Sec. II.

A. Low approach velocity

Initially, we set V=7.97�10−32 J and vx=2.1 mm s−1, for
which we would expect a reflection probabiliy of 0.5 for a
noninteracting plane wave. Since the atom density is higher
in BEC B, and its long axis is perpendicular to the barrier,
Eq. �11� predicts more pronounced interferential disruption.
This is confirmed by the numerical simulations. Figures 4�b�
and 4�d� show constant density surfaces of BEC B without
quantum fluctuations undergoing reflection from the poten-
tial barrier at t=70 and 120 ms, respectively. At t=70 ms the
standing wave has formed, but the interatomic interactions
have already caused disruption of the internal structure and
“doughnut” formation. In this high-density regime, some

vortices are formed directly from the modulation of the
standing wave, as has been demonstrated in optical lattices
�23�. The slice through the y-x plane in Fig. 4�c� shows the
bending of the nodal lines, which is characteristic of the
snake instability �24,25�, before the “doughnut” has col-
lapsed. A vortex ring has formed where one nodal line is
bending and breaking, and is encircled by two arrows, indi-
cating the direction of quantized circulation. At the end of
the oscillation �Fig. 4�d��, the internal structure of the cloud
is highly disrupted, and contains many topological excia-
tions. This is in agreement with the results of Ref. �2�, which
reports the observation of disruption to the BEC internal
structure for approach velocities of approximately 2 mm s−1

and below.
A corresponding simulation including quantum fluctua-

tions shows that the higher density also causes more pro-
nounced halo formation. Figure 4�e� is a simulated absorb-
tion image of the cloud in the y-x plane at t=120 ms,
showing a very clear, large, and dense halo. We obtain quali-
tatively similar results in the case of zero transmission, by
setting V=10−30 J, as in Sec. III.

B. High approach velocity and comparison with experiment

Finally, we increase V to 1.67�10−31 and vx to 3 mm s−1

in order to compare our predictions directly with experimen-
tal results �2�. For these parameters the plane-wave reflection
probability is 0.5, approximately the same as that observed in
experiment at this vx on reflection from the Casimir-Polder
potential of a pillared silicon surface.

At this larger velocity there is very little interferential
disruption, so without quantum fluctuations the reflected
cloud has a reasonably smooth density profile �Fig. 5, upper

(a)

(b) (c)

(d) (e)

FIG. 4. Constant density surfaces of BEC B without quantum
fluctuations reflecting from a barrier of height V=7.97�10−32 J for
vx=2.1 mm s−1 at t=0 �a�, 70 �b�, and 120 ms �d�. The axes are
shown in �a�. �c� Slice through the BEC in the y-x plane at t
=70 ms. The arrows show the direction of circulation around a
vortex ring. �e� Simulated absorption image of BEC B including
quantum fluctuations in the y-x plane at t=120 ms. The arrow in �a�
indicates the scale.

FIG. 5. Experimental absorption image of BEC B for vx

=3.0 mm s−1 at t=120 ms, having reflected from the Casimir-
Polder potential of a pillared silicon surface. The field of view is
500 �m, the vertical dashed line indicates the position of the bar-
rier. Lower inset: corresponding simulated absorption image in the
y-x plane including quantum fluctuations for reflection from a bar-
rier of height V=1.67�10−31 J. Upper inset: equivalent constant
density surface excluding quantum fluctuations, axes are shown in
the figure.
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inset�. However, when we include quantum fluctuations an
even larger scattering halo is produced, as shown in Fig. 5,
lower inset. As before, we obtain qualitatively similar results
in the case of zero transmission for V=10−30 J.

Our simulations agree with the results of Ref. �2�, which
reports the observation of large scattering halos for an ap-
proach velocity of 3 mm s−1, but no interferential disruption
for vx�2 mm s−1. An experimental image is shown in Fig. 5
for comparison with our simulated absorption image. The
experimental and theoretical images both show a dense and
coherent cloud that has reflected cleanly from the barrier,
superimposed on the background of the incoherent and com-
paritively dilute halo. These findings demonstrate that the
production of scattering halos is most pronounced for dense
BECs with large vx.

V. CONCLUSIONS

It has already been demonstrated that abrupt potential bar-
riers, such as the Casimir-Polder potential of a silicon sur-
face, could be exploited in applications as atom mirrors and
traps �1�. Furthermore, surface potentials can be routinely
patterned in order to create devices to manipulate BECs in
more imaginative ways. The results of this paper are more
generally relevant to any reflection process, for example, us-

ing magnetic mirrors �5�, sheets of laser light, or arrays of
current-carrying wires �10�. These techniques can also be
extended to create more exotic potentials, such as diffraction
gratings �26,27�.

Our findings suggest that these experiments may be most
successful for dilute, pancake-shaped BECs, with their short
axis perpendicular to the barrier. Furthermore, our results
show that there are two competing effects which may spoil
the smooth profiles of the incident BECs and produce exci-
tations: interferential disruption and the production of scat-
tering halos. The former is most pronounced at low approach
velocity, the latter at high approach velocity. Applications of
BEC reflection may be most effective for moderate approach
velocities which are above the threshold for interferential
disruption, but below the threshold for the formation of a
scattering halo. Any future devices based on reflection must
also account for possible damping of the center-of-mass os-
cillations associated with the production of excitations.
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