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We consider N atoms trapped in an isotropic harmonic potential, with s-wave interactions of infinite scat-
tering length. In the zero-range limit, we obtain several exact analytical results: mapping between the trapped
problem and the free-space zero-energy problem, separability in hyperspherical coordinates, SO�2,1� hidden
symmetry, existence of a decoupled bosonic degree of freedom, and relations between the moments of the
trapping potential energy and the moments of the total energy.
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I. INTRODUCTION

Strongly interacting degenerate Fermi gases with two spin
components are studied in present experiments with ultracold
atoms �1�: by tuning the interaction strength between the
atoms of different spin states via a Feshbach resonance, one
can even reach the so-called unitary limit �2� where the in-
teraction strength in the s-wave channel reaches the maximal
amplitude allowed by quantum mechanics in a gas. More
precisely, this means that the s-wave scattering amplitude
between two particles reaches the value

fk = −
1

ik
�1�

for the relative momenta k that are relevant in the gas, in
particular for k of the order of the Fermi momentum kF of the
particles. This implies that the s-wave scattering length a is
set to infinity �which is done in practice by tuning an external
magnetic field�. This also implies that k�re��1, where re is
the effective range of the interaction potential, a condition
well satisfied in present experiments on broad Feshbach
resonances.

The maximally interacting gas defined by these conditions
is called the unitary gas �2�. It has universal properties since
all the details of the interaction have dropped out of the
problem. Theoretically, for spin-1 /2 fermions with equal
populations in the two spin states, equilibrium properties
have been calculated in the thermodynamical limit in the
spatially homogeneous case using Monte Carlo methods; at
finite temperature �3–5�, and at zero temperature with a fixed
node approximation �6,7� or with a quantum Monte Carlo
technique �8�. In practice, the unitary gases produced experi-
mentally are stored in essentially harmonic traps, which
raises the question of the effect of such an external potential.
In this paper, we consider a specific aspect of this question:
restricting to perfectly isotropic harmonic traps, but with no
constraint on the relative spin populations, we show that the
unitary quantum gas admits interesting symmetry properties
that have measurable consequences on its spectrum and on
the many-body wave functions. These properties imply that
there is a mapping between the N-body eigenfunctions in a
trap and the zero-energy N-body eigenfunctions in free
space; the N-body problem is separable in hyperspherical
coordinates; and there exist relations between the moments

of the trapping potential energy and those of the total energy
at thermal equilibrium.

A unitary Bose gas was not produced yet. This is related
to the Efimov effect �9�: when three bosons interact with a
short-range potential of infinite scattering length, an effective
three-body attraction takes place, leading in free space to the
existence of weakly bound trimers. This effective attraction
generates high values of k so that the unitarity condition Eq.
�1� is violated. It also gives a short lifetime to the gas by
activating three-body losses due to the formation of deeply
bound molecules �10–12�. In an isotropic harmonic trap, for
three bosons, there exist Efimovian states �13,14�, but there
also exist eigenstates not experiencing the Efimov effect
�13,15�. These last states are universal �in the sense that they
depend only on �, the mass m, and the oscillation frequency
� of an atom in the trap� and they are predicted to be long-
lived �15�. The results of the present paper apply to all uni-
versal states, fermionic or bosonic, but do not apply to the
Efimovian states. For spin-1 /2 fermions, all states are ex-
pected to be universal �1–8,15,16�.

II. OUR MODEL FOR THE UNITARY GAS

The physical system considered in this paper is a set of N
particles of equal mass m �an extension to different masses is
given in Appendix A�. The particles are of arbitrary spin and
follow arbitrary statistics; the Hamiltonian is supposed to be
spin-independent so that the N-body wave function � that we
shall consider corresponds to a given spin configuration �17�.
The particles are trapped by the same isotropic harmonic
potential and have a common oscillation frequency �. We
collect all the positions r�i of the particles in a single 3N
component vector:

X� � �r�1, . . . ,r�N� . �2�

Its norm

X = �X� � =�	
i=1

N

ri
2 �3�

is called the hyperradius. We will also use the unit vector

n� � X� /X �4�

�which may be parametrized by 3N−1 hyperangles�. The co-
ordinates �X ,n�� are called hyperspherical coordinates �18�.
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The total trapping potential energy simply writes

Htrap =
1

2
m�2X2. �5�

The interaction between the particles is assumed to be at
the unitary limit defined in Eq. �1�; one can then replace the
interaction by contact conditions on the N-body wave func-
tion �this is a well established procedure, see, e.g., �16,19,20�
and references therein�: when the distance rij = �r� j −r�i� be-
tween particles i and j tends to zero, there exists a function A
such that

��X� � =
rij→0

A�R� ij,
r�k:k � i, j��
rij

+ O�rij� , �6�

where R� ij = �r�i+r� j� /2 is the fixed center-of-mass position of
particles i and j, and 
r�k :k� i , j� are the positions of the
other particles. In these contact conditions it is assumed that

R� ij differs from all the r�k’s, k� i , j, and that none of these r�k’s
coincide.

When none of the particle positions coincide, the station-
ary wave function � solves Schrödinger’s equation, H�
=E�, with the Hamiltonian

H = −
�2

2m
�X� +

1

2
m�2X2. �7�

At first sight, the eigenvalue problem H�=E� is straightfor-
ward, since H takes the same expression as the Hamiltonian
of a noninteracting gas. However, the mathematical difficulty
and the physical effect of the interactions are contained in the
contact conditions Eq. �6�. Technically, this means that the
domain of our Hamiltonian differs from the one of the ideal
gas problem.

This model is expected to be exact for universal states in
the limit of a zero range of the interaction potential �19�. To
be more explicit, let us consider equal mass fermions of spin
1/2, interacting via a separable potential, in continuous
space �14� or in a Hubbard-type lattice model �3–5,21�, with
an infinite scattering length. It is then believed that in the
limit of a vanishing range of the interaction all the eigenen-
ergies and eigenvectors converge to a well-defined limit, in-
dependent of the specific details of the model �hence the
concept of universality�, and that the values of the limits are
given by the solutions of the above zero-range model. In this
frame, it is natural to assume that the zero-range model de-
fines a Hermitian Hamiltonian problem �22�, a fact that may
be checked explicitly for N=3 from the analytical solution
�15�.

III. SCALING PROPERTIES OF THE TRAPPED UNITARY
GAS

A. What is scale invariance?

A fundamental property of the contact conditions Eq. �6�
is their invariance by a rescaling of the spatial coordinates.
More precisely, we define a rescaled wave function �� by

���X� � � ��X� /�� , �8�

where ��0 is the scaling factor. Then, if � obeys the contact
conditions, so does �� for any �. Note that this property
holds only because the scattering length is infinite �for a
finite value of a, 1 /rij in Eq. �6� would be replaced by
1/rij −1/a, which breaks scale invariance�. Since we are in-
terested in universal states only, we assume that the domain
of the Hamiltonian is also invariant by a spatial rescaling.

In free space �that is for �=0�, this scale invariance im-
plies the following property: if � is an eigenstate of energy
E, then �� is an eigenstate of energy E /�2 for any � �23�.
This implies the absence of bound states in free space: oth-
erwise the scaling transform would generate a continuum of
states which are square integrable �after elimination of the
center-of-mass variables�, and this is forbidden for a Hermit-
ian problem �24�.

When E=0, one finds �see Appendix B� that the free
space eigenstates can be assumed to be scale-invariant, i.e.,
there exists an exponent � such that

���X� � = �−���X� � . �9�

Taking the derivative of this relation with respect to � in �
=1, this shows that � is an eigenstate of the dilatation opera-
tor,

D̂ � X� · �X� , �10�

with the eigenvalue �. This result is interesting for Sec. IV.
The presence of a harmonic trap introduces the harmonic

oscillator length scale aho=�� /m�, so that the eigenstates
cannot be scale-invariant as in Eq. �9�. However, if � obeys
the contact condition, so do the ��’s: as we shall see, this
allows us to identify general properties of the eigenstates in
the trap.

B. Scaling solution in a time dependent trap

We now assume that the curvature of the isotropic trap,
while keeping a fixed value for all times t	0, has an arbi-
trary time dependence at positive times. We call ��t� the
resulting time-dependent oscillation frequency of an atom in
the trap.

Let us assume that, at t	0, the system is in a stationary
state of energy E. Then at positive times the wave function of
the system will be deduced from the t=0 wave function by
the combination of gauge and scaling transform �25�:

��X� ,t� =
e−iE
�t�/�

��t�3N/2 eimX2�̇�t�/2���t��„X� /��t�,0… , �11�

where the time-dependent scaling parameter obeys the
Newton-like equation

�̈ =
�2�0�

�3 − �2�t�� �12�

with the initial conditions ��0�=1, �̇�0�=0. We also intro-
duced an effective time 
 given by
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�t� = �
0

t dt�

�2�t��
. �13�

This result may be extended to an arbitrary initial state as
follows:

��X� ,t� =
1

��t�3N/2eimX2�̇�t�/2���t��̃„X� /��t�,
�t�… , �14�

where �̃ evolves with the t�0 Hamiltonian �i.e., in the un-
perturbed trap with an oscillation frequency ��0��.

As shown by Rosch and Pitaevskii �26�, the existence of
such a scaling and gauge time-dependent solution is related
to a SO�2,1� hidden symmetry of the problem. This we
rederive in the two next subsections.

C. Existence of an undamped breathing mode

We consider the following gedanken experiment: one per-
turbs the gas in an infinitesimal way by modifying the trap
frequency in a time interval 0� t� tf. After the excitation
period �t� tf�, the trap frequency assumes its initial value
��0�. The scaling parameter then slightly deviates from
unity, ��t�=1+���t� with �����1. Linearizing the equation
of motion Eq. �12� in ��, one finds that �� oscillates as

���t� = 
e−2i�t + 
*e2i�t + O�
2� , �15�

where we set �=��0� to simplify the notation. The gedanken
experiment has therefore excited an undamped breathing
mode of frequency 2� �26�.

D. Raising and lowering operators, and SO(2,1) hidden
symmetry

We now interpret the above undamped oscillation in terms
of a property of the N-body spectrum of the system. Expand-
ing Eq. �11� to first order in ���t� leads to

��X� ,t� = ei��e−iEt/� − 
e−i�E+2���t/�L+

+ 
*e−i�E−2���t/�L−���X� ,0� + O�
2� �16�

�the phase � depends on the details of the excitation proce-
dure�. This reveals that the initial stationary state E was
coupled by the excitation procedure to other stationary states
of energies E±2��. Remarkably, the wave function of these
other states can be obtained from the initial one by the action
of raising and lowering operators:

L+ = +
3N

2
+ D̂ +

H

��
− m�X2/� , �17�

L− = −
3N

2
− D̂ +

H

��
− m�X2/� . �18�

Repeated action of L+ and L− will thus generate a ladder of
eigenstates with regular energy spacing 2��.

The hidden SO�2,1� symmetry of the problem then results
from the fact that H, L+, and L− have commutation relations
equal �up to numerical factors� to the ones of the Lie algebra

of the SO�2,1� group, as was checked in �26�:

�H,L+� = 2��L+, �19�

�H,L−� = − 2��L−, �20�

�L+,L−� = − 4
H

��
. �21�

Note that these commutation relations by themselves do
not imply the existence of the hidden SO�2,1� symmetry.
One has also to check that the operators L+ and L− preserve
the domain of the Hamiltonian, that is, here the contact con-
ditions Eq. �6� defining the unitary gas. The contact condi-
tions are indeed preserved here �27�.

From the general theory of Lie algebras, one may form
the so-called Casimir operator which commutes with all the
elements of the algebra, that is, with H and L±; it is given by
�26�

Ĉ = H2 −
1

2
����2�L+L− + L−L+� . �22�

Consider a ladder of eigenstates; as we will show later, the
Hermiticity of H implies that the energy of a universal state
is bounded from below, see Eq. �31�, so that this ladder has a
ground energy step, of value Eg. Within this ladder, the Ca-
simir invariant assumes a constant value,

C = Eg�Eg − 2��� . �23�

This allows us to express in an elegant way the operator
Hg giving the ground-state energy of each ladder �28�:

Hg = �� + �Ĉ + ����2�1/2. �24�

E. Existence of a bosonic degree of freedom

A physical interpretation of the SO�2,1� hidden symmetry
is the following. Using the notations of the previous subsec-
tion, we define the operators b and b† by

b = 
 ��

2�H + Hg��1/2

L−, �25�

b† = L+
 ��

2�H + Hg��1/2

. �26�

Using the commutation relations of the SO�2,1� algebra and
the expression of the Casimir operator, one may check that b
and b† obey a bosonic commutation relation:

�b,b†� = 1 �27�

so that they may be interpreted as annihilation and creation
operators for a bosonic degree of freedom of the unitary gas.
Furthermore, the N-body Hamiltonian may be split as a sum
of two commuting terms:

H = Hg + 2��b†b . �28�

Excitation of this bosonic degree of freedom corresponds to
an excitation of the breathing mode identified in Sec. III C.
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In practice, this excitation may be due to an external change
of the curvature of the trap �as in Sec. III C�, but may also
have a more intrinsic, thermal origin, as considered in Sec. V.

F. Virial theorem

Another application of the existence of raising and lower-
ing operators is the virial theorem for the unitary gas. For a
given eigenstate of H of energy E and real wave function �,
L− ��� is either zero �if � is the ground step of a ladder� or an
eigenstate of H with a different energy. Assuming that H is
Hermitian, this implies ���L−���=0, and leads to �29,30�

���H��� = 2���Htrap��� . �29�

At thermodynamical equilibrium, one thus has

�H� = 2�Htrap� , �30�

that is, the total energy is twice the mean trapping potential
energy. A direct consequence of this virial theorem is that the
eigenenergy of a universal state is positive:

E � 0 �31�

since the trapping potential energy is positive. Slightly better
lower bounds are derived in Appendix C, see Eqs. �C7� and
�C16� for N�2.

This virial theorem is actually also valid for an aniso-
tropic harmonic trap �this result is due to Frédéric Chevy�.
One uses the Ritz theorem, stating that an eigenstate of a
Hermitian Hamiltonian is a stationary point of the mean en-
ergy. As a consequence, the function of �

E��� �
����H����
�������

= �−2���H − Htrap��� + �2���Htrap���

�32�

satisfies �dE /d����=1�=0, which leads to the virial theorem.
This relies simply on the scaling properties of the harmonic
potential, irrespective of its isotropy.

The proportionality between �H� and �Htrap� resulting
from the virial theorem was checked experimentally �31�.

IV. MAPPING TO ZERO-ENERGY FREE-SPACE
EIGENSTATES

Usually, the presence of a harmonic trap in the experiment
makes the theoretical analysis more difficult than in homo-
geneous systems. Here we show that, remarkably, the case of
an isotropic trap for the unitary gas can be mapped exactly to
the zero-energy free-space problem �which remains, of
course, an unsolved many-body problem� �32�.

More precisely, all the universal N-body eigenstates can
be put in the unnormalized form:

���,q� = �L+�qe−X̂2/2aho
2

���
0� �33�

and have an energy

E�,q = �� + 2q + 3N/2��� , �34�

where q is a non-negative integer, L+ is the raising operator
defined in Eq. �17�, and ��

0 is a zero-energy eigenstate of the
free-space problem which is scale-invariant:

��
0�X� /�� = ��

0�X� �/�� �35�

for all real scaling parameter �, � being the real scaling
exponent �33�.

We also show that the reciprocal is true, that is each zero-
energy free-space eigenstate which is scale-invariant with a
real exponent � generates a semi-infinite ladder of eigen-
states in the trap, according to Eqs. �33� and �34�.

We note that Eq. �34� generalizes to excited states a rela-
tion obtained in �34� for the many-body ground state.

A. From a trap eigenstate to a free-space eigenstate

We start with an arbitrary eigenstate in the trap. By re-
peated action of L− on this eigenstate, we produce a sequence
of eigenstates of decreasing energies. According to the virial
theorem Eq. �29�, the total energy of a universal state is
positive, see Eq. �31�. This means that the sequence pro-
duced above terminates. We call � the last nonzero wave
function of the sequence, an eigenstate of H with energy E
that satisfies L− ���=0. To integrate this equation, we use the
hyperspherical coordinates �X ,n�� defined in Eqs. �3� and �4�.
Noting that the dilatation operator is simply D̂=X�X in hy-
perspherical coordinates, we obtain

��X� � = e−X2/2aho
2

XE/����−3N/2f�n�� . �36�

Then one defines

�0�X� � � eX2/2aho
2

��X� � . �37�

One checks that this wave function obeys the contact condi-
tions Eq. �6�, since X2 varies quadratically with rij at fixed Rij
and 
r�k ,k� i , j�. �0 is then found to be a zero-energy eigen-
state in free space, by direct insertion into Schrödinger’s
equation. But one has also from Eqs. �36� and �37�

�0�X� � = XE/����−3N/2f�n�� , �38�

so that �0 is scale-invariant, with a real exponent � related to
the energy E by Eq. �34�. This demonstrates Eqs. �33� and
�34� for q=0, that is, for the ground step of each ladder.

One just has to apply a repeated action of the raising
operator L+ on the ground step wave function to generate a
semi-infinite ladder of eigenstates: this corresponds to q�0
in Eqs. �33� and �34�. Note that the repeated action of L+
cannot terminate since L+ ���=0 for a nonzero � implies that
� is not square-integrable.

B. From a free-space eigenstate to a trap eigenstate

The reciprocal of the previous subsection is also true:
starting from an arbitrary zero-energy free-space eigenstate
that is scale-invariant, one multiplies it by the Gaussian fac-
tor exp�−X2 /2aho

2 �, and one checks that the resulting wave
function is an eigenstate of the Hamiltonian of the trapped
system, obeying the contact conditions �35�. Applying L+
then generates the other trap eigenstates of a ladder.

C. Separability in hyperspherical coordinates

Let us reformulate the previous mapping using the hyper-
spherical coordinates �X ,n�� defined in Eqs. �3� and �4�. A
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free-space scale-invariant zero-energy eigenstate takes the

form �0�X� �=X�f��n��, and the universal eigenstates in the trap
have an unnormalized wave function

��,q�X� � = X�e−X2/2aho
2

Lq
��−1+3N/2��X2/aho

2 �f��n�� , �39�

where Lq
�·� is the generalized Laguerre polynomial of degree

q. This is obtained from the repeated action of L+ in Eq. �33�
and from the recurrence relation obeyed by the Laguerre
polynomials:

�q + 1�Lq+1
�s� �u� − �2q + s + 1 − u�Lq

�s��u� + �q + s�Lq−1
�s� �u� = 0.

�40�

We have thus separated out the hyperradius X and the hyper-
angles n� . The hyperangular wave functions f��n�� and the
exponents � are not known for N�4. However, we have
obtained the hyperradial wave functions, i.e., the X depen-
dent part of the many-body wave function. A more refined
version of these separability results can be obtained by first
separating out the center of mass �see Appendix C�, but this
is not useful for the next section.

V. MOMENTS OF THE TRAPPING POTENTIAL ENERGY

A. Exact relations

As an application of the above results, we now obtain the
following exact relations on the statistical properties of the
trapping potential energy, relating its moments to the mo-
ments of the full energy, when the gas is at thermal equilib-
rium �36�. For the definition of the trapping potential energy,
see Eq. �5�.

At zero temperature, its moments as a function of the
ground-state energy E0 are given by

��Htrap�n� = E0�E0 + ��� ¯ �E0 + �n − 1����/2n. �41�

At finite temperature T, the first moment is given by the
virial theorem

�Htrap� = �H�/2 �42�

and the second moment by

��Htrap�2� = 
�H2� + �H��� cotanh� ��

kBT
��/4. �43�

B. Derivation from the separability

The zero temperature result Eq. �41� follows directly from
Eq. �39�: for q=0, the Laguerre polynomial is constant so
that the probability distribution of X is a power law times a
Gaussian; the moments are then given by integrals that can
be expressed in terms of the � function.

For finite T, the idea of our derivation is the following:
the hyperradial part of the N-body wave function ��,q is
known from Eq. �39�; and thus the probability distribution of
X in the state ���,q� is known, in terms of � ,q. While the
thermal distribution of q is simple, the one of � is not, but �
is related to the total energy by Eq. �34�.

We will need the intermediate quantities

Bn,p�q,s� �
�

0

�

du e−uus+nLq+p
�s� �u�Lq

�s��u�

�
0

�

du e−uus�Lq
�s��u��2

, �44�

where s�0; n, q are non-negative integers; and p is an inte-
ger of arbitrary sign. These quantities can be calculated with
the n=0 “initial” condition B0,p=�0,p and the recurrence re-
lation

Bn+1,p = − �q + p + 1�Bn,p+1 + �2�q + p� + s + 1�Bn,p

− �q + p + s�Bn,p−1 �45�

which follows from the recurrence relation Eq. �40� on La-
guerre polynomials.

This allows us to calculate the moments of the trapping
energy in the step q of a ladder of exponent �, using Eq. �39�:

���,q�X2n���,q�
���,q���,q�

= Bn,0�q,s�aho
2n. �46�

Here we have set

s = � − 1 + 3N/2 �47�

in accordance with Eq. �39�. We shall need the values of Bn,0
for n	2:

B1,0�q,s� = s + 2q + 1, �48�

B2,0�q,s� = s2 + s�6q + 3� + 6q2 + 6q + 2. �49�

Assuming thermal equilibrium in the canonical ensemble,
the thermal average can be performed over the statistically
independent variables q and s. The moments of q are easy to
calculate, because of the ladder structure with equidistant
steps:

�qn� =

	
q=0

+�

qne−2q��/kBT

	
q=0

+�

e−2q��/kBT

. �50�

The moments of s are not known exactly but they can be
eliminated in terms of the moments of the total energy E and
of the moments of q using the relation E= �s+1+2q���.
This leads to the exact relations �42� and �43�. This method
in principle allows us to calculate relations for moments of
arbitrary given order, but the algebra becomes cumbersome.

C. Derivation from the existence of a bosonic degree of
freedom

The relations Eqs. �42� and �43� may also be derived in a
purely algebraic way by using the bosonic creation and an-
nihilation operators of Sec. III E. Taking the sum of Eqs. �17�
and �18� one expresses Htrap in terms of L± and H:
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Htrap =
1

2
H −

��

4
�L+ + L−� . �51�

Then from Eqs. �25� and �26� and Eq. �28� one can express
L± and H as functions of the ladder ground energy operator
Hg and b ,b†. We finally obtain

Htrap =
1

2
��A†A with A =�Hg

��
+ b†b − b . �52�

In the calculation of the thermal averages �Htrap� and
��Htrap�2� it remains to take the expectation value over Hg and
the bosonic degree of freedom, that may be considered as
independent variables in the sense that, e.g.,

�Hgb†b� = �Hg��b†b� . �53�

The calculation is simplified by the observation that the
expectation value of the obtained terms with odd powers of b
or b† is exactly zero. One can use Wick’s theorem to calcu-
late the expectation value of �b†b�2. One also eliminates the
expectation value of Hg using Eq. �28�. One obtains Eq. �42�
for the first moment. For the second moment

4��Htrap�2� = �H2� + �H����2�b†b� + 1� . �54�

The Bose formula giving �b†b� finally leads to Eq. �43�. This
nicely shows how the last term of Eq. �43� originates from
the thermal fluctuations of the bosonic degree of freedom,
that is, of the breathing mode of the unitary gas.

VI. CONCLUSION

In this paper we have derived several exact properties of
the unitary gas in an isotropic harmonic trap. The spectrum is
formed of ladders; the steps of a ladder are spaced by an
energy 2��, and linked by raising and lowering operators.
This property may be interpreted in terms of a hidden
SO�2,1� symmetry �26� or in terms of the existence of a
bosonic degree of freedom. This allows us to map the
trapped problem to the free-space one. A lower bound on the
energy of the universal states was derived, showing that the
ladders are actually semi-infinite ladders. A related property
is that the problem is separable in hyperspherical coordi-
nates. The hyperradial part of the stationary state wave func-
tions is thus known. This allows us to derive exact relations
between the moments of the trapping potential energy and
the moments of the total energy. The relation between the
first moments is the virial theorem; the relation between the
second moments may be useful for thermometry, as will be
studied elsewhere.
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APPENDIX A: EXTENSION TO PARTICLES WITH
DIFFERENT MASSES

All our results remain valid if the particles have different
masses m1 , . . . ,mN; provided that the oscillation frequency �
remains the same for all the particles. We define a mean
mass:

m �
m1 + ¯ + mN

N
. �A1�

The definition of X� and X, given by Eqs. �2� and �3� for equal
masses, has to be generalized to

X� � ��m1

m
r�1, . . . ,�mN

m
r�N� , �A2�

X � �X� � =�	
i=1

N
mi

m
ri

2. �A3�

With this new definition of X, the trapping potential energy is
still given by Eq. �5�.

In the definition of the zero-range model, the contact con-
ditions Eq. �6� remain unchanged, except that the fixed

center-of-mass position of particles i and j is now R� ij
��mir�i+mjr� j� / �mi+mj�.

In Appendix C, the center-of-mass position has to be re-
defined as

C� =
�m1r�1 + ¯ + mNrN� �

�m1 + ¯ + mN�
�A4�

and the internal hyperangular coordinates become

R =�	
i=1

N
mi

m
�r�i − C� �2, �A5�

�� = ��m1

m

r�1 − C�

R
, . . . ,�mN

m

r�N − C�

R
� . �A6�

With these modified definitions, all the results of this paper
remain valid.

APPENDIX B: SCALE INVARIANCE OF THE ZERO-
ENERGY FREE-SPACE EIGENSTATES

In this Appendix, we show that the zero-energy free-space
eigenstates of the Hamiltonian may be chosen as being scale-

invariant, that is as, eigenstates of the dilatation operator D̂,
under conditions ensuring the Hermiticity of the Hamil-
tonian.

Consider the zero-energy eigensubspace of the free-space

Hamiltonian. This subspace is stable under the action of D̂. If

one assumes that D̂ is diagonalizable within this subspace,
the corresponding eigenvectors form a complete family of

scale invariant zero-energy states. If D̂ is not diagonalizable,

we introduce the Jordan normal form of D̂.
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Let us start with the case of a Jordan normal form of
dimension 2, written as

Mat�D̂� = �� 1

0 �
� , �B1�

in the sub-basis �e1� , �e2�. The ket �e1� is an eigenstate of D̂
with the eigenvalue �. We assume that the center-of-mass
motion is at rest, with no loss of generality since it is sepa-
rable in free space. Using the internal hyperspherical coordi-

nates �R ,�� � defined in Appendix C, we find that D̂ reduces
to the operator R�R. Integrating R�Re1=�e1 leads to

e1�X� � = R��1��� � . �B2�

The ket �e2� is not an eigenstate of D̂ but obeys R�Re2=�e2
+e1, which, after integration, gives

e2�X� � = R� ln R�1��� � + R��2��� � . �B3�

One can assume that �1 and �2 are orthogonal on the unit
sphere �by redefining e2 and �2�. It remains to use the fact
that both e1 and e2 are zero-energy free-space eigenstates.
From the form of the Laplacian in hyperspherical coordi-
nates in d=3N−3 dimensions, see Eq. �C5�, the condition
�X�e1=0 leads to

T�� �1 = − ��� + d − 2��1. �B4�

The condition �X�e2=0 then gives T�� �2=−���+d−2��2

− �2�+d−2��1, which leads to the constraint �37�

� = 1 − d/2. �B5�

At this stage, for this “magic” value of �, it seems that there
may exist non-scale-invariant zero-energy eigenstates.

To proceed further, one has to check for the Hermiticity of
the free-space Hamiltonian. This requires a reasoning at ar-
bitrary, nonzero energy. We use the fact that the following
wave function obeys the contact conditions:

��X� � = u�R�R��1�n�� , �B6�

where u�R� is a function with no singularity, except maybe in
R=0 �38�. Using again the expression of the Laplacian in
internal hyperspherical coordinates, one finds that � is an
eigenstate of the free-space Hamiltonian if u�R� is an eigen-
state of

ĥ = −
�2

2m
��R

2 + R−1�R� . �B7�

One checks that Hermiticity of the free-space Hamiltonian

for the wave function � implies Hermiticity of ĥ for the

wave function u�R�. Note that ĥ is simply the free-space
Hamiltonian for 2D isotropic wave functions. It is Hermitian
over the domain of wave functions u�R� with a noninfinite
limit in R=0. Including the ket �e2� in the domain of the
N-body free-space Hamiltonian amounts to allowing for
wave functions u�R� that diverge as ln R for R→0: this

breaks the Hermiticity of ĥ, since this leads to a �negative

energy� continuum of square integrable eigenstates of ĥ,

u��R� = K0��R� �B8�

with eigenenergy −�2�2 /2m, for all ��0. Here K0�x� is a
modified Bessel function of the second kind. Hermiticity
may be restored by a filtering of this continuum �40�, adding
the extra contact condition u�R�=ln �R / l�+o�1� for R→0,
but the introduction of the fixed length l breaks the univer-
sality of the problem and is beyond the scope of this paper
�see �43� for a more detailed discussion�. We thus exclude e2
from the domain of the Hamiltonian.

This discussion may be extended to Jordan forms of
higher order. For example, a Jordan form of dimension 3

generates a ket �e3� such that �D̂−��e3=e2. But e2 must be
excluded from the domain of the Hamiltonian by the above

reasoning. Since we want the domain to be stable under D̂, e3
must be excluded as well.

As a conclusion, to have a free-space N-body Hamiltonian
that is both Hermitian and universal �i.e., with a scale-
invariant domain� forces us to reject the non-scale-invariant
zero-energy eigenstates, of the form Eq. �B3�.

APPENDIX C: SEPARABILITY IN INTERNAL
HYPERSPHERICAL COORDINATES

We develop here a refined version of the separability in-
troduced in Sec. IV C. First, we separate out the center-of-
mass coordinates. Then we obtain the separability in hyper-
spherical coordinates relative to the internal variables of the
gas, which allows us to derive an effective repulsive N−1
force and to get a lower bound on the energy slightly better
than the one E�0 ensuing from the virial theorem.

Let us introduce the following set of coordinates:

C� = 	
i=1

N

r�i/N �C1�

is the position of the center of mass �CM�;

R =�	
i=1

N

�r�i − C� �2 �C2�

is the internal hyperradius; and

�� = � r�1 − C�

R
, . . . ,

r�N − C�

R
� �C3�

is a set of dimensionless internal coordinates that can be
parametrized by 3N−4 internal hyperangles. In these coordi-
nates, the Hamiltonian decouples as H=HCM +Hint with

HCM = −
�2

2Nm
�C� +

1

2
Nm�2C2, �C4�

Hint = −
�2

2m

�R

2 +
3N − 4

R
�R +

1

R2T��� +
1

2
m�2R2, �C5�

where T�� is the Laplacian on the unit sphere of dimension
3N−4. The contact conditions do not break the separability
of the center of mass valid in a harmonic trap, so that the
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stationary state wave function may be taken of the form

��X� � = �CM�C� ��int�R,�� � . �C6�

At this point, this separability of the center of mass, com-
bined with the virial theorem of Eq. �29�, already gives an
improved lower bound on the energy of a universal state
�41�:

E �
3

2
�� . �C7�

To proceed further, one can show �42� that there is sepa-
rability in internal hyperspherical coordinates:

�int�R,�� � = ��R����� � . �C8�

This form may be injected into the internal Schrödinger
equation

Hint�int = Eint�int. �C9�

One finds that ���� � is an eigenstate of T�� with an eigen-
value that we call −�. Note that the contact conditions Eq.

�6� put a constraint on ���� � only �38�. The equation for
��R� reads

−
�2

2m
��R

2 +
3N − 4

R
�R�� + � �2�

2mR2 +
1

2
m�2R2�� = Eint� .

�C10�

A useful transformation of this equation is obtained by the
change of variable

��R� � R�5−3N�/2F�R� , �C11�

resulting in

−
�2

2m
��R

2 +
1

R
�R�F + � �2sR

2

2mR2 +
1

2
m�2R2�F = EintF�R� ,

�C12�

where sR is such that

sR
2 = � + �3N − 5

2
�2

. �C13�

Formally, the equation for F is Schrödinger’s equation for a
particle of zero angular momentum moving in two dimen-
sions in a harmonic potential plus a potential �sR

2 /R2.
For sR

2 �0, one can choose sR�0. Assuming that there is
no N-body resonance, F�R� is bounded for R→0 �43�. The
eigenfunctions of Eq. �C12� can then be expressed in terms
of the generalized Laguerre polynomials:

F�R� = RsRLq
sR�R2/aho

2 �e−R2/2aho
2

�C14�

with the spectrum

Eint = �sR + 1 + 2q��� . �C15�

This gives a lower bound on the energy of any universal
N-body eigenstate:

E �
5

2
�� �C16�

for N�2 and in the absence of a N-body resonance.
For a complex sR

2 , the effective two-dimensional �2D�
Hamiltonian is not Hermitian and this case has to be dis-
carded. For sR

2 �0, Whittaker functions are square integrable
solutions of the effective 2D problem for all values Eint so
that, again, the problem is not Hermitian. One may add extra
boundary conditions to filter out an orthonormal discrete
subset �as was done for N=3 bosons �9,13,15,45�� but this
breaks the scaling invariance of the domain and generates
nonuniversal states beyond the scope of the present paper.

To make the link with the approach of Sec. IV, we note
that

F�R� = RsR �C17�

is a solution of the effective 2D problem �C12� for �=0,
Eint=0. Thus a solution of the internal problem Eq. �C9� at
zero energy in free space is given by

�int�R,�� = R�5−3N�/2+sR���� � . �C18�

Multiplying this expression by ClYl
m�C� /C�, one recovers the

��
0’s of Sec. IV, with

� =
5 − 3N

2
+ sR + l . �C19�
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