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The dynamical evolution of a Bose-Einstein condensate trapped in a one-dimensional lattice potential is
investigated theoretically in the framework of the Bose-Hubbard model. The emphasis is set on the far-from-
equilibrium evolution in a case where the gas is strongly interacting. This is realized by an appropriate choice
of the parameters in the Hamiltonian, and by starting with an initial state, where one lattice well contains a
Bose-Einstein condensate while all other wells are empty. Oscillations of the condensate as well as noncon-
densate fractions of the gas between the different sites of the lattice are found to be damped as a consequence
of the collisional interactions between the atoms. Functional integral techniques involving self-consistently
determined mean fields as well as two-point correlation functions are used to derive the two-particle-
irreducible (2PI) effective action. The action is expanded in inverse powers of the number of field components
N, and the dynamic equations are derived from it to next-to-leading order in this expansion. This approach
reaches considerably beyond the Hartree-Fock-Bogoliubov mean-field theory, and its results are compared to
the exact quantum dynamics obtained by Rey et al. [Phys. Rev. A 69, 033610 (2004)] for small atom numbers.
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I. INTRODUCTION

The dynamical evolution of ultracold atomic quantum
gases driven far out of equilibrium are a subject of intensely
growing interest. Precision measurement techniques for
many-body observables have been and are being developed
with vigorous effort. This technology has triggered a strong
demand for progress in theoretically describing nonequilib-
rium quantum many-body dynamics of strongly interacting
systems beyond mean-field approximations. Recent high-
lights of this development include, e.g., the variation and
enhancement of the atomic interactions on the basis of Fes-
hbach scattering resonances [ 1-5] as well as the achievement
of strongly correlated regimes within optical lattices [6,7].
With these techniques, e.g., a Bose-Einstein condensate can
suddenly be brought out of equilibrium, so that mean-field
approximations such as chosen in Gross-Pitaevskii and
Hartree-Fock-Bogoliubov theory no longer suffice to de-
scribe its time-evolution.

Mean-field approximations are valid as long as both clas-
sical statistical and quantum fluctuations are small. This is, in
general, only the case in situations close to equilibrium. But
even close to equilibrium, fluctuations can play an important
role on long time scales. For example, the long-time evolu-
tion towards the Bose-Einstein equilibrium state relies on the
fluctuations appearing beyond mean-field order in a quantum
many-body description.

Moreover, kinetic descriptions beyond mean-field order
which have been studied intensely in the past (in the context
of cold atomic gases, cf., e.g., Refs. [8—17] and references
therein), usually neglect the initial dynamics directly after
the change in the boundary conditions which drive the sys-
tem out of equilibrium. This shortcoming is cured in dynami-
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cal approaches in which coupled equations of motion for the
correlation functions are derived to describe the time evolu-
tion starting from a specific initial state. The buildup of cor-
relations beyond mean-field order, in these equations, is usu-
ally taken into account by means of non-Markovian
integrations over the evolution history of the correlation
functions, see, e.g., [18-23].

In this paper we consider the time evolution of a Bose-
Einstein condensate trapped in a one-dimensional lattice po-
tential in the framework of the Bose-Hubbard model. The
emphasis is set on the far-from-equilibrium evolution in a
case where the gas is strongly interacting. This is realized by
an appropriate choice of the parameters in the Hamiltonian.
In the nonequilibrium initial state one lattice well contains a
Bose-Einstein condensate while all other wells are empty. At
NIST, such a system has recently been realized in experiment
[24]. Theoretically, it has been considered, e.g., in Refs.
[22,25,26], using approximations beyond mean-field order.

We find oscillations of the condensed as well as the non-
condensed fractions of the gas between the different sites of
the lattice. These oscillations are damped as a consequence
of the collisional interactions between the atoms. Our theo-
retical approach is based on functional integral techniques
involving self-consistently determined mean fields as well as
two-point correlation functions. Specifically, the dynamic
equations are derived from the two-particle-irreducible (2PI)
effective action [27-29]. Any approximations necessary in
practice are made at the level of this action before the dy-
namic equations are derived by functional differentiation.
This ensures crucial symmetries like total particle number
and energy to be automatically conserved. The 2PI effective
action has been used to compare various perturbative ap-
proximations with the exact result for the dynamics of a
strongly correlated one-dimensional lattice Bose gas [22].
The approach yields dynamic equations which constitute a
proper initial-value problem and therefore are in principle
valid over all times, including initial and long-term evolu-
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tion. In the Markovian limit, in which their validity is re-
stricted to certain intermediate times, the well-known kinetic
theory descriptions including the Gross-Pitaevskii and
Bogoliubov—de Gennes equations as well as Landau and Be-
liaev quasiparticle damping can be rederived from these dy-
namic equations [16,17].

In this paper we consider a nonperturbative approxima-
tion which reaches substantially beyond the Hartree-Fock-
Bogoliubov mean-field theory. This nonperturbative ap-
proach is based on a systematic expansion of the 2PI
effective action in powers of the inverse number of field
components N [19,30]. We point out that this 1/A expansion
of the 2PI effective action goes substantially beyond and is
not to be confused with the standard 1/N expansion of the
1PI effective action. For example, it can be used to calculate
critical exponents characterizing correlation functions in the
vicinity of a phase transition, even in the limit of vanishing
N [31]. The 2PI 1/N expansion has recently been used to
describe the dynamics of an ultracold atomic Bose gas far
from equilibrium [23]. We compare our results to the exact
quantum dynamics also obtained in Ref. [22] for small atom
numbers.

The 2PI 1/N expansion to next-to-leading order yields
dynamic equations which contain direct scattering, memory,
and “off-shell” effects. It allows one to describe far-from-
equilibrium dynamics as well as the late-time approach to
quantum thermal equilibrium. Recently, these methods have
allowed important progress in describing the dynamics of
strongly interacting relativistic systems far from thermal
equilibrium for bosonic [19,32-37] as well as fermionic de-
grees of freedom [38,39]. In Ref. [40], the predictions from
the 2PI approach for a classical gas were compared with
simulations of classical equations of motion, which showed
that the NLO 1/A approximation for this case gives very
good results already for A'=2.

Our paper is organized as follows: In Sec. II we recall the
functional description of the quantum many-body dynamics
and present the set of coupled dynamic equations for the
mean field and the two-point correlation functions. We dis-
cuss consequences of this distinction for the self-energies
which quantify the beyond-HFB contributions in the dy-
namic equations for the correlation functions. In Sec. III we
present numerical results for the nonequilibrium dynamics in
a one-dimensional lattice potential and compare these to the
results from corresponding exact calculations. Our conclu-
sions are drawn in Sec. IV.

II. THE 2PI EFFECTIVE ACTION APPROACH
TO THE DYNAMICS OF A LATTICE BOSE GAS

We study a nonrelativistic system characterized by the
Bose-Hubbard Lagrangian

£, = ST 03,0 =¥, (05,20
+ IV (W1 (1) + W, (D, (0]

W OV,0 - SO0 ()
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Here, ¥ is a complex-valued, i.e., two-component, field de-
fined in time ¢ and at site n of the one-dimensional lattice.
We use units where =1. J is the coupling which depends on
the hopping probability and therefore on the lattice depth, ¢;
denotes an external potential, and U a real-valued coupling
constant. Only local interactions, between atoms at one lat-
tice site, are taken into account.

A. Generating functional for correlation functions

The functional integral formulation of the quantum dy-
namics of a Bose-Einstein gas has been discussed exten-
sively in the literature. For details we refer to our recent
discussion [23] of the nonperturbative effective-action ap-
proach to far-from-equilibrium dynamics of an ultracold
Bose gas. To simplify our notation we will, in the following,
change to a representation of the field W in terms of its real
and imaginary parts, i.e.,

¢)l = \5 Re \If, q)z = \“‘E Im \P7 (2)

such that W= (®, +i®,)/+2. Furthermore, we include the lat-
tice index n into the argument of the field ®,(x), ie., x
=(t,n)=(xo,n).

The time evolution of quantum correlation functions can
be derived from a generating functional. This involves fields
®, obeying Bose commutation relations [(IAJ,»(I,)?),(IA)j(t, y) =
—0,,;8(x—y), where o, denotes the Pauli 2-matrix, as well as
the nonequilibrium normalized initial-state density matrix
pp(to):

Z1J.K;ppl = Tr{ﬁD(to)Tc exp if qsi(x)Ji(x)
x,C

+é f D, (0)K;5(x.y)D(y) ] 3)
xy,C

where [, = [(dx,Z,. Summation over double indices, e.g., i
=1,2, is implied. 7, denotes time ordering of the exponential
integral along the closed time path C which extends from the
initial time x,=0 to the largest relevant time in the functional
integral and back to xy=0, i.e., our short hand notation

means
T 0
f =de02 =<j dx0+f dx0>2. (4)
x,C C n 0 T n

Note that the closed-time contour can be seen as ensuring the
normalization of the generating functional Z. The terms lin-
ear in the external fields J; have been added to allow one to
generate correlation functions of order n by functional dif-
ferentiation:

8"Z1J.K; pp)

(Tedlo) - Bl = o

(5)

b
J=K=0

where the field indices have been suppressed. The fields K;;
are needed for the self-consistency condition of the two-
point correlation functions as described below.

The generating functional (3) can be written, for Gaussian
initial states, for which all correlation functions of order n
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=3 vanish at the initial time, as the functional integral (cf.,
e.g., [41])

Z[J,K]:ID(I) exp{i|:S[CD]+f D, (x)J(x)
x,C

= d>i<x>1<i,-<x,y)<1>j(y>} } ©
xy,C

Here,

st01= [ {%d)i(x)iz):,-l(x,y)cb,(y)
xy,C

—ﬁvac(x,y><I>f<x><1>i<x><1>j<x><1>j<x>} )

is the classical action depending on the fluctuating fields ®;.
The number of field components is N'=2, here. The delta
function is defined as & (x,y)=3,,0:(xo—yy), Wwith x
=(xg,n), y=(yy,m). The classical inverse propagator reads

iDi_jl (x,y) == idc(x,y) 03,450, — Hyp(x,y) 8c(xo = ¥o) 65
(®)

where
HlB(x’y) == J(5n+l,m + 5n,m+1) + Enénm (9)

is the one-body Hamiltonian. Note that the Gaussian initial
conditions have been absorbed into the current terms by re-
defining the fields J and K accordingly [41].

B. Effective action and dynamic equations

In most situations the correlation functions up to order n
=2 are of primary interest, i.e., the mean field ¢;(x)
=(®d,(x)) and the normal and anomalous one-body density
matrices, which, in the basis (2) relate to the diagonal (i
=j) and off-diagonal (i=3—j) matrix elements of the two-
point functions Gij(x,y)=<’T(;<f>i(x)<13_,~(y))c, here generalized
to unequal times x, # y, [42]. In Ref. [23] we have recalled
the essential aspects of the 2PI (2-particle-irreducible) effec-
tive action approach which allows one in a transparent way
to obtain equations of motion for these one- and two-point
Green’s functions within perturbative as well as nonpertur-
bative approximation schemes with respect to the interaction
constant U. We summarize the main results in the following.

Starting from the generating functional Z[J,K]
=exp{iW[J,K]}, Eq. (6), one derives, by double Legendre
transform of the generating functional W[J,K] of connected
Green’s functions, the 2PI effective action which is a func-
tional of the one- and two-point functions [27-29]:

I, G]=S[p]+ éTr{ln G '+ Ggl[qb]G} + I',[ ¢, G] + const.

(10)

Here,
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. &S[¢]
1 . — -ty
G0 D= 5 00,0

o 2U
= &¢(xo = yo)| iDy; (x,y) = W[d’i(x) ¢;(x)

+ d)k(-x) ¢k(x) 51]/2] 5nm) (1 1)

is the classical inverse propagator, with x=(xq,n), ¥
=(yg,m). I'[ $,G] describes the quantum system completely,
i.e., knowing it, one derives, by means of Hamilton’s prin-
ciple of stationary action,

5T[¢,G]_
S¢pi(x) o

the exact many-body time evolution equations for ¢ and G.

As originally discussed in Refs. [27-29] T',[ ¢, G] is rep-
resented as the sum of all closed two-particle irreducible
(2PI) diagrams involving only the field ¢, the full propagator
G, and bare vertices «U/N [43]. To solve the dynamic equa-
tions approximations are made on the level of the effective
action by truncating the diagrammatic expansion of
I',[¢,G]. An important advantage of this approach is that
crucial symmetries like total particle number, energy, mo-
mentum, angular momentum, etc., are automatically fulfilled
irrespective of the particular truncation, cf., e.g., Ref. [23]. In
the Appendix, we provide an explicit expression for the total
energy within the NLO 1/A approximation employed in this
work.

The equations of motion resulting from Egs. (12) are most
conveniently written in terms of the real-valued statistical
and spectral correlation functions,

MGl

Gy 12

) = 54D/, 8 0 (13

pi(x.y) = i[D,(x).D,()]).. (14)
respectively. These are related to G through

i
Gij(x’y) = Fij(X,y) - EPij(x’)’)Sgnc(xo =Yo), (15)

where sgn. is the sign function which evaluates to 1 for x
=y, and to —1 otherwise. In this representation, the time
ordering translates into time integration limits in the equa-
tions of motion:

2U
(‘ i(fz,ijﬁxo - WFU(X»X)) d’j(x) - fy,C <H1B(x»)’)
# T + Fkk<x,x>]ac<x,y>) 6,)

=f Odyifj(x,y;dE 0);(y), (16)

0
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ij(Z9y) )

f [-i0y i 0c(x,2)d, —Mik(x,Z)]<
wC 0 pi(2,y)

- f}m dz36(x,z; ¢)<ij(z,y) )

0 ij(Z»y)
Yo Eﬁ(x,z;@)
_fo "Z( (s )P 1

Here,

M i(x,y) = 5ij|:HlB(xsy) + j%((ﬁk(x) Pi(x) + Fkk(x’x))b‘c(ﬁy)}

2
+ WU<¢,»<x> () + Fy(x.)) 5u(x.y) (18)

is the mean-field energy matrix which includes the
¢;-dependent terms of the classical inverse propagator iG(_),li 7
Eq. (11), and the local part EEJ(.))()C) of the self-energy

5F2[ d)’ G]

3i(xys ) =2i 56 .y)

(19)
which, to derive the above equations, has been decomposed
into real and imaginary parts as %;;(x,y; ¢)=Efj(.))(x) Selx,y)
+37(x,y: )= (i/2)20(x,y: B)sgnelxo—yo) [23].

We point out that, neglecting the right-hand sides of Egs.
(16) and (17), these equations constitute a set of time-
dependent Hartree-Fock-Bogoliubov (HFB) equations for the
mean field and the two-point functions, cf., e.g., Refs.
[22,23]. In this approximation, the dynamics of p decouples
from that of ¢ and F. Neglecting also F, Eq. (16) is the
Gross-Pitaevskii equation. Given the exact self-energy 2,
Egs. (16) and (17) are the exact equations for the field ¢ and
the correlation functions F and p, respectively. Equation (17)
is equivalent to the Schwinger-Dyson equation for the full
Green’s function G.

C. Nonperturbative 1/ approximation

To derive the quantum many-body time evolution, details
about the self-energy 2, are required, and these are, in gen-
eral, only available to a certain approximation. In the follow-
ing we will consider an expansion of I',, to next-to-leading
order (NLO) in powers of the inverse number of field com-
ponents A [19,30,44] which, in our special case, is N'=2. In
the context of a nonrelativistic Bose gas, this approximation
has been discussed in detail in Ref. [23]. The contribution
I',[ ¢, G] to the effective action I', Eq. (10), then involves a
leading order (LO) and next-to-leading order (NLO) part
which can be diagrammatically represented as shown in Fig.
1. While the leading-order contribution involves one dia-
gram, in NLO a chain of bubble diagrams is resummed. All
of these diagrams are proportional to the same power of 1/A\
since each vertex scales with 1/A/, which is cancelled by the
(blue) propagator loops which scale with A since they in-
volve a summation over the field indices from 1 to N. Note
that the Hartree-Fock-Bogoliubov (HFB) approximation is
given by an action I', which involves I‘%O and the first dia-
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(a
L[9,G] =

)

(b)

LNO[6,G] = @ +Q:© +Qj§ + +.
0ET-0SE-

FIG. 1. (Color online) Diagrammatic representation of the lead-
ing order (LO) and next-to-leading order (NLO) contributions in the
1/N expansion, to the 2PI part I'y[ ¢, G] of the 2PI effective action.
The thick blue lines represent two-point functions G;;(x, y), the red
crosses field insertions ¢;(x), and the wiggly lines vertices
Udp(x,y). At each vertex, it is summed over double field indices i
and integrated/summed over double time and space variables x.

+

gram of 'Y in Fig. 1(b), cf., e.g., [23]. We compare, in the
next section, our results in NLO of the 1/ approximation
with the HFB dynamics as well as with a perturbatively [45]
reduced 1/N approximation, the second-order coupling ex-
pansion, which, besides the HFB diagrams, takes into ac-
count still the two diagrams of second order in U, i.e., the
second and fifth diagrams in Fig. 1(b), which contain two
wiggly lines each.

From T',[¢p,G]=T5[ ¢, G]+ T °[ ¢, G] we obtain, using
Eq. (19), the self-energies E,»j(x,y)=25(x,y)—(i/2)sgnc(xo
—y0)2£(x,y), with

E,’;(X,y) 5 Ip(x,y)
i W emeo
- Ezlp,(x,)’) N - Elp(x5y) ' !
1
AF(X,)’) EAp(x’y)
1o
- EA,J(x,y) Ap(x,y)
Fij(x»y)
1 s 20
8 - Epij(st) 20

where Ap ,(x,y)=1f ,(x,y)+Pp (x,y:If ). The resummation
to NLO in 1/N is expressed by the coupled integral equa-
tions for I , [44,46]:

<IF(x,y)> _U|[FGuy)* - él-lp(x,y)2

Lxy) ) N

2Fij(x,y)Pij(X,)’)

1
o FZ, 2__ 2, 2
_f a2l (x.2) ()"~ p(z.y)

0 ZFU(Z,)’)PU(Z’)’)

+ J 'Odz(IF(X’Z)>2Fij(z,y)pij(z,y) - (2D

0 Ip(.x, Z)
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Here, F>=F ijFij» etc. The functions Py ,, which contribute to

Ap, in the self-energies (20) and vanish if ¢;=0, read [44]

2U
PF(x’y;IF,p) == W{HF(X’.V)

N f A 2) + L) H )]
0

- f dZ[Hp(-xsz)IF(Z’y) + Ip(xsZ)HF(Z»y)]
0

X0 Yo

- f dvf awl(x,v)Hp(v,w)I,(w,y)
0 0
X0 Vo

+ f dvf dwl (x,0)H ,(v,w)Ip(w,y)
0 0

Yo Yo
+ f dvf awlp(x,v)H (v, w)I,(w,y) (,
0 v

(22)

Pp(-x’y;IF,p) == Hp(-x7y)

2U
N

- fx() dz[H(x,2)1,(z,y) + 1,(x,2)H (z,)]

Yo

X0 Vo
+f dvf dwlp(x,v)Hp(v,w)Ip(w,y)} ,
Yo Yo

(23)
wherein the functions Hy, are defined as
Hp(x,y) =~ ¢i(x)Fij(xay)¢j(Y)a
Hy(x,y) = = ¢i(x)pij(x,y) (). (24)

The technical procedure to solve the above dynamic equa-
tions in every time step requires the determination of the
functions I(x,y) before the actual propagation of the respec-
tive correlation functions.

III. FAR-FROM-EQUILIBRIUM TIME EVOLUTION
OF A ONE-DIMENSIONAL LATTICE BOSE GAS

A. Initial conditions

In the following we present our results for the time evo-
lution of a lattice Bose gas initially in a state far from equi-
librium. The 2PI approach invoked in this work allows us to
specify initial states which are Gaussian in the sense that
only the mean field and two-point correlation functions are
nonzero at the initial time 7,=0. Note that, using a general
nPI approach [41], also initial states with higher-order corre-
lations can be taken into account.

The total number of particles N ,(f) at lattice site n and
time 7 is given as the sum of the number of condensed and
excited atoms [x=(¢,n)]:

PHYSICAL REVIEW A 74, 053603 (2006)

Nigta§) = (P W (1)) = Neyy (1) + Nexed), - (25)

Nesl) = ST (26)

Nexc,n(t) = %[Fii(x’x) - 1]’ (27)

where the constant —1 inside the parentheses takes into ac-
count the zero-point fluctuations. Formally, this —1 originates
from the spectral function p which, due to the Bose commu-
tation relations, vanishes at equal times, except for

= p1a(xg,13x0,m) = pay (X0, 15X0,1) = 8,y (28)

By virtue of the 2PI effective-action approach, total particle
number as well as total energy are exactly conserved in all
approximations obtained by truncating the diagrammatic ex-
pansion of I',, cf. the Appendix.

We consider initial states where the normal and anoma-
lous fluctuations are zero, i.e., all atoms are in the conden-
sate:

(TP (), = [Fix,y) = 8,2 =0,

and

()W), =[Fii(x.y) = Fy(x.9))/2 +iF 5(x,y) =0,
for xy=y7=0. Hence we choose

F11(0,n;0,m) = F5(0,n;0,m) = 8,,,/2,

F12(0,n;0,m)=F21(0,n;0,m)=0. (29)

The initial values for p;; are prescribed by Eq. (28). The
condensate fraction is chosen to be nonzero at a single site m
only,

$;(0,n) = \2N S} Sp» (30)

where N is the total number of particles, and j=1 implies
that the initial mean field ¢=(¢,+i¢h,)/\2 is real.

B. Numerical results

The expansion in inverse powers of the number of field
components N allows for approximations which are inher-
ently nonperturbative, i.e., it takes into account diagrams up
to infinite order in the physical coupling constant U. Divid-
ing the equations of motion by the tunneling parameter J,
neglecting quantum fluctuations [47], and taking into ac-
count that the Fi(x,y) and ¢;(x)¢;(y) approximately scale
with the total number of particles N, one finds that all terms
in the NLO 1/A equations of motion (16) and (17) scale
with some power of NU/J. In the series representing the
self-energy 3., arbitrary high powers are resummed. The
remaining terms which take into account the quantum fluc-
tuations [48] are reduced by powers of N since the spectral
functions p;;(x,y) are of order one. Nevertheless, if NU/J
>1 one expects that any perturbative or loop approximation
of I'5, neglecting terms with higher powers of NU/J, fails. In
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FIG. 2. (Color online) Time evolution of an ultracold Bose gas
in a one-dimensional lattice with Ny =2 lattice sites and periodic
boundary conditions. The three columns show the same quantities,
for a different total number of atoms N=20, 40, and 80, respec-
tively. U/J is chosen such that the characteristic interaction param-
eter is NU/J=4 throughout. Initially, all atoms are in a Bose-
Einstein condensate at lattice site 1. The graphs in the first line
show the total number of atoms Ny ; at site 1, normalized to N.
Due to number conservation, one has Ny, ,=N—N,q ;. The second
and third lines show the condensate fractions N,,/N at sites n
=1,2, and the fourth line adds these up, N./N=X,N,,/N. The last
line shows the occupation n, of the quasimomentum g= v [in units
of 1/lattice spacing] (31), for »=1, normalized to the total quasimo-
mentum occupation ny+n,=N. Notice the different scale in the last
line. Our results from the 1/N expansion to NLO are shown as a
thick solid line. The (blue) dashed lines show the results from an
exact calculation by Rey and co-workers, cf. Figs. 5 and 6 of Ref.
[22]. The (green) dash-dotted curves show the dynamics resulting
from a 1/N expansion in a perturbative second-order coupling ap-
proximation (see text), the (red) dotted curves correspond to the
Hartree-Fock-Bogoliubov approximation. With both sets of curves
we reproduce the respective results in [22].

order to probe the accuracy of the nonperturbative 1/N ap-
proximation we chose NU/J to be larger than 1 and compare
our results with the results of an exact numerical calculation
[22] for limited numbers of lattice sites and particles. Fol-
lowing Ref. [22] we have considered cases with a total num-
ber of Ny =2 and Ny =3 lattice sites, and particle numbers
between N=8 and 80. Periodic boundary conditions were
imposed. In Figs. 2 and 3 we present our results for the
nonequilibrium quantum many-body evolution in the nonper-
turbative next-to-leading order (NLO) 1/A approximation as
well as the “perturbative” Hartree-Fock-Bogoliubov (HFB)
and second-order coupling approximations. In Fig. 2, we
consider two lattice sites. The graphs in the first line show
the total number of atoms Ny, ; at site 1, normalized to N.
Due to number conservation, one has N,y ,=N—N,y . The
second and third lines show the condensate fractions N ,/N
at sites n=1,2, cf. Eq. (26), and the fourth line adds these up,
N./N=2,N.,/N. The last line shows the occupation ng of
the quasimomentum ¢,=27v/N;, v=1 (g in units of 1/lattice
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FIG. 3. (Color online) Time evolution of an ultracold Bose gas
in a one-dimensional lattice with Ny =3 lattice sites and periodic
boundary conditions. Only site n=1 is filled initially with N=8
atoms. The interaction strength is U/J=1/3, such that NU/J
=2.67. Besides the quantities already shown in Fig. 2, we show the
depletion Ny ,/N=(Nyo,—N.,)/N at sites n=1,2. The popula-
tions of site n=3 are the same as those at n=2 due to the periodic
boundary conditions. The curves indicate the same approximations
as in Fig. 2. Notice the different scale in the third and fourth lines.

spacing), normalized to the total quasimomentum occupation
EIZ:LanfN. n, is defined as

n (1) = NLE MO (1), (1)

L nm

= 2 feoslgln - mLFux) + BB 0)]
L nm

+sin[g(n —m)|[F5;(x,y) = Fia(x,y)
+ d(X) 1 (y) = h1(x) hr(y)] - 1}, (31)

with x=(¢,n), y=(t,m). In Fig. 3, we consider three lattice
sites, and plot the fractions of condensed, excited, and total
atom numbers for sites 1 and 2, as well as the total number
of condensed atoms N.=N_;+2N_,. We also plot the quasi-
momentum populations n, and n, 3. Note that the respective
populations of sites 2 and 3 are equal due to the periodic
boundary conditions. For the quasimomentum populations
this means that the term proportional to sin[g(n—m)] in Eq.
(31) vanishes.

The solid line shows, in all plots, the evolution according
to the dynamic equations in NLO 1/ approximation. For
comparison, we show, as a dashed line, the results of an
exact calculation obtained by Rey and co-workers for a co-
herent initial state of N atoms at one site [22].

The dotted and dash-dotted lines show the corresponding
dynamics in the HFB and second-order coupling approxima-
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tions, respectively, cf. Sec. II C. In the HFB approximation
all nonlocal self-energy terms vanish in the equations of mo-
tion (16) and (17), and fluctuations enter in the form of a
local energy shift only. This approximation is fully classical,
i.e., it does not take into account any quantum statistical
fluctuations, cf., e.g., Ref. [48] for a detailed discussion. In
the second-order coupling expansion of the NLO 1/A ap-
proximation, nonlocal contributions from the self-energy al-
low for damping. In Figs. 2 and 3, the dotted and dash-dotted
lines precisely confirm the respective results of Ref. [22] for
the HFB and second-order 1/A approximations.

The time evolution shows different characteristic periods.
At early times, the condensate oscillates coherently between
the lattice wells. Only a small number of atoms is scattered
from the condensate fraction into excited modes. This dy-
namics is effectively described by a set of coupled nonlinear
Gross-Pitaevskii-like equations for the condensate mean field
at the different lattice sites. These have the form of coupled
single-particle Schrodinger equations, and the dynamics cor-
responds to Rabi oscillations. The frequency of these oscil-
lations is determined by the expansion parameter NU/J. In
the case of two lattice wells, the Bose-Hubbard lattice gas
with periodic boundary conditions resembles a Josephson
junction with coupling energy E;=2JN, and charging energy
E.=2U, cf., e.g., [49,50]. For vanishing U, the system un-
dergoes Rabi oscillations with frequency Q=2F;/N=4J, i.e.,
the period of these oscillations is 7=(7/2)J!. Note also that
the choice of parameters NU/J=4, N>>400 sets the system
into the Josephson regime N2(NU/J) <(NU/J)<N?. In this
regime, the equilibrium state has a well-defined relative
phase between the sites, and small oscillations around this
configuration can be described as a collective excitation, the
Josephson  plasmon  with plasma frequency wjp
=\E\(E.+4E;/N*)=2J\(NU/J)+4 [49]. We find, however,
that the frequency of the large oscillations in Fig. 2 is closer
to the Rabi frequency of an ideal gas than to the plasma
frequency wyp=4v2J, for which Typ=0.357/J. This is, of
course, not contradictory since the derivation of the above
expression for wjyp requires the assumption of small oscilla-
tions around equilibrium.

Due to the interactions between the atoms, also higher-
order classical statistical and quantum correlations build up.
To leading order this means that atoms are exchanged be-
tween the condensate and the noncondensate modes of the
gas. These processes lead to a rapid destruction of the con-
densate fraction. Hence the coherence of the gas deteriorates
which, on a somewhat longer time scale, leads to damping of
the Rabi oscillations.

All three approximations describe the dynamics well
within the first period of coherent oscillations. This was ex-
pected since the system is initially mostly classical, with
higher-order correlations and fluctuations playing a minor
role. At larger times, all approximations fail to describe the
dynamics accurately. While the purely classical HFB ap-
proximation even qualitatively fails to show the correct
damping behavior, the higher-order approximations yield
damping but quantitatively different results. Our compari-
sons for different atom numbers N indicate that the accuracy
of the NLO 1/A approximation improves with increasing N.
All examples show that the condensate fraction is, at large
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times, underestimated in the second-order coupling expan-
sion. Although it is overestimated in the NLO 1/A approxi-
mation, our results show that the nonperturbative 1/N re-
summation is capable of taking into account high
correlations which, at large times, become relevant.

IV. CONCLUSIONS AND OUTLOOK

In this work we have studied the far-from-equilibrium dy-
namics of an ultracold, strongly interacting one-dimensional
lattice Bose gas on the basis of the 2PI effective action in a
next-to-leading-order (NLO) 1/ approximation. The 2PI
effective action preserves, at any truncation, vital conserva-
tion laws as total particle number and energy, and allows one
to derive in a consistent way nonperturbative approximations
which remain applicable also for strong interactions. For
weakly interacting systems close to equilibrium, the 2PI ap-
proach gives the well-known mean-field theories and their
kinetic extensions including the dynamics and dissipation of
small excitations. However, the 2PI approach goes substan-
tially beyond the basic Hartree-Fock-Bogoliubov approxima-
tion and leads to a description of dynamical evolution far
from equilibrium in the form of an initial-value problem.
Moreover, it is not restricted to a small number of particles.

The systems have been considered in the framework of
the Bose-Hubbard model and consist of two and three lattice
sites, one of which is coherently populated initially while the
others are empty. Tunneling through the barriers leads to
Rabi-like oscillations between the lattice wells which are
damped due to particle interactions. We have studied the
time evolution of the condensate and excited fractions of the
gas as well as of the quasimomentum distribution and com-
pared these results with those from the exact, fully quantal
calculation of the dynamics from Ref. [22]. We find that in
the nonperturbative 1/N approximation the 2PI approach
gives a reduced damping due to higher-order correlations as
seen in the exact solution. Quantitatively, the damping of the
oscillations of the condensate fractions is underestimated in
the NLO 1/N approximation while it is overestimated for
the excited fractions. The agreement with the exact results
appears to improve when choosing a larger total number N of
particles. Our findings are similar to those in Ref. [36],
where the nonequilibrium dynamics of a single nonlinear
harmonic oscillator has been studied in the NLO as well as in
a restricted NNLO 1/A approximation and compared with
the exact evolution. As compared to these results, which
were obtained in the symmetric phase where the mean field
¢ vanishes, we do not find, in NLO 1//, irregular behavior
at large times, like the revivals seen in the Hartree-Fock-
Bogoliubov approximation. A systematic study of the
N-dependence of the accuracy of the 1/N approximation,
extending the exact studies to a larger particle number and
lattice size, using, e.g., stochastic quantization techniques
along the lines of [51], is the subject of ongoing work. We
furthermore expect that the particular choice of an initial
coherent-state population affects the ensuing damping behav-
ior within the Markov time. This requires a detailed study of
the non-Markovian effects which shall be a further topic of a
future publication.
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APPENDIX: NUMBER AND ENERGY CONSERVATION

An important advantage of the 2PI effective action ap-
proach is that crucial symmetries like total particle number
and energy are automatically fulfilled irrespective of the par-
ticular truncation. As was shown in Ref. [23] number con-
servation is a consequence of the Noether theorem in con-
junction with the invariance of the theory under
transformations which are elements of the group O(N). Each
2PI diagram in the expansion of I'[¢,G] separately carries
this property such that any truncation of the series leads to
number conservation. As a consequence, the total number

N(1) = %Ja[gﬁi(x)d’i(x) +Gi(x,x)] (A1)

is conserved in time [23]. For the lattice gas, the spatial
integral means [:f(x)=2,f(z,n).

Energy conservation follows from time translation invari-
ance of I, cf., e.g., Ref. [52]. Consider the general transla-
tions in continuous space and time which vanish at the
boundary, x*— x*+&*(x), where £*(x) is a time- and space-
dependent infinitesimal four-vector. The mean field and two-
point functions transform, under these translations, to leading
order in &, as ¢;(x) = ¢di(x)+&"(x)d,¢;(x), and Gy(x,y)
— Gj(x,y)+&"(x)3,G,i(x,y)+&"(y)#G;(x,y), respectively.
Here, d,=d/dx”, etc. One can show that under these transfor-
mations the variation of the 2PI effective action I' can be
written as [, G| —=TI[¢,G]+ [ ¢,G], with

(‘)T[d),G]:f TH"(x)d,,,(x). (A2)

Since, by virtue of the stationarity conditions (12), the varia-
tion OI" vanishes for all solutions of the equations of motion
for ¢; and G;;, an integration by parts shows that 7" is the
conserved Noether current for the time-space translations:
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N[p,Gl=- J &,(x)d,T""(x) = 0. (A3)

X

TH¥(x) is identified as the energy-momentum tensor, and the
conservation law for total energy is expressed as &;T"O(x)
=0 or d,f &*xT%(¢,x)=0.

To leading order in the 1/M approximation we used the
above space-time translations, and Eq. (A2), to derive the
energy-momentum tensor. For the interaction terms which
depend on the coupling U, however, as well as for the terms
in NLO of the 1/A approximation, it is more convenient to
use a procedure known from field theory on curved space
time. For a space-time-dependent metric g,,,(x), the energy-
momentum tensor is defined as [53]

2 de¢.G:g™]

T,,(x)= — » 5
wr V= g 5g“

(A4)

where y"——g denotes the square root of minus the determinant
of g,

In the following we only quote the result for the total
energy E(1)=2,Ty(,n) of the lattice Bose gas described by
the Lagrangian (1). Using the above definitions and the use-
ful relations og~"=-g"Pg""dg,, and 5V'Tg: V—gg"" 08 uu! 2,
one obtains, in flat Minkowski space time, with g*”
=diag{l,-1,-1,-1}:

E(t) = %f* 8e(x,y) Hig(x,y)[(y) di(x) + G;i(y,x)]

Xy

. Jﬂv[ %(dﬂx) +G(x,0) - 2H(x,x>] +1(x,%)

+2WUl2iJ H(x,z)l(x,z)+f I(X7Z)H(Z,M)I(u,x)i|

(A5)

Note that there is no integration over x,=t. Moreover, we use
the definitions

_v

I(x,y) IG

[Gz(x,y) —i J I(x,z)Gz(z,y)] . (A6)

H(x,y) == ¢i(x)Gy;(x,y) $;(y), (A7)

with G*=G;G;;. The term proportional to [G,(x,x)]* in Eq.
(A5) stems from the LO contribution in the expansion of I,
in powers of 1/, and the term I(x,x) as well as the last line
from the NLO contributions, cf. Fig. 1.
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