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Fulde-Ferrell-Larkin-Ovchinnikov vortex lattice states in fermionic cold-atom systems
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Condensation of atom pairs with finite total momentum is expected in a portion of the phase diagram of a
two-component fermionic cold-atom system. This unusual condensate can be identified by detecting the exotic
higher-Landau-level (HLL) vortex lattice states it can form when rotated. With this motivation, we have solved
the linearized gap equations of a polarized cold-atom system in a Landau-level basis to predict experimental
circumstances under which HLL vortex lattice states occur.
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I. INTRODUCTION

Polarized two-component fermion systems tend toward
finite-pair-momentum condensates because of the Fermi ra-
dius mismatch between majority and minority components.
In superconductors, electron spin polarization can be induced
by the application of an external field or by proximity cou-
pling to a ferromagnet. Finite-momentum Cooper pair con-
densates in spin-polarized superconductors, Fulde-Ferrell-
Larkin-Ovchinnikov (FFLO) states, were first proposed in
the early 1960s [1,2]. One important consequence of finite-
momentum pairing in an isolated superconductor is a spa-
tially inhomogeneous order parameter. There have been
many efforts in various solid-state systems to detect this ex-
otic state, including recent ones [3,4], but its definitive iden-
tification has remained elusive. The disorder that is inevita-
bly present in a solid-state system may have played a role in
the absence of a conclusive FFLO-state identification in
studies of spin-polarized superconductors.

Experimental progress [5-8] with fermionic cold-atom
systems has given rise to a strategy for realizing the FFLO
state or the related Sarma state [9] and has stimulated a great
deal of theoretical activity [ 10-24]. The tunability of the in-
teraction between atoms via a Feshbach resonance [25,26]
has made it possible to increase the strength of fermion pair-
ing and has even made the BEC-BCS crossover [27-29] ex-
perimentally accessible. On the Bose-Einstein condensate
(BEC) side of a Feshbach resonance fermionic atoms form
bosonic molecules which condense at low temperatures. On
the Bardeen-Cooper-Schrieffer (BCS) side, the effective at-
tractive interaction between fermion atoms leads to BCS-
type pairing. In between lies the so-called unitarity limit [30]
in which no weakly interacting particle description applies.

Easy control over the population of two hyperfine states
in a trapped-atom cloud makes cold-atom systems a promis-
ing candidate for FFLO-state realization. The FFLO state
competes [ 10-24] with a number of other states, including in
cold-atom systems states with phase-separated regions that
are respectively unpolarized and unpaired. The FFLO state is
expected to occur on the BCS side of the BEC-BCS cross-
over, at temperatures and pressures close to the normal-
superfluid phase boundary. Population imbalance in cold at-
oms plays essentially the same role as a Zeeman or exchange
field in a superconductors since pairing is dependent on en-
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ergy measured from the Fermi energy for each species of
fermion. In both cases the Fermi radius of the majority spe-
cies exceeds the Fermi radius of the minority species and
pairs at the Fermi energy necessarily have nonzero total mo-
mentum.

One of the most obvious signatures of superfluidity in
fermionic cold-atom systems is the appearance of vortices
and vortex lattices when the system is rotated [31]. Indeed
recent experiments [5] have observed vortex lattice struc-
tures in fermionic cold-atom systems close to the BEC-BCS
crossover region. For this reason an obvious potential signa-
ture of an FFLO state is the appearance of the exotic vortex
lattice structures they are expected to form [32-34]. FFLO
vortex lattices can be wildly different from the usual hexago-
nal Abrikosov vortex lattice. The structure of the vortex lat-
tice is determined mainly [32-34] by the Landau-level index
of its condensed fermion pairs; the Abrikosov lattice forms
when the Landau level index j=0, which is the closest ap-
proximation to zero-total-momentum pairing allowed in a
system that has come to equilibrium in a rotating frame.
FFLO states in the absence of rotation can imply j>0 fer-
mion pair condensation in rotated systems. Vortices have
been observed in systems with population imbalance [6], but
so far no unusual vortex structures have been observed. (This
could be due to the fact that these experiments realize the
gapless Sarma phase [24], and another reason could be that
the FFLO state is predicted by weak-coupling theory while
all experiments are in the unitary limit.)

With this motivation, we report on a study of the polar-
ization and interaction strength regime over which nonzero j
pairing is expected in a rotating two-component fermion sys-
tem. We consider only the BCS side of the Feshbach reso-
nance on which FFLO physics occurs. We consider three-
dimensional systems for the sake of definiteness, although
two-dimensional systems could also be interesting experi-
mentally. Working in the corotating reference frame, rotation
is equivalent to an external magnetic field and a reduction in
radial confinement strength. All our explicit calculations are
for a uniform three-dimensional system and do not account
for confinement. In typical experiments the atomic Landau-
level splitting, equal to 27} where () is the rotation fre-
quency, is much smaller than the Fermi energy. In this limit
the Landau-level index of the condensate could be deter-
mined by finding the optimal pairing wave vector on the
BCS superfluid-normal phase boundary in the absence of
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FIG. 1. Low-energy pairings for population-balanced and
population-unbalanced systems. Shaded regions indicate participat-
ing states for the low-energy parings in k space. Q is the total
momentum of the pairs, which is O for balanced systems and equal
to the difference between Fermi wave vectors in unbalanced
systems.

Koy #kpy, Q=kpy —kpy

rotation and using semiclassical quantization to add rotation
to the condensate effective action. Here we use a fully
quantum-mechanical approach, including Landau quantiza-
tion even at the level of the underlying unpaired fermions.
This approach is still relatively easy, partly because of the
short range of the atom-atom attractive effective interaction
and has the advantage of determining the condensate
Landau-level index more accurately and allows us to com-
ment on the rapid rotation regime which might be ap-
proached experimentally in the future. From now on we use
the language of the corotating frame so that the atoms expe-
rience an effective field with cyclotron frequency ,.=2 ().

Pairing is most effective when the states to be paired are
as close to the Fermi energy as possible. When there is no
population imbalance, pairs formed from electrons with op-
posite momentum (zero total momentum) are abundant at
low energies as illustrated schematically in Fig. 1. For unbal-
anced populations the lowest-energy pairs have total momen-
tum equal to the difference between Fermi wave vectors. In
systems with an orbital magnetic field linear momentum is
not a good quantum number, but the motion of a pair can still
be separated into center-of-mass and relative motion degrees
of freedom. In a magnetic field, momentum space collapses
into Landau levels whose degeneracy is illustrated in Fig. 2
by partitioning of momentum space into equal-area segments
centered on 7. (N+1/2). A pair of electrons with given
Landau-level indices N and N’ has finite quantum amplitudes
for all center-of-mass Landau-level indices from 0 to N+N’
which correspond closely to the distribution of center-of-
mass (c.m.) Kinetic energy values that would be obtained by
averaging over the corresponding regions of momentum
space illustrated in Fig. 2. These quantum probability ampli-
tudes are the key ingredient in the linearized gap equations
discussed below. We derive linearized gap equations which
implicitly define the critical temperature for a phase transi-
tion from the normal to the superfluid state for each c.m. LL
and determine the phase boundaries in parameter space. If
excited c.m. LL’s have a higher critical temperature than the
lowest-lying c.m. LL, this signals the occurrence of exotic
vortex lattice states and of FFLO states in the unrotated sys-
tem. In Fig. 3 the phase diagram is shown for a nonrotating
homogeneous system. The maximum value of the exchange
field (or difference between normal-state chemical poten-
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FIG. 2. Degeneracy of Landau levels. States between two dotted
circles collapse into the solid circle. All the areas between two
adjacent dotted circles are the same, and solid circles have radii
given by #2k?/2m=A€Q (N+1/2). The arrows show the maximum
and minimum momentum differences between particles in LL
N=1 and N=2, which correspond qualitatively to the maximum and
minimum of the c.m. momentum.

tials) for which pairing still occurs is given approximately by
H=Ay/\2, where A, is the BCS gap parameter at zero ex-
change field and zero temperature. Beyond this so-called
Clogston limit [36] the BCS state is no longer stable. The
FFLO state is expected to occur in this region of the phase
diagram.

The rest of the paper is organized as follows. In Sec. II we
derive c.m. Landau-level-index-dependent linearized gap
equations for the critical temperature of the rotating system.
The numerical solution of this equation is presented in Sec.
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FIG. 3. BCS theory phase diagram for FFLO and BCS states as
calculated, for example, in Ref. [35]. Here, H is the ratio of the
Zeeman energy (or normal-state chemical potential difference) to
the zero-field energy gap. The dotted line marks the Clogston limit
where the energies of normal and zero-pairing-momentum BCS
states are identical. The FFLO state occurs near the boundary be-
tween normal and BCS states.
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III. We finish in Sec. IV with a discussion of our results and
present our conclusions. We postpone to this section a dis-
cussion of the competition between phase-separated states
and FFLO states, which is an issue for cold atoms but not for
electrons in a solid because of long-range repulsive Coulomb
interactions.

II. LINEARIZED GAP EQUATIONS

In this section we derive the linearized gap equation for
condensation of Fermion pairs with a definite c.m. Landau-
level (LL) index. We first consider the transformation be-
tween individual particle and c.m. and relative states for two
rotating atoms and then use this to derive the gap equations,
which are implicit equations for the critical temperatures of
each c.m. LL index channel.

A. Unitary transformation

To consider the pairing instability of a normal Fermi gas,
we first turn our attention to the description of scattering
between two atoms in a rotating reference frame. The rota-
tion is represented by considering the atoms to be particles
with unit charge in an effective homogeneous orbital mag-
netic field. The Hamiltonian for two particles is

A1 1
h= _[_ lﬁvr - A(rl)]2 + _[_ lﬁvr - A(rZ)]2
2m 1 2m 2

L, L gy _ADY
:ﬁ[—lﬁVR—ZA(R)]2+2ﬂ<—lﬁvr— 5 ) (1)

where M=2m,u=m/2, R=(r;+r,)/2, and r=r,-r,. The
vector potential A(r) is defined by V X A(r)=2m{z where
Q) is the angular rotation frequency of the system, and we
assume that the rotation is around the z axis. In the Landau
gauge, A(r)=(0,2mQx,0) and the individual atom eigen-
functions with eigenvalues AQ(2N+1) are given by

U, (1) = (v Nk yok; o)
= M (i ki IHLL)'P, - (2)

where ¢,(r) is the one-dimensional harmonic oscillator
eigenfunction and the effective magnetic length /j is defined
by #%/ml%=2#€. The eigenfunctions are labeled by the mo-
menta in the y and z directions and by the LL index N. The
eigenfunctions for the c.m. and relative coordinates are the
same, except that the effective magnetic lengths are now
Ip=1p/ V2 and l= V21 . In terms of ladder operators,

h= hQ(dla, + dba, + 1) =1Q (ajag+a'a, + 1), (3)

where a;= (lB/\Zﬁ)(W,X im,), m=ihV,—A(r), ag=(a
+a,) /N2, a,=(a;~-a,)/\2, and AL, ﬁz/mlB—ZﬁQ The lad-
der operators can then be used to derive [37] an explicit
expression for the unitary transformation between individual
particle and c.m. and relative two-atom states:
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FIG. 4. |BNM\2 vs j with N+M =100 for different N’s. The hori-
zontal axes are j and the vertical axes are |BNM 2.

(r1.10|NLky o ky 2 M ks ks )

N+M
KN+ M —jk,.k.), (4)
J=0 ’
where
Ky=k1’y+k2’y, K_=k1’z+k2’z,
ky = (kl’), - k27y)/2, k,= (kLZ - kz’z)/Z,
and

g _| 210V +M = j) 1N
j T 2N+M

" (-1
X N m- M=yt )

It follows that B;VM is the probability amplitude for two at-
oms in LL’s N and M, respectively, to have c.m. LL j and the
relative motion LL N+M—j. When N=M, [BY™|* has

can have a maximum for intermediate j, which means that
for two atoms in different LL’s, the most probable c.m. LL
can be different from zero or N+ M as shown in Fig. 4. The
smooth envelope apparent in these figures is simply the zero-
field probability distribution of the c.m. kinetic energies
given the Fermi momenta of two individual particles. The
c.m. energy is maximum for parallel momentum and mini-
mum for oppositely oriented individual particle momenta.
This coefficient plays an important role in determining the
pairing c.m. LL in condensed states.

B. Bethe-Salpeter equations

The pairing instability in a Fermi gas is signaled by a
divergence of the many-body scattering function [38], which
we approximate using the Bethe-Salpeter equation summa-
rized by the finite-temperature Feynman diagrams illustrated
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FIG. 5. Ladder diagrams to be summed for scattering function
.

in Fig. 5. We consider a system consisting of two hyperfine
species denoted by T and |. For definiteness we assume that
the two species have the same energy spectrum but allow for
different densities and therefore different chemical poten-
tials. Population imbalance is relatively easy to achieve ex-
perimentally and the lifetime of each hyperfine state is long
enough compared to experimental time scales to justify the
use of equilibrium statistical mechanics with separate par-
ticle reservoirs for the two species. The many-body scatter-
ing function is calculated by summing the ladder diagrams
[37,39] (see Fig. 5). Generalizing the calculations of Ref.
[37] to three dimensions from two and we find that the total
two-particle scattering function can be written as a sum over
different c.m. Landau-level index channels:

F(N,M,ky,kz;N',M',k;,k; Jiw)

yr Voo

=EByMBjV'M’yj(N,M,k k. N' .M k) kL siw), (6)
J

where the partial scattering function for c.m. LL j,
’yj(N’M’kyakz;N,7M,$k;’k£ ;lw)
=(N+M - jk ke VIN' +M' = j.k|.k])

" E 2 |B;VIIM//|2

N”,M" k;{,kg
X(N+M = j.ky ke |VIN" + M" = j, K}, K)
XKN”,M",k;/(iw) ’)/j(N”,M”,k;,k;,;N’,M’,k}/,,ké . ,l(l)) .

(7)
In Eq. (7),
1= fEng 1) = fEy i)
Ky lio)= — == )
MM, iho—Evi 1= &,

gN,kZ,O' = SN,kZ — Mo (9)

1\ #%
sN,szhQC(N+ 5)+ 5 ) (10)

2 m

and f(&) is the Fermi distribution function. In the case of a
S-function interaction V(r)=-V,48(r) we have that
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(N+M = jk ke |VIN' + M = j.kK)
== Vodhami (k1) By (KDAILLY), (1)

where ¢}, is the one-dimensional harmonic oscillator eigen-
function in relative coordinates. Using this property and the
orthogonality of the relative motion harmonic oscillator
wave functions we find that

‘}/j(NsMsky,kz;vaM,sk;ské ,l(l))

-Vo . N 2
- LyL, ¢N+Mfi(k>'lr)¢N’+M ’—j(kylr

Vo
X[ 1+ >
4mlpL

-1
E KNH’MNyk”(i (1)) |B§VHM” | 2 .
IN" M" K )

<

(12)

C. T, equation

As mentioned before, the instability of the normal state
due to pairing is signaled by the divergence of the many-
body scattering function I'(iw=0), and therefore a diverging
¥{(iw=0) means that pairs with c.m. LL j are unstable to
condensation. This instability condition for the scattering
function is equivalent to the linearized gap equation which
defines the critical temperature [38] in mean-field theory. (In
mean-field-theory for the ordered state [40] the order param-
eter can be expressed in terms of partial contributions from
each c.m. LL channel. When the order parameter is small the
various channels decouple and the partial contribution from a
given channel vanishes at the same point at which the
normal-state partial scattering function diverges.) From Egq.
(12), we get an implicit equation for the critical temperature
TJC' for each c.m. LL j, which reads

1 1

VO - 47T1123LzN,M,k,

1- f(§1v,kz,¢) - f(gM,—kz,l)

Ene 1+ Emk |

NM|2
187

(13)

Unlike the BCS superconductors, for which retarded
phonon-mediated attractive interactions have a natural ultra-
violet cutoff, there is no cutoff in this equation and the sum-
mation is over all states. Hence, as it stands, this equation
diverges, because of the assumption of a J-function interac-
tion. To remove this divergence, we need to recognize that
the true atom-atom interaction is short ranged compared to
relevant atomic wavelengths but not a ¢ function. Using the
exact relation between scattering length and interaction
strength [see Eq. (A5) in the Appendix] we remove the in-
teraction strength V, by renormalizing to the scattering
length [39] in the 7. equation and obtain convergent sums
over intermediate states. The equation for 7/ then becomes
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1- f(§1v,kz,¢) - f(gM,—kz,L)

Ene 1+ Emi |

_ f B2
kF(Jasc 27TkF0NM

—;IBfYMV : (14)
Enk, T EM -k,

where kp, is the Fermi wave vector of the unpolarized sys-
tem without rotation. The left-hand side of Eq. (14) is experi-
mentally measurable. We determine 7, as a function of
1/kppay. by solving this implicit equation combined with im-
plicit equations for the temperature-dependent chemical po-
tentials -

a=— > flone,— o), (15)

VNk k.

where n,, is the density of atoms in hyperfine state o and V is
the total volume of the system. In the next section we present
numerical results obtained by solving these equations.

III. NUMERICAL RESULTS

We calculate 77 for each c.m. LL j for various rotation
frequencies, interaction strengths, and polarizations and in
this way determine the phase boundaries in the parameter
space spanned by h()., a,., and the polarization. We fix the
total density of the system, ny,, and use the polarization p as
a parameter. The polarization is defined by

_m-n (16)
nT+nl’

where n; is the density of the majority species and n| is the
density of the minority species. Hence, the density of atoms
in species o [o=+1 (=1) corresponds to T (])] is given by

1+op
ng= 2 Mot (17)

The relationship between 7/ and interaction strength is
illustrated in Fig. 6. The true critical temperature for the

system is the largest value of Tﬂ:
T, = max{T'}. (18)

At weak rotation [Fig. 6(a)], the transition temperature
T. for zero polarization shows the usual behavior [41]
T, xexp(—1/kpoay.) and the highest 77, is for the j=0 channel
regardless of the interaction strength. In this circumstance we
expect the system will have a standard Abrikosov vortex
lattice. The critical temperature decreases as polarization in-
creases and superfluidity is suppressed above some critical
polarization. It is more easily suppressed at weak interaction.
FFLO states, which correspond to nonzero j, occur at strong
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FIG. 6. (Color online) Critical T, vs —1/kpyae. (a)

7Q./ery=0.02. The curves are for different polarizations 0.0, 0.1,
0.2, 0.3, 0.4, 0.5 from top to bottom. (b) 2Q./ey=0.17. Polariza-
tions are from 0.0 to 0.6. (¢) AQ)./epy=0.50. Polarizations are from
0.0 to 0.7.

interaction and high polarization. We emphasize that these
states will have very distinct [34] vortex lattices, more open
than the hexagonal Abrikosov lattices and qualitatively dif-
ferent for each value of j. It should be quite obvious experi-
mentally when a j#0 vortex lattice occurs. We caution,
however, that as the temperature drops below the critical
temperature, different values of j will mix in the condensate
[37,40] and the j=0 component will grow in weight even if
it does not have the maximum 7,. We speculate that the
phase transition between finite-momentum FFLO states and
zero-momentum BCS states, which occurs at zero field, is
replaced in the field by a smooth crossover between open
and close-packed hexagonal lattices. The best place to search
experimentally for an exotic vortex lattice is close to the
superfluid-normal phase boundary as possible by varying ei-
ther temperature or interaction strength. Indeed it appears
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advisable to conduct experiments in systems with the small-
est order parameter strength for which it is possible to reli-
ably visualize the vortex lattice. Both the relatively large
polarizations and strong interactions required for the appear-
ance of j # 0 solutions and the ability to tune parameters over
wide ranges in atomic systems demonstrate the exceptional
potential of tunable cold-atom systems in the hunt for FFLO
vortex latices. The greatest obstacle to realization of the
FFLO state is likely competition with phase-separated states.
We return to this point again later.

The results reported in Fig. 6(a) can be understood quali-
tatively using quite simple considerations. When the tem-
perature is low, weak pairing is expected to be dominated by
states at the Fermi energy. For that reason, the zero-field
pairing wave vector on the phase boundary is expected to be
close to kp—kp, when T,—0—i.e., when the interactions
are just strong enough to cause pairing. Using a small-p ap-
proximation it follows that the pairing wave vector for
T.—0 is given approximately by

_ 2kpop

3 (19)

0

The Landau-level index at finite fields can be estimated by
quantizing the pairing wave vector. This gives

0, hQ, 9 20)

It is easy to check that this equation is quite consistent with
the numerical results we have obtained. For smaller values of
7Q, we therefore are confident that even larger values of j
should occur, although exotic vortex lattices may again be
confined even more strongly to the region close to the phase
boundary. For a given value of polarization, the value of j
decreases with increasing interaction strength because 7.
moves to higher temperatures, reemphasizing the importance
of pairing precisely at the Fermi energy.

Figures 6(b) and 6(c) show results for systems with larger
values of #(). than have been reported in experiments to
date. One observation is that nonzero j states are less likely
to occur at large %), and appear only at very high polariza-
tion and strong interactions. This property is explained by
Eq. (20). Indeed one can check that the appearance of non-
zero j values is again consistent with this estimate. Other
new features that emerge in these figures are due mainly to
large LL quantization effects. At very high rotation fre-
quency [Fig. 6(c)], only the j=0 c.m. LL is realized. Note
that at high temperature, all graphs look similar. (7, de-
creases monotonically as the polarization increases and as
the interaction strength decreases.) T, is more weakly depen-
dent on the rotation frequency. This is because the thermal
energy is comparable to or larger than the energy quantiza-
tion due to rotation. On the other hand, at low temperatures,
the LL quantization effects become important because the
particles have one-dimensional densities of states for each
Landau level, leading to peaks in pairing (at least in this
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FIG. 7. (Color online) Polarization vs T./epy. (a)

Q.1 epy=0.02. Curves are for different values of —1/kpyay. (b) is
for 10/ ery=0.17 and (c) is for 71Q./ € y=0.50. Dashed lines in (a)
and (b) show the T, curves for j=0 and all the curves in (c) corre-
spond to j=0.

mean-field-theory calculation) when any Landau level is just
slightly occupied. The nonmonotonic density of states be-
comes important when the LL spacing is much larger than
the temperature. In this case, we expect nonmonotonic be-
havior that is sensitive to the density of both hyperfine spe-
cies; we expect nonmonotonic dependence on polarization
and the occasional appearance of strong condensates at very
large polarizations. Some of this nonmonotonic behavior is
evident in Fig. 6(c).

In Fig. 7 we show the phase boundaries versus polariza-
tion and temperature for a series of interaction strengths. For
slow rotation [Fig. 7(a)] it is similar to the usual BCS-FFLO
phase diagram (compare with Fig. 3). At higher rotation fre-
quencies, shown in Fig. 7(b), FFLO states are less likely to
occur. The transition temperature still decreases monotoni-
cally as the polarization increases, and above some critical
polarization, the normal state prevails. At very high rotation
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FIG. 8. (Color online) Enlarged figures of Fig. 7(a) for
—1/kppa=(a) 0.6 and (b) 0.8 near the phase boundaries between
FFLO states and normal fluid. The horizontal axis shows T,./&g,
and the vertical axis is polarization. We calculate 7. for different j’s
and determine the optimal j that gives the highest T..

frequencies, shown in Fig. 7(c), the LL quantization effects
become more important and we observe a reemergence of
condensed states at around p=0.4. The difference of the
Fermi energies at this polarization is exactly equal to the LL
spacing, and the dominant pairing occurs between individual
particles whose Landau-level indices differ by 1.

In Fig. 8 we show an enlargement of the phase diagram
for the FFLO state, showing also the critical temperatures for
a number of different c.m. LL index channels j in addition to
the one with the largest 7,.. When the polarization is small,
j=0 pairing leads to the highest 7; that is, j=0 is the opti-
mal pairing channel for condensation which we denote as j..
As the polarization increases, TJC' for nonzero j is larger than
chlzo and j,. increases with the polarization. This is analogous
to having an increasing pairing c¢.m. momentum with in-
creasing polarization field in the zero-field case. For a given
value of #(),, nonzero values of j. are more likely when
interactions are stronger, because the superfluid has to be
able to withstand the ill effects of polarization out to a suf-
ficiently large value of p. If the interaction is too weak, no
nonzero j pairing can occur and j,. is zero.

In Fig. 9 we plot the phase diagram versus polarization
and effective interaction space for slow, intermediate, and
rapid rotations. The critical polarization decreases as the in-
teraction strength decreases for weak rotations [Fig. 9(a)], as
seen in experiment [6]. The regions labeled FFLO in this
figure have j#0 condensates at the normal-superfluid
boundary. Quite generally this behavior occurs only in a
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(c) Rapid rotation

FIG. 9. (Color online) Polarization vs —1/kgga,.. We calculate
T. for polarizations from O to 1 with increment 0.01 and choose
the largest one that has a finite T,. (a) %Q./er=0.02, (b)
71Q./epy=0.17, and (c) ./ ey=0.50. Solid blue curves show the
phase boundary between normal fluid and superfluid, and dashed
blue curves in (a) and (b) show the phase boundary for c.m. LL
Jj=0.

small region along the boundary between the superfluid and
normal state in the regime of large polarization and strong
interactions. Faster rotation generally suppresses FFLO
states, as emphasized earlier, but the superfluid phase can be
realized at high polarization and weak interaction by tuning
the system such that the Fermi energy mismatch between
majority and minority species is an integer times the LL
spacing and the Fermi energies are close to a quantized LL
energy. In Fig. 9(c), we see that large peaks occur if these
conditions are met. At zero polarization, smzsplzl.%, in
units of LL spacing, and the lowest LL is at 0.5. For
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p=0.41, &=252 and ep =152, so that the Fermi
energy difference is exactly the LL spacing and each Fermi
energy is very close to the LL’s. For p=0.72, g1 =2.80 and
ep;=0.80.

IV. DISCUSSION AND CONCLUSIONS

In summary, we have derived an equation for the super-
fluid critical temperature in rotating fermionic cold-atom sys-
tems, incorporating Landau-level quantization effects. Using
this equation we have calculated the phase boundary be-
tween the normal and superfluid phases considering pairing
in different center-of-mass Landau levels. We find that states
with higher-Landau-level condensates can occur on the
boundary between the normal and superfluid phase regions
in a parameter space that can in principle be explored sys-
tematically by taking advantage of Feshbach resonances and
of the ability to create arbitrary degrees of hyperfine-state
polarization in an atom cloud. These FFLO vortex lattice
states will have distinct vortex lattices [32-34] which should
aid their identification. High polarization and strong interac-
tions are required to realize the FFLO state. At high rotation
frequency, features that originate from rotational quantiza-
tion effects play an important role and we find that for cer-
tain parameters the superfluid phase persists to high polariza-
tion.

The regime where the FFLO state occurs in rotating sys-
tems seems accessible to experiment, and hence we believe
that these exotic vortex structures are observable. The great-
est obstacle to their observation may be competition with
states in which the atoms phase separate into regions with
condensation but no polarization and regions with polariza-
tion but no condensation. We believe that FFLO physics
would almost certainly occur if phase separation could be
suppressed. Phase separation does not occur for electrons in
a superconducting metal, and cannot because of the large
Coulomb energy price that would have to be paid. One pos-
sibility for suppressing phase separation in atomic systems
with attractive interactions is to artificially create the neces-
sary weak but long-range repulsive interactions by electri-
cally inducing dipoles [42] in a pancake-shaped [43], but not
necessarily quasi-two-dimensional trapped-atom system. The
typical dipole-dipole interaction energy is p?/R®~p°n
~ &?E’n where p is the dipole moment induced by the ex-
ternal electric field E, R is the average interatom distance, n
is the density of the atoms, and « is the polarizability of the
atom. If this energy is much smaller than the typical atom-
atom interaction energy &po(kpola,.|), then the physics on
short-length scales does not change much. On the other hand,
if the energy cost of the whole system due to the long-range
dipole interaction when the system is phase separated is
much larger than the condensation energy gain, phase sepa-
ration can be suppressed. Thus, p?n’>V>D(0)A}
~ Ne e~ ™ rolascl where D(0) is the density of states at the
Fermi level, N is the number of atoms, and V is the volume
of the system. These conditions lead to a condition for the
external electric field,
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e FOl9scl <<

< kpolag, (21)

€Fo

which can be easily satisfied for small kp|a,.|. FFLO states
are most likely expected to occur near the critical tempera-
ture 7. while experimentally observed phase-separated states
are well below T.. It is known that phase separation is less
likely at higher temperatures, so it could be possible to ob-
serve FFLO states near 7, without explicitly suppressing
phase separation.

Finally we mention that peculiar additional interesting ef-
fects occur because of Landau-level quantization if the rota-
tion frequency is sufficiently large. Very large rotation fre-
quencies have been achieved in experiments with bosonic
atoms [44]. We believe, therefore, that there is no fundamen-
tal obstacle to approaching the rapid-rotation limit with fer-
mions. Although we have used mean-field theory here to
study this regime, there is every reason to expect unantici-
pated properties to emerge from strong quantum fluctuations
and correlations. At sufficiently rapid rotations, it should be
possible to for the first time study the fractional quantum
Hall effect in fermion systems with attractive interactions
[45].
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APPENDIX: TWO-BODY TRANSITION MATRIX AND
SCATTERING LENGTH IN SYSTEMS WITH ORBITAL
MAGNETIC FIELD

In this appendix, we derive the relation between the scat-
tering length and the strength of the &-function-like particle-
particle interaction in a system with orbital magnetic field.
The two-body transition operator for scattering at energy z is
defined by

Vi oo =V4+V f"ZB(z),

A A

Z_H() Z_HO

() =V+V

(A1)

where V is the particle-particle interaction and ﬂo is the non-
interacting part of the two-body Hamiltonian. The matrix
elements of this transition operator satisfy the Lippman-
Schwinger equation. Noting that scattering conserves the
c.m. motion, we calculate the T-matrix elements in relative-
motion Hilbert space with c.m. LL j and c.m. momenta K,
and K,. Notice that the relative motion 7 matrix does not
depend on the y component of the total momentum K, in the
Landau gauge. In the c.m. and relative coordinate represen-
tation we find
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s ML M GBI KT G
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'z N N
[
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(N+M —j.kyk|T?(j.K:2)IN' + M = j.ky k)
_ 0 r 2\ g1 (1072
— VO > ) = ¢0(kylr) ¢0(kylr
= L ¢Ir\l+M—j(k Y )¢N,+M,_j(kvl ) L,VLZ
vz _ VO N"M"|2 -1
NIIMH 2 -1 1 - s
1- — VO |B | 47712 ZN" M” " SN” k" + Emr, k"
4miyL, ., 0 & ENTK 24K T EMIK K]
IN"M", et z z (A4)

(A3)

For a dilute atomic gas, all the relevant energies are small
compared to ﬁzlmr‘z/ where ry is the interaction range. We
are therefore allowed to neglect the energy dependence of
the two-body T matrix [39]. (Note that the energy does not
depend on k,.) Hence we have that

To extract an expression for the scattering length we put the

above matrix element equal to the matrix element (N+M
s y,k|Vp|N’+M’—J ky,kl) —of the pseudopotential
(r) dma h*S(r)/m. From this we find that

m 1 1 ByM?
S S W~ U NS
4mha, Vo  AmlgLo vk, ENk. T Em -k,
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