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We investigate the long-time limit of quantum localization of the kicked Rydberg atom. The kicked Rydberg
atom is shown to possess in addition to the quantum localization time �L a second crossover time tD where
quantum dynamics diverges from classical dynamics towards increased instability. The quantum localization is
shown to vanish as either the strength of the kicks at fixed principal quantum number or the quantum number
at fixed kick strength increases. The survival probability as a function of frequency in the transient localization
regime �L� t� tD is characterized by highly irregular, fractal-like fluctuations.
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I. INTRODUCTION

The quantum mechanics of classically chaotic few-
degrees-of-freedom systems has become intensively studied
in the field of “quantum chaos” �1,2�. One key feature is
quantum localization—i.e., the localization of the quantum
wave function while the corresponding classical distribution
shows diffusion �1–3�. In periodically driven systems, this
effect has primarily been studied in the kicked rotor—e.g.,
�4–7�—and in the Rydberg atom in a sinusoidal electric
field—e.g., �8–13�. For both systems, quantum localization is
closely related to Anderson localization in transport in disor-
dered systems �2,5,11�. One signal of this analogy is strong
fluctuations in the quantum system for different observables
when varying some external parameter. A third system ex-
perimentally and theoretically studied is the periodically
kicked Rydberg atom �e.g., �14–23��—i.e., a hydrogenlike
atom prepared in a high-lying state and subjected to a se-
quence of ultrashort impulses. In a recent publication, we
showed the existence of quantum localization in the posi-
tively kicked Rydberg atom �24�—i.e., the hydrogenic sys-
tem with the initial state prepared in a highly elongated
quasi-one-dimensional state localized on one side of the
nucleus and the periodic impulsive momentum transfer �p
�0, pushing the electron away from the nucleus. The clas-
sical phase space of this system is globally chaotic with all
tori destroyed for arbitrarily small �p, and the classical sur-
vival probability decays algebraically, Psur� t−�, with �
�1.5 �see Fig. 1 and �18��. In contrast, by following the
time-dependent system up to a few thousands of kicks we
could show both the quantum suppression of classical ion-
ization and the “freezing out” of the wave function, the hall-
marks of quantum localization. Several issues remained
open, however. They include �i� the origin of a slow, yet
noticeable, decay of the localized states, �ii� the dynamical
role of high harmonics �up to infinity� present in the system,
and �iii� the properties of strong fluctuations present in the
localization regime.

In the following paper we address these issues. We iden-
tify two characteristic time scales �“break times”� in this sys-
tem. In addition to the localization time �l, where quantum
and classical dynamics begin to differ from each other due to
universal destructive interferences, there is a second break

time �D where localization is broken. Beyond �D, a second
crossover occurs where the classical dynamics becomes
more stable. This second crossover in the kicked atom is
related to the presence of nonclassical photoionization.

In the next section, Sec. II, we describe the method used
in our studies, and in Sec. III we show that quantum local-
ization in the kicked Rydberg atom is transient. Strong fluc-
tuations in the survival probability as a function of frequency
for fixed times are studied in Sec. IV, and in the last section
�Sec. V� a summary is given.

II. METHOD

The Hamiltonian of the one-dimensional �1D� kicked Ry-
dberg atom is �in atomic units�

H�t� = H0 − q�p�
k=1

K

��t + T/2 − kT� , �1�

where H0= p2

2 − 1
q is the hydrogen Hamiltonian and q the po-

sition of the electron. �p and T are the strength and period of
the train of kicks, respectively. We will use the number K of
kicks and time t=KT interchangeably. The restriction to a 1D
model in the present context is necessary since the study of
the long-time limit in 3D is currently computationally not
feasible. Our previous studies for up to 103 kicks have shown
that the 1D model can reproduce essential features of the 3D
problem. For a more detailed discussion of the relation be-
tween the 1D model and real 3D dynamics, see �24� and
references therein. In the case �p�0—i.e., the kicks di-
rected away from the nucleus—the classical phase space is
void of stable islands and the effect of quantum localization
has been shown to set in within a few hundreds of kicks �24�.
In the opposite case �p�0 stable islands persist, allowing
for the survival of Rydberg states both classically and quan-
tum mechanically, referred to as stabilization �22�.

The unidirectional kicks build up an average field
Fav=−�p /T. Hence, the time-periodic Hamiltonian �1� can
be decomposed into the time-independent Stark Hamiltonian

HStark = H0 + qFav �2�

plus an infinite series of harmonics of equal strength,
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H�t� = HStark + 2Favq�
m=1

�

cos�2	m/T�t −
T

2
	
 . �3�

In this paper, we will highlight the influence of the higher
harmonics m�1, their presence distinguishing our system
from the Rydberg atom driven by a microwave field. For the
“positively kicked” Rydberg atom with �p�0 �i.e., Fav�0�
the Stark Hamiltonian possesses a potential barrier with
maximum at Ebarrier=−�2�Fav� and qbarrier=�1/ �Fav�, resulting
in a finite number of quasibound states and a continuum. To
keep the Stark Hamiltonian invariant—i.e. the average field
fixed—we vary 
 and �p so as to keep the average field Fav

fixed.
To calculate the long-time evolution of the quantum sys-

tem we represent the period-one time-evolution operator

U�T� = exp�− iH0T/2�exp�i�pq�exp�− iH0T/2� �4�

in a basis �n defined by H0�n=En�n by means of the pseu-
dospectral method �25�. Dirichlet boundary conditions are

applied at q=0 and q=qmax. Solving the eigenvalue equation
U�T��� j=exp�−iTE j��� j yields the time-dependent wave
function in terms of Floquet states �� j as

���KT� = U�T�K���0� = �
j

dj exp�− iKTE j��� j , �5�

with dj = �� j ���0�. A masking function in q is introduced to
avoid spurious reflections at qmax �see �24��. For the low
frequencies used in this paper, we apply the masking opera-
tor 3 times per period. The convergence of the wave function
obtained is tested both by varying qmax and by comparison
with direct solutions of the time-dependent Schrödinger
equation �i.e., without facilitating the Floquet states � j� as
described in �24,25�.

For later reference we introduce scaled units, denoted by
the subscript 0. They leave the classical dynamics invariant
and are defined by E0=Eni

2, T0=T / �2	ni
3�, 
0=1/T0, and

F0
av=Favni

4 where ni is the principal quantum number �action�
of the initial state �10�. Note that the transition energy due to
absorption of one photon, E0

=ni
2��=ni

22	 /T=
0 /ni, is not
scaling invariant.

III. TRANSIENT QUANTUM LOCALIZATION

A. Survival probability and effective quantum number

One measure to study quantum localization is the survival
probability, defined as Psur�K�= ���KT��Pbound���KT� where
Pbound is the projection operator onto bound hydrogenic
states. The underlying picture is that transport along the en-
ergy axis towards the continuum is considered to be the
equivalent of conductance in disordered systems �26�. Cor-
respondingly, suppression of energy absorption from the
pulse sequence and, thus, suppression of ionization is iden-
tified as localization in a purely chaotic system or stabiliza-
tion when the classical phase space is mixed.

The classical Psur
cl �K� is obtained by the classical trajectory

Monte Carlo method �CTMC� with a microcanonical en-
semble to represent the initial state �27,28�. The classical
phase space �for �p�0� is fully chaotic without any tori left
intact. We show an example for the survival probability in
Fig. 1. The classical Psur

cl �K� for times larger than K0 kicks
decays algebraically �18�,

Psur
cl �K� = �K/K0�−�, �6�

with ��1.5. Both the time K0 and the factor � are only
weakly dependent on the parameters of the field �
0 and
�p0�. By contrast, the quantum survival probability Psur

qm�K�
displays a very different and much more complex behavior.
One intriguing feature is an extreme sensitivity to the driving
frequency 
0, especially in the long-time limit �compare also
to the results in, e.g., �2,5,11��. The resulting fluctuations in
the kicked atom will be studied below in more detail �see
Sec. IV�.

For characterization of quantum �de�localization it is use-
ful to introduce another observable that describes the bound
portion of the wave packet. Inspired by the relation n
=1/�−2E for bound states, we introduce a mean quantum
number as
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FIG. 1. Classical Psur
cl �dashed line� and quantum Psur

qm �solid
lines� survival probability for the positively kicked Rydberg atom as
a function of number K of kicks for �F0

av � =0.005 ��p0�0.021�. The
quantum data are shown for 11 frequencies 
0 uniformly distributed
between 1.45 and 1.45008, ni=50. �a� Long-time behavior, the
dash-dotted line indicates a fit to a power law with exponent
�=−1.5, Eq. �6�, and �b� short-time behavior.
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�n�K� = ���KT��Pbound
1

�− 2H0

Pbound���KT�/Psur�K� .

�7�

In this equation, the expectation value is calculated for the
portion of the wave function residing in the bound subspace.
Equation �7� characterizes the specific position of that part of
the wave function that remains bound, in particular that
which remains localized or stabilized near the initial state �or
initial torus�. Indeed, �n displays a characteristically differ-
ent behavior classically �ncl and quantum mechanically
�nqm, both at short times �Fig. 2�b�� and long times �Fig.
2�a��. The sharp drop of �nqm from 50 to 1 at K�106 will be
analyzed in Sec. III C. The corresponding non-normalized
distributions P�n , t� whose mean values are given by �n are
depicted in Fig. 3. The quantum Pqm�n , t� remains well lo-
calized close to the initial state while the time evolution of
Pcl�n , t� features a rapid increase of width in the energy dis-

tribution and a shift towards increasingly lower energies
�i.e., smaller n�.

Note that classically n does not possess a lower bound n
=1, as the quantum distribution does. The fact that the en-
ergy distribution can grow to negative values without bound
is a root cause for the algebraic decay. The probability for
crossing the E=0 line �i.e., the n=� line� in the next time
step and thus for reducing Psur

cl decreases as the mean dis-
tance to the E=0 line as measured by �n�K�cl increases with
t. We now relate the power-law decay, Eq. �6�, to the motion
of Pcl�n , t� away from the threshold. The classical survival
probability for large times is well fitted by Eq. �6� with K0
�1000. The scaled average quantum number is also well
described by a power law,

�n0�K�cl = b�K/K0�−0.5, �8�

where the power-law decay is assumed to start at the same
time as that of the survival probability and b�1.8. The dif-
ferential form of Eq. �6�,

dPsur
cl �K�
dK

= −
�

K
Psur

cl �K� , �9�

can now be expressed by means of Eq. �8� as follows:

dPsur
cl �K�
dt

= −
d

K0
�n0�K�cl

2 Psur
cl , �10�

with d=� /b2. For some cases with stronger average fields
�F0

av=0.02 and 0.05� shown in Figs. 4 and 5 �where K0
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FIG. 2. Mean principal quantum number �n, Eq. �7�, for the
same parameters as Fig. 1, �ncl �dashed line� and �nqm �solid
lines�. �a� Long-time behavior �of log�n�, the dash-dotted line in-
dicates a fit to a power law, and �b� short-time behavior of �n. The
arrow in �b� indicates an approximate localization time defined in
Eq. �16�.
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FIG. 3. �Color online� Time-dependent spectral distribution
P�n , t�, both classically �a� and quantum mechanically �b�, for the
same parameters as Fig. 2 �data shown for 
0=1.45�.
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�60 and 9, respectively� we find that the power law for
�n0cl, Eq. �8�, holds with approximately the same constant b.
Hence, Eq. �10� is still applicable and the constant d has
essentially the same value.

We now compare the numerical signatures of quantum
localization for intermediary times as seen in Psur, Figs. 1�a�
and 5, to the signatures seen in �n, Figs. 2�a� and 4. In all
cases studied, �nqm� �ncl and a clear discrepancy between
the quantum and classical values can be seen for weak fields
and low ni. The discrepancy decreases as �F0

av� or ni in-
creases; i.e., �nqm approaches the classical limit, however
quite slowly. The approach to the classical limit appears
faster in Psur. Here signatures of quantum localization can
only be seen for weak fields and low ni, while in the other
cases shown, Psur

qm has already reached the classical limit. We
thus conclude that the more locally focused �n provides
stronger signature of quantum localization—i.e., the suppres-
sion of diffusion away from the initial state—than the Psur
probing the entire bound part of phase space.

B. Short-time dynamics: The crossover to quantum
localization

We take now a closer look at the short-time dynamics for
the weak field strength, Figs. 1�b� and 2�b�. Here a first sur-
prise appears. One would, generally, expect Psur

cl and Psur
qm to

agree with each other up to the localization time �or quantum
break time, also referred to as Ehrenfest time� �l. The present
case is nongeneric in that the classical phase-space distribu-
tion remains up to �l ��200 kicks� more localized when one
identifies Psur as a measure for localization. This quantum
enhancement of ionization takes place even though the clas-
sical �ncl moves closer to the ionization threshold while the
quantum �nqm remains close to the initial value �Fig. 2�b��.
The origin is a true quantum effect: perturbative single-
photon absorption of high-frequency m
0 from higher-
harmonic components with m�mc�ni� sufficient to reach the
continuum. Here
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FIG. 4. �n averaged over the interval 1.45�
0�1.47. In �a�,
ni=50, and in �b�, �F0

av�=0.02. Solid line, quantum result, and
dashed line, classical result. The arrows indicate the lifetimes of the
ground state estimated by direct coupling to the continuum. The
average is calculated on the logarithmic scale—i.e., shown is
10�log10 n.
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av�=0.02. Solid line, quantum result; dashed
line, classical result; and dash-dotted line, fit of classical result to a
power law. The arrows indicate the lifetimes of the ground state
estimated by direct coupling to the continuum. The average is cal-
culated on the logarithmic scale.
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mc�ni� = ni/�2
0� . �11�

A border for the field strength at which a single kick driv-
ing a high-lying Rydberg state displays quantum-classical
correspondence can be found as follows �29�: The average
classical energy transfer from a kick is

�Ek = �p0
2. �12�

This energy transfer can be resolved quantum mechanically
if �Ek is not smaller than the quantum energy spacing
�Eni

0 =1/ni, leading to the critical momentum transfer

�p0
crit = 1/�ni. �13�

For �p0��p0
crit, the quantum and classical distributions after

a single kick agree all the way up to the threshold E=0 since
the quantum-level spacing decreases as n→�, and good
agreement between the quantum and classical survival prob-
abilities is achieved. The difference between the classical and
quantum distributions for �p0��p0

crit can be understood by
considering the dipole limit �p0��p0

dipole=1/ni, for which
the transition operator for a single kick, exp�i�pq�, reduces
to

exp�i�pq� � 1 + i�p0q0ni + ¯ . �14�

In this limit, the quantum transition amplitude is proportional
to �p and the probability is proportional to �p2. By contrast,
the classical probability is proportional to �p5, implying that
the quantum survival probability after one kick is smaller
than the classical one �29�. Physically, this can be understood
by considering the Fourier transform of a delta kick,

��t − t0� =
1

2	
�

�

�

d� exp�i��t − t0�� , �15�

indicating a “white” spectrum. The quantum system can ab-
sorb �virtual� photons of arbitrarily high frequency from the
white spectrum accompanied by only a small momentum
transfer �p0�1. Processes with large energy transfer ��0
�1 but small momentum transfer �p0 are far from the line
��0��p0

2 /2 in the ��0−�p0 dispersion plane for a quasi-
free electron and thus effectively are inaccessible for a clas-
sical momentum transfer process. Only for deeply bound
electrons with large local orbital momentum p0 near the
nucleus, with ��0� p0�p0��p0

2 /2, can such processes oc-
cur in the classical case. The density of classical phase-space
points for the initial state with such high p0 is, however, very
small. In the quantum case, the high-frequency components
in the driving field interact nonlocally with the whole initial
state, leading to an enhanced ionization probability. This cor-
responds to dipole-allowed transitions. Classical-quantum
correspondence is only restored when classical diffusion in
phase space dominates the quantum enhancement due to �vir-
tual� photon absorption.

For ni=50 and 
0=1.45 the corresponding critical fields
are �F0

crit�=0.033 and �F0
dipole�=0.0047; i.e., the cases studied

in Figs. 1 and 2 are close to the dipole limit. The important
point is that the dynamical role of the high-harmonics spec-
trum of �virtual� photons is responsible for the surprising,
nongeneric features of the periodically kicked Rydberg atom,

different from other systems such as the Rydberg atom in a
microwave field. This is directly verified by increasing the
field such that the scaled momentum transfer �p0��p0

crit;
see Fig. 6. We show first a case in the transition region
��F0

av�=0.02, ni=50� where still some traces of the nongeneric
features at short times can still be seen. For larger ni or larger
�F0

av� such that �p0��p0
crit the quantum-classical agreement

for short times is quite well fulfilled while discordance is
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FIG. 6. As Fig. 1�b�, however for �a� �F0
av�=0.02 and ni=50, �b�

�F0
av�=0.05 and ni=50, and �c� �F0

av�=0.02 and ni=200.
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found only for larger times t��l. The short-time dynamics
now conforms with the naive expectation of close classical-
quantum correspondence for all t��l.

Well-known arguments �30� for the localization time lead
to the order-of-magnitude estimate

�l �
1

�L
ln� �q

�i
	 , �16�

where �q=ni
2 is the typical spatial extension of the initial

state, �i=ni the wavelength of the initial state, and �L the
mean Lyaponov exponent. �l is indicated by arrows in Figs.
2�b� and 7. For �n, �l gives a reasonable estimate for the
number of kicks up to where quantum and classical dynam-
ics mirror each other.

The situation for the survival probability is more in-
volved: For �p0��p0

crit, Eq. �13� �see Figs. 1 and 6�a��, no
agreement between Psur

cl and Psur
qm is found for short times and

a break time �l now defined as the time where Psur
cl gets

smaller than Psur
qm due to quantum localization takes on a dif-

ferent meaning. Consequently, this break time is not well
described by Eq. �16�. For the cases with �p0��p0

crit �Figs.
5, 6�b�, and 6�c�� we find no clear numerical signatures of
localization in Psur.

C. Long-time dynamics: The second crossover

Quantum localization in the kicked Rydberg atom is tran-
sient. After a large but finite number of kicks �Figs. 1�b� and
6�, the quantum survival probability rapidly decreases and at
a second crossover time �delocalization time� �D falls below
even the classical value. Simultaneously, �nqm drops sharply
from values near ni to 1 �Figs. 2�b� and 7�b��. Beyond the
crossover point, �ncl falls to values well below unity inac-
cessible to quantum mechanics. There, the residual fraction
of the classical phase is “sheltered” and continues to decay
slowly—i.e., algebraically. By contrast, the quantum bound-
state probability decays exponentially in the long-time limit.
Beyond �D the slow classical algebraic decay “wins” over
the exponential decay. This novel scenario is markedly dif-
ferent from the sinusoidal driven Rydberg atom, where the
quantum transport is bounded from below because of the
regular phase-space region or, in a quantum picture, because
of vanishingly small transition probabilities to states with
low principal quantum numbers �2,10,31�.

The rate of the long-time decay and, thus, of �D can be
estimated from the decay rate of the state n=1 due to the
high harmonics. This is the lowest-lying and most stable
component of any coherent superposition forming a Floquet
state. All frequencies of the driving field, Eq. �3�, with scaled
energy m
0 large enough to couple the Stark state having the
largest overlap with the n=1 hydrogenic state to the Stark
continuum contribute to the transition probability according
to Fermi’s golden rule,

�m = 2	��Em��Favz�n = 1,Em��2, �17�

with Em=−1/2+m
0 /ni
3. Both dipole matrix elements

z�n ,E� and the density of continuum states ��E� are numeri-
cally obtained by diagonalizing the Stark Hamiltonian �2� in

the pseudospectral basis. Summing over all contributions
leads to a delocalization time �D= ��m�m�−1 which corre-
sponds to within a factor of 2 to the lifetime of the most
long-lived Floquet state with �n�1. �nqm averaged over an
interval in 
 �1.45�
0�1.47� together with the estimated �D

is shown in Fig. 4. �D clearly gives a good estimate of the
time scale on which the breakdown of quantum localization
as seen in �n takes place. The estimated �D also coincide

40

45

50

55

60

65

100 101 102 103

Number of kicks

(a)

<
n>

40

50

60

70

100 101 102

Number of kicks

(b)
<

n>

140

160

180

200

220

240

260

100 101 102 103

Number of kicks

(c)

<
n>

FIG. 7. As Fig. 2�b�, however for �a� �F0
av�=0.02 and ni=50, �b�

�F0
av�=0.05 and ni=50, and �c� �F0

av�=0.02 and ni=200. The arrows
indicate an approximate localization time defined in Eq. �16�.

PERSSON et al. PHYSICAL REVIEW A 74, 053417 �2006�

053417-6



with Psur
qm getting smaller than the classical value �Fig. 5�. We

thus attribute the breakdown of quantum localization to the
higher harmonics in the driving field. The breakdown of lo-
calization is expected if the ground state n=1 is directly
coupled to the continuum. We note parenthetically that an
experimental realization would require half-cycle pulses with
high-frequency components in the UV region. Work is cur-
rently under way on a protocol to produce half-cycle pulses
in the attosecond regime �32�.

We now comment on the decay of the quantum survival
probability for �F0

av�=0.005 and 0.02, ni=50, seen for inter-
mediate times �K�106 and 104 in Figs. 5�a� and 5�b�, re-
spectively�. Here �nqm�ni �Fig. 4�, indicating the localiza-
tion of the quantum distribution P�n , t�qm �see also Fig. 3�b��.
As for �n, Eq. �7�, we attribute the decay of the localized
bound part of the quantum wave function in the kicked atom
to the higher harmonics present in the driving field, directly
coupling the wave packet localized close to the initial state
with the continuum.

IV. FLUCTUATIONS IN THE SURVIVAL PROBABILITY

The quantum survival probability shown in Fig. 1 dis-
plays strong fluctuations under small variations of the kick
frequency. Such fluctuations are a direct consequence of the
photonic localization scenario �2,8,11�, to be described in the
following.

A. High harmonics in the localization regime

The observation of localization—i.e., the suppression of
ionization or, equivalently, the freezing out of portions of the
wave function near ni—raises the question as to the underly-
ing mechanism in the presence of the harmonic spectrum
�Eq. �3��. High harmonics cannot only directly couple to the
continuum �see Sec. III C�, but they also can lead to sequen-
tial excitation through a ladder of intermediate �quasi�bound
states. This channel is the dominant mechanism for the exci-
tation and ionization by the harmonic driving by the lowest
harmonic 
0. Jensen et al. �8� have discussed the suppression
of the sequential ladder excitation by a harmonic driving as a
mechanism for localization �“photonic localization”�. It is
therefore instructive to extend this approach to the present
multiphoton case.

Following �8� we assume quasiresonant one-photon tran-
sitions to dominate the time evolution; i.e., we consider only
transition between �bound� states with energy differences to
the initial state approximately equal to k times the fundamen-
tal photon energy E0

=
0 /ni. The detunings

�k = Ek − Eni
− k
 �18�

for the quasiresonant states �k form a pseudorandom se-
quence of numbers. Using the rotating-wave approximation
and setting ck�t�=bk�t�exp�−i�kt�, with bk�t� the expansion
coefficient for the kth quasiresonant state in the interaction
picture, leads to a set of coupled differential equations

i
dck

dt
= �

k�

Hkk�
J ck�, �19�

with the matrix HJ given by

Hkk�
J = �k�kk� + Vk,k�. �20�

The semiclassical expression for the coupling matrix ele-
ments is �8�

Vkk� � 0.411F/��nknk��
3/2�m
0�5/3� , �21�

with m= �k−k�� and nk the main quantum number of the kth
quasiresonant state. While for the harmonically driven case
Vkk��0 only for m=1, the coupling matrix elements for the
periodically kicked Rydberg atom in the mth off diagonal are
proportional to m−5/3. Due to the randomness of the detun-
ings �k, the matrix HJ is thus a pseudorandom, power-law
banded matrix. In random power-law banded matrices with
the elements decreasing as m−�, the eigenstates are �weakly�
localized for ��1 �33�. Our extension of the model intro-
duced in �8� on the basis of �2� thus predicts that the eigen-
states for the kicked Rydberg atom should be localized.
Inferring from the numerical observation of quantum local-
ization that the detunings are “sufficiently” random, the gen-
eralization of the photonic localization scenario appears ap-
plicable.

We finally comment on the �semi�classical border ni→�.
Increasing ni from 50 to 200, the quantum localization for
�F0

av�=0.02 almost vanishes �Figs. 4�b� and 5�b��. This indi-
cates that a delocalization border is present in the kicked
atom similar to that found for the harmonically driven sys-
tem �2�. The presence of a delocalization border implies a
maximum ni for the applicability of the photonic localization
theory. Detailed studies of this border in the kicked Rydberg
atom remain to be performed.

B. Characterization of parametric fluctuations

We turn now to a quantitative description of the paramet-
ric fluctuations of Psur

qm under variation of 
0 seen in Fig. 1.
Figure 8 displays the evolution towards an increasingly com-
plex fluctuation pattern as K increases. The amplitudes of the
fluctuations increase by several orders of magnitude. Strong
fluctuations in the survival probability have also been found,
e.g., in the harmonically driven Rydberg atom �11� and in the
kicked rotor when subjected to a varying Aharonov-Bohm
flux �34� or a variation of the kicking frequency �35�.

In order to characterize the increasingly finer scale on
which these fluctuations occur, we determine the average dis-
tance between adjacent maxima and minima on the fre-
quency scale ��
0

�K�. At times smaller than the delocaliza-
tion time �D, ��
0

�K� is rapidly decreasing �Fig. 9�. A similar
buildup of fluctuations in the survival probability with time
is observed for the kicked rotor �35�. In the very-long-time
limit beyond �D, where the dynamics of the kicked system is
governed by the decay of the ground state, no further fluc-
tuations are produced but ��
0

�K� saturates.
It is now tempting to inquire whether the complexity of

the fluctuations in the Psur
qm can be described by an approxi-

mate fractal dimension. For example, the fluctuations in the
kicked rotor in the chaotic regime have been shown to have
a fractal structure �34,35�. Fractal conductance fluctuations
have been predicted �36� and experimentally found—e.g.,
�37�—for the transport through cavities with mixed classical

TRANSIENT LOCALIZATION IN THE KICKED RYDBERG ATOM PHYSICAL REVIEW A 74, 053417 �2006�

053417-7



phase space. A fractal structure has also been found in the
survival probability of a system with a mixed phase space
�38�. In both cases, a semiclassical explanation based on a
classical power-law decay has been proposed. Since the
kicked Rydberg atom displays classically such a power-law
decay even though its phase space is fully chaotic, rather
than mixed, a fractal is a conceivable candidate.

For a given “resolution” �
0 in frequency we calculate
the local fractal dimension D��
0� by means of a variational
method �39�. Rigorously, this value should be independent of

�
0. In the present physical context, we are satisfied if
D��
0� is approximately constant over at least one order of
magnitude in �
0. The fractal analysis of the data shown in
Fig. 8 is presented in Fig. 10�a�. Since the survival probabil-
ity fluctuates over many orders of magnitude, we analyze the
logarithm of the data. After more than 105 kicks, a plateau
starts to develop, the width of which reaches almost two
orders of magnitude for larger K. The value of D on the
plateau increases with K up to about D�1.2. The process of
increasingly finer rescaling is transient and stops beyond K
�107 when �D is reached. Zooming in on a narrow fre-
quency interval for K�KD �Fig. 10�b��, the plateau value is
still D�1.2, but the width of the plateau is only about one
order of magnitude. Thus, a tendency towards a noninteger
dimension can be found in the positively kicked Rydberg
atom. The value is weakly dependent on the number K of
kicks for which the fractal analysis is made and appears to
approach D�1.2.

It is now instructing to compare this value with the semi-
classical prediction �36,38,40� based on the power-law decay
with exponent �=1.5 �see Fig. 1� of the classical survival
probability Psur

cl �K�, DSC=2−� /2=1.25. The value for DSC is
remarkably close to the plateau value found from the fractal
dimension analysis. We thus conclude that the onset of a
self-similar fluctuation pattern can be observed with a di-
mension close to the semiclassical prediction derived from
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FIG. 8. Survival probability Psur versus frequency 
 for some
numbers K of kicks. ni=50 and �F0�av=0.005. The dashed lines give
the classical results.
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the classical power-law decay. We note that this process is
transient in that the finest scale for the fluctuations is deter-
mined by the time �D beyond which the most stable bound
state decays.

V. SUMMARY

We have studied the long-time limit of quantum localiza-
tion of the positively kicked Rydberg atom, involving clear
signatures of a quantum suppression of classical ionization.
We compare the localization as seen in the survival probabil-
ity to that seen in an average quantum number �n describing
the position of the localized part of the wave function �see
Eq. �7��. In �n clearer signatures of quantum localization
prevailing to higher field strengths and larger quantum num-
bers are found. Two crossover times could be identified: the
crossover from classical-quantum correspondence to local-
ization ��l� and the destruction or delocalization at a much
later time ��D�. Remarkably, beyond �D, the quantum system
decays faster then the classical counterpart due to direct tran-
sitions to the continuum resembling photoionization. This

process, identified in the present paper within a 1D model, is
expected to be operative in a full 3D model as well. Quan-
tum localization is accompanied by strong fluctuations in the
survival probability after a given number of kicks as a func-
tion of the frequency of the driving field. The average dis-
tance between the fluctuations ��
0

�t��1/ t until t=�D,
whereafter ��
0

 saturates. In the localization regime, the
complex fluctuation pattern approaches a fractal.

In this paper we have highlighted effects caused by the
higher harmonics in the driving field distinguishing the
kicked atom from the Rydberg atom driven by a microwave
field. Further studies comparing these two systems, including
an assessment on how closely the quantum localization in the
kicked Rydberg atom is related to Anderson localization us-
ing, e.g., the methods in �2,11�, is left for forthcoming
studies.
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