
Threshold effects in strong-field detachment of H− and F−: Plateau enhancements
and angular distribution variations

K. Krajewska,1,2 Ilya I. Fabrikant,1 and Anthony F. Starace1

1Department of Physics and Astronomy, The University of Nebraska, Lincoln, Nebraska 68588-0111, USA
2Institute of Theoretical Physics, Warsaw University, Hoża 69, 00-681 Warszawa, Poland

�Received 12 June 2006; published 8 November 2006�

Above-threshold detachment �ATD� rates for H− and F− ions in the high-energy plateau region are calculated
as functions of photon number and laser intensity by solving the time-dependent Schrödinger equation within
the Sturmian-Floquet approach. Pronounced enhancements of the ATD rates are found �up to an order of
magnitude� as the laser-field intensity passes across ponderomotive-potential-induced channel closings. We
confirm the zero-range potential model results of Borca et al. �Phys. Rev. Lett. 88, 193001 �2002�� for negative
ions whose initial states have s symmetry, and we investigate here the case of initial states having p symmetry.
Depending on the symmetry of the initial state, the enhancement is found to be most pronounced for even- or
odd-channel closures, which is consistent with threshold laws applicable at the closing of particular multipho-
ton channels. Variations of ATD electron angular distributions as functions of laser intensity near channel
closings are also investigated and found to be sensitive to initial-state symmetry.
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I. INTRODUCTION

Atomic systems exhibit highly nonlinear responses to in-
tense laser radiation, becoming ionized with absorption of
many more photons than necessary to produce continuum
electrons, a phenomenon known as above-threshold ioniza-
tion �ATI� �1� �for reviews, see, e.g., �2–5��. One observes
regularly spaced peaks �in intervals of the photon energy� in
the energy spectrum of ejected electrons. The simplest and
most intuitive description of the ATI energy spectrum is pro-
vided by the well-known “rescattering” or “three-step” semi-
classical model �6,7�. In this picture, in which both the laser
field and the ionized electron are treated classically, the so-
called “direct” electrons are ionized without further interac-
tion with the parent ion and have kinetic energies up to 2Up,
where Up is the ponderomotive energy, i.e., the energy of
oscillation of an electron in the laser field. These direct elec-
trons contribute to the low-energy part of the ATI spectrum,
which comprises a sequence of electron peaks having de-
creasing intensities for increasing electron energy. The high-
energy ATI spectrum, comprised of electron peaks ranging in
energy up to 10Up and having roughly comparable intensities
�thus forming the characteristic “plateau”�, is believed to
originate from the rescattering of ionized electrons by the
ionic core under the influence of the driving laser field, sub-
sequent to which the rescattered electrons are further accel-
erated by the laser field.

Although the cutoff energy of the “hot” electrons com-
prising the plateau of the high-energy ATI spectrum is well
described by the classical analysis, more detailed properties
of the spectrum, such as the resonant-like enhancements that
have been reported in experiments performed for rare gases
�8–13�, require a quantum treatment. Those measurements
have shown that the envelope of the rescattering plateau does
not remain flat, but instead exhibits resonant-like enhance-
ments �as a function of the intensity of the driving laser field�
of only a certain energy range of ATI electron peaks. At
certain intensities, a small variation of the field strength

raises a portion of the rescattering plateau by up to an order
of magnitude. Such highly intensity-selective enhancements
in the yield of hot electrons, together with a detailed struc-
ture of the ATI peaks �composed of three narrow subpeaks
each�, have been observed for xenon �8� and have been
found to be even more pronounced in experiments for argon
�9,10�. This experimental evidence for a resonance-like sce-
nario being involved in high-energy above-threshold ioniza-
tion was confirmed also by more recent experiments �11–13�
for various rare-gas atoms.

At present, the precise origin of the resonant-like en-
hancements of ATI plateau electrons remains a subject of
theoretical discussion and differing interpretations
�10–12,14–20�. One explanation posits the idea of multipho-
ton resonances between the ponderomotively upshifted Ryd-
berg states and the ground state of an atom as being crucial
for the enhancement �10,11,14,15,19,20�. In Refs.
�10,11,14,15�, this concept arose when the single-active-
electron �SAE� approximation �21� using a model potential
for the e-Ar+ interaction was used to solve numerically the
time-dependent Schrödinger equation. The results of these
one-electron calculations modeled the observed ATI spectra
very well, including even very subtle ATI peak substructures.
These calculations thus showed that ATI plateau resonance
features cannot be due to multielectron resonances, but, it
was proposed instead, to single-electron Rydberg resonances
in the laser field. The same method applied to a one-
dimensional soft-Coulomb potential �19,20� supported this
hypothesis. In Refs. �19,20�, simulations using a one-
dimensional zero-range potential �ZRP� were also per-
formed. Despite the fact that the zero-range potential sup-
ports only a single bound state, however, similar
enhancements were observed in the calculated above-
threshold detachment �ATD� spectra. It was suggested that
for model potentials that do not have a Coulomb tail, certain
light-induced states �22� take over the role of Rydberg states,
so that the plateau enhancements in the case of short-range
potentials have a similar origin.
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There are some ambiguities regarding these interpreta-
tions of resonance-like enhancements of ATI plateaus as aris-
ing from either ponderomotively upshifted Rydberg state
resonances or light-induced-state resonances. One is that Ry-
dberg states are very short-lived, i.e., they are easily ionized
in an intense laser field. Thus there is a question of whether
such short-lived states can influence the ATI spectra and, in
particular, whether they can cause the enhancement of the
high-energy ATI plateau. Another is that for the case of
short-range potentials, the idea of attributing the enhance-
ments to light-induced resonance states is based on one-
dimensional calculations �19,20�. However, for the case of a
three-dimensional short-range potential in the presence of a
strong laser field, light-induced states have not been found to
exist �23�. Yet another ambiguity is that if the enhancements
originate from a multiphoton resonance with an intermediate
state, then one would expect the entire ATD spectrum at
higher energies to be enhanced; however, only a range of
ATD peaks at the lower- to mid-energy region of the plateau
are observed to be enhanced.

An alternative explanation relates the resonant-like en-
hancements of ATI and ATD plateaus to laser-intensity-
induced multiphoton channel closings �CCs� �12,16–18�, i.e.,
to a threshold-related effect. Because the ponderomotive po-
tential raises the continuum threshold, the minimum number
of photons necessary to ionize an electron from an atom �or
detach an electron from a negative ion�, n, increases with
increasing laser intensity, or, in other words, the n-photon
channel for ionization or detachment can become closed as
the laser intensity increases. Near the intensity for which this
happens, a group of ATI �or ATD� peaks within the rescatter-
ing plateau is raised significantly. In the context of CCs, the
enhancement has been interpreted as either a consequence of
constructive interference between different “quantum trajec-
tories” that takes place at intensities near the channel clos-
ings �12,16,18� or as an example of well-known quantum-
mechanical threshold laws applicable at the closing of
multiphoton channels �17�. Both those pictures call into
question the role of Rydberg or excited states as being essen-
tial for the enhancement, since in relevant numerical simula-
tions that exhibited the intensity-induced plateau enhance-
ments �12,16–18�, a three-dimensional zero-range potential
model �in which there are no excited states� was used.

Although the experiments with argon reported in Ref. �12�
were simulated by ZRP model calculations and qualitatively
good agreement with theory was found, the model itself is
more suitable for the description of ATD processes, which is
the main subject of this paper. In contrast to the ZRP models
that have been used so far to analyze the enhancement of
ATD plateau spectra �12,16–18�, we employ here finite range
model potentials to describe the negative ions we treat and to
analyze high-energy above-threshold detachment. The key
question that we address is how the symmetry of the
negative-ion initial state affects the laser-induced enhance-
ment of the rescattering plateau. The ZRP model has only
one bound state of s symmetry. In this paper, we compare
and contrast the role of the initial-state electron’s orbital an-
gular momentum symmetry on the laser-induced enhance-
ments of the ATD plateau spectra. We also explore the role of
this symmetry on the angular distributions of ATD electrons

in the vicinity of CCs. Our results for finite-range model
potentials that do not have excited states �above the state of
the valence electron� confirm the ATD plateau enhancements
we obtain as due to ponderomotive potential-induced chan-
nel closings with the largest enhancements corresponding to
the closing of even or odd multiphoton channels in the cases
of initial s- or p-electron symmetries, respectively. They may
thus be regarded as dramatic manifestations of well-known
threshold anomalies of collision theory �24–29� for the case
of multiphoton processes. �A brief report of these findings
has been given elsewhere �30�.� We find also that the ATD
electron angular distributions are sensitive to the initial-state
symmetry of the active electron and to whether an even or
odd number of photons are absorbed.

This paper is organized as follows. A rigorous treatment
of ATD within the Floquet-Sturmian theory framework is
given in Sec. II. In Sec. III, we introduce the model poten-
tials representing the negative ions that we consider, whereas
in Sec. IV the threshold behavior of multiphoton detachment
at channel closings is demonstrated. Finally, in Secs. V and
VI, numerical results for the partial rates and angular distri-
butions of ionized electrons as functions of changing laser-
field intensity are discussed. We summarize our results and
discuss our conclusions in Sec. VII. In the Appendix, we
discuss the normalization of results for many-electron sys-
tems treated by means of the SAE approach. Note that
throughout this paper we use atomic units unless otherwise
noted.

II. MULTIPHOTON DETACHMENT PROBABILITIES
VIA FLOQUET STATES

For decaying processes �e.g., ionization or detachment�,
the initial state of a quantum system, ��0�t��=e−iE0t��0�, in
the presence of a time-periodic strong laser field can be rep-
resented within the Floquet theory �for a review, see Ref.
�31�� in the quasistationary form

���t�� = e−iEt��E�t�� , �1�

where E is the quasienergy, and the Floquet, or quasienergy,
state ��E�t�� is periodic in time, with the same period as the
laser field. In this case, the quasienergy is complex,

E = E0 + � − i
�

2
, �2�

where � describes the ac Stark shift of the initial-state en-
ergy level and the imaginary part is simply related to the
total decay rate, �, of the system. The quasienergy E and the
associated state ��E�t�� are determined by solving the eigen-
value �Floquet� equation,

�H0 + V�t� − i
d

dt
���E�t�� = E��E�t�� , �3�

with complex boundary conditions imposed on the decaying
states in external fields. Here H0 represents the system’s
field-free Hamiltonian, whereas the interaction of the system
with the external field is described by the potential V�t�.

We consider detachment of a negative ion by a linearly
polarized laser field having frequency � and its polarization
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vector directed along the z axis, �̂= ẑ. The electric field and
the vector potential are F=F0�̂ cos �t and A=A0�̂ sin �t,
respectively, where A0=−cF0 /�, and F0 describes the
strength of the laser field. We treat the ion within the SAE
approximation, with the electron-atom interaction described
by a short-range potential W. The atomic Hamiltonian of the
system is, therefore,

H0 =
p2

2�
+ W , �4�

and the electron-laser field interaction in the dipole velocity
gauge �which is used throughout this work� is

V�t� =
1

�c
A�t� · p , �5�

where � is the electron’s reduced mass and p is its canonical
momentum. The Fourier expansion of the Floquet state
��E�t��,

��E�t�� = 	
n

e−in�t��E
�n�� , �6�

substituted into Eq. �3�, results in the following system of
time-independent coupled equations for the harmonic com-
ponents ��E

�n��:

�E + n� − Up − H0���E
�n�� = V+��E

�n−1�� + V−��E
�n+1�� , �7�

where the ponderomotive energy of the electron quiver mo-
tion is Up=F0

2 /4��2, and where V+ and V− are defined as the
Fourier coefficients of the potential V�t�,

V+e−i�t + V−ei�t = V�t� . �8�

The harmonic component ��E
�n�� in the series expansion in

Eq. �6� describes an electron that has absorbed a net energy
of n�. At large distances from the atomic core, the electron
that has been detached with absorption of n photons is de-
scribed by a spherical wave,

��E
�n�� 


eiknr

r
, �9�

where kn stands for the wave number, which depends on the
quasienergy E,

kn = �2��E + n� − Up� . �10�

For open channels, spherical waves, like the one in Eq. �9�,
should be outgoing waves, so that Re kn�0. This require-
ment is fulfilled for channels for which the number of ab-
sorbed photons n�n0, with n0 being the minimum number
of photons necessary to detach the electron. In other words,
for open channels we have Re E+n�−Up�0. On the con-
trary, channels with n	n0 �or, equivalently, channels for
which the inequality Re E+n�−Up	0 holds� are closed,
since in this case Im kn�0, so that Eq. �9� represents an
exponentially damped wave. In actual computations �32�, the
infinite system of coupled equations �7� is solved only after
truncation at some point. Then, the truncated system of equa-
tions is solved by expanding each harmonic component

�E
�n��r� in terms a basis set of complex radial Sturmian func-

tions SNl
�
��r� and spherical harmonics Ylm�r̂�,

�E
�n��r� = 	

Nlm

cNlm
�n� SNl

�
��r�
r

Ylm�r̂� , �11�

where

SNl
�
��r� =

1

�2l + 1�!
� − i
�N + 2l�!

�N + l��N − l�!
�− 2i
r�l+1

�ei
r
1F1�1 − N;2l + 2;− 2i
r� , �12�

where 1F1�n ; l ;z� is the confluent hypergeometric function
�33�. Here, 
 stands for the complex parameter of the basis,
which, in order to obtain solutions of physical significance
�i.e., satisfying the appropriate complex boundary condi-
tions�, has to be chosen such that

�arg�
� − arg�kn�� 	
�

2
�13�

for all wave numbers kn �32�. Finally, by projecting Eq. �7�
onto the Sturmian basis and by making use of the orthonor-
mality relation,

�
0



drSnl
�
��r�

1

r
Sn�l

�
��r� = �nn�, �14�

one arrives at a matrix equation for the coefficients cNlm
�n� . This

enables one to find the quasienergies and the associated Flo-
quet states by solving the resulting non-Hermitian matrix
eigenvalue problem. For details of numerical methods used
in this context, see Ref. �32�.

The theoretical formulation of the detachment probability
rates is given in great detail elsewhere �31,34–37�. Here, we
summarize only the main formulas employed in our calcula-
tions. Sufficiently far from the atomic potential W, after ab-
sorbing n�n0 photons, a detached electron having positive
energy Ef =kf

2 /2� moves in the laser field with the drift mo-
mentum k f, where

kf = �2��Re E + n� − Up� . �15�

The differential rate d��n� /d� for n-photon detachment
when the electron emerges into the solid angle d� along the
direction of the vector k f is

1

2�

d��n�

d�
= �kf�Mn�k f��2, �16�

where Mn�k f� is the n-photon detachment amplitude. This
transition amplitude can be expressed in terms of Bessel
functions Jn�z� �31,34–37�,

Mn�k f� = 	
N

ei�N−n��JN−n�− ��k f�W��E
�N�� , �17�

where � and � are real, and are defined by
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� cos��t − �� =
1

�
�t

d�k f · A��� . �18�

The partial rate ��n� for detachment into a specific channel n
can be obtained from Eq. �16� by averaging over all possible
directions of the ejected electron,

��n� =� d��n�

d�
dk̂ f . �19�

At this point, it is important to note that the sum of all pos-
sible partial rates ��n�, starting from n=n0, should result in
the total detachment rate �. On the other hand, as follows
from the definition of the quasienergy E, Eq. �2�, we have
�=−2 Im E. We arrive, therefore, at the following condition:

	
n�n0

��n� = − 2 Im E , �20�

which provides a test for the validity of the approach being
used, which we have monitored closely during our computa-
tions.

III. SINGLE-ACTIVE-ELECTRON APPROXIMATION

Our considerations so far have been general in the sense
that they have accounted for any ionic system that has only
one outer electron. To be more specific, let us introduce here
model potentials for the negative ions of hydrogen, H−, and
fluorine, F−. Within the framework of the SAE approxima-
tion, the active electron in both ions may be described as
moving in an atomic potential W of Yukawa type,

W�r� = − W0
e−�r

r
. �21�

The potential parameters, W0�0 and ��0, are fitted for
each ion separately, as discussed in the next subsections.
Note that the question of the normalization of detachment
rates for many-electron ions that are treated in the single-
active-electron approximation is discussed in the Appendix.
Note also that from this point on in this paper we assume
�=1 �cf. Eq. �4�� unless indicated otherwise.

A. Negative hydrogen ion

For the negative hydrogen ion, H−, we make use of the
model potential introduced in Ref. �34� and reconsidered
later by the authors of Ref. �37�. It has the Yukawa form �21�,
with the parameter values W0=1.1 a.u. and �=1.0 a.u. For
these values of W0 and �, the potential W�r� supports only
one bound state �the 1s state, with orbital angular momentum
l=0� having a binding energy −0.027 565 4 a.u., which is
very close to the experimental value �38�. The model poten-
tial ground-state wave function reproduces also the radial
charge distribution given by an accurate two-electron prob-
ability density integrated over the spatial coordinates of one
of the electrons �34�. For the case of a CO2 laser, operating at
the frequency �=0.0043 a.u. ��=10.6 �m�, for small inten-
sities of the laser field we find that detachment of H− requires
the absorption of at least seven photons. This threshold for

photodetachment increases when the laser-field intensity is
increased. For completeness, we note that all intermediate
states accompanied by emission of up to a maximum of
seven photons and absorption of up to 65 photons have been
taken into account in our calculations; this particular choice
of processes that are included in our calculations gives reli-
able, convergent results.

B. Negative fluorine ion

The negative fluorine ion, F−, is modeled by the Yukawa
potential �21� with parameter values W0=5.0745 a.u. and �
=1.0 a.u. As for the case of H−, our choice for � accounts for
screening of the nuclear charge by the atomic charge cloud
of inner electrons, and the potential strength W0 is adjusted
to reproduce the correct binding energy of the ion. The main
difference between these two cases lies in the symmetry of
the initial bound �valence� state, which for F− has p-state
symmetry. In the present model, the 2p state has an energy of
−0.124 98 a.u. �while the experimental value is
−0.124 99 a.u. �39��; there exist also the 2s state with the
energy −0.3292 a.u. and the 1s ground state, which is located
significantly lower in energy.

In order to investigate accurately the enhancement of the
ATD plateau, we must be concerned in our model with mul-
tiphoton resonances involving the bound p state. We note
that when our model F− ion is exposed to a laser field with
frequency �=0.0253 a.u., which corresponds to the wave-
length 1.8 �m, as in the experiment of Ref. �40� and in the
theoretical work of Refs. �41–43�, then in the weak-field
limit a minimum of five photons is required to detach the 2p
electron, while at least nine photons are needed to have a
2p−2s resonance. To check on the role of multiphoton reso-
nances in the enhancement of the high-energy ATD spectrum
resulting from detachment of the valence 2p electron, we
have performed numerical calculations for two cases: �a�
when detachment is realized through intermediate states in-
volving the emission of up to eight photons �the nonresonant
case�, and �b� when detachment is realized through interme-
diate states involving the emission of up to 15 photons �the
resonant case�. In both cases, the maximum number of ab-
sorbed photons is 70. Remarkably, in the range of the laser-
field intensity that we have investigated, we have not found
any discrepancies between the calculated results for these
two cases.

IV. THRESHOLD BEHAVIOR OF MULTIPHOTON
DETACHMENT AT CHANNEL CLOSINGS

Before presenting our numerical results, we review briefly
the theory of threshold behaviors near channel closings.
Analysis of the threshold behavior of multiphoton detach-
ment by standard collision methods is complicated by the
fact that photons have special properties as compared to par-
ticles. These properties include the nonlocal character of
photons in coordinate space, “which prevents their descrip-
tion by orthodox spatial wavefunctions” ��25�, p. 336�.

If one wishes to remain within the framework of a station-
ary approach to the problem, there are two ways out of this
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difficulty. The first is to consider the Floquet equation for the
quasienergy �3� and to look for the imaginary part of the
quasienergy describing the partial width for �N+s�-photon
detachment near the N-photon threshold �s=1,2 , . . . �. This
approach, although mathematically rigorous, contains all the
difficulties related to finding the correct complex solutions of
the Floquet equation �see Sec. II�.

A second approach, which will be developed below, is
more physically transparent, although less rigorous math-
ematically. It is similar to the truncated-threshold approxima-
tion used by Potvliege and Shakeshaft �35�. Instead of the
explicit introduction of the initial state �for a bound electron
in the presence of a laser field�, we introduce instead a source
term that is responsible for outgoing flux in the open �de-
tached electron� channels. The point here is that the initial
state is closed with respect to the electron energy. Although it
is open with respect to the photon energy, and could be con-
sidered as a bound electron plus N photons, it cannot be
described by the standard theory of threshold behavior, since
photons cannot be described by a wave function in position
space.

Thus, the multicomponent Floquet wave function �E�r�
satisfies the set of equations �7�,

�H0 − E − n� + Up��E
�n� + V+�E

�n−1� + V−�E
�n+1� = Sn.

�22�

In order to investigate the threshold behavior of photodetach-
ment, the acceleration gauge is more appropriate. Sn�r� is the
source term responsible for the coupling with the initial state.
In the simplest case of one-photon detachment, S1=V+�E

�0�,
where �E

�0� is the electron wave function of the initial state.
The major assumption here is that �E

�0� is not affected by the
back coupling V−�E

�1�; therefore, �E
�0� can be treated as a sta-

tionary state, and the energy of the system is real. This as-
sumption is realistic unless the field is superstrong, in which
case the discussion of threshold phenomena becomes mean-
ingless.

Let us consider now N+1 electronic channels with ener-
gies E+n�−Up, n=0,1 , . . . ,N. In the spirit of the R-matrix
theory �25�, we divide the whole space into two regions,
inside and outside a sphere of radius a. We assume that for
r�a, all electromagnetic coupling between channels van-
ishes. This can be done in the acceleration gauge if a��0
�44�, where �0=F0 /��2 is the amplitude of the electron
quiver motion. Obviously, with the growth of F0 or decrease
of �, the radius a should be increased, and this makes the
energy range over which the threshold law holds very lim-
ited.

Inside the R-matrix sphere, the solution of the system �22�
can be written in the following form:

�E
in�r� = f�r� + u�r�A , �23�

where �E
in is the solution vector with components �E

�n� ,n
=0,1 , . . . ,N, u is the general solution matrix of the homoge-
neous equations �without the source terms�, with rows corre-
sponding to different channels and columns corresponding to
different linearly independent solutions, A is a vector of ar-
bitrary coefficients, whereas f is a column corresponding to a

particular solution of the inhomogeneous equations �22�.
Both f and u are determined by boundary conditions at the
origin that are independent of energy; therefore, they can be
considered as analytic functions of E. Outside the sphere, we
have only outgoing waves in open channels, and exponen-
tially decaying solutions in closed channels, so that the solu-
tion vector is

�E
out�r� = OT , �24�

where O is the diagonal matrix of outgoing solutions having
the asymptotic form

On 
 exp�i�knr − l�/2��/�vn, �25�

where kn is the wave number in channel n �cf. Eq. �10�� and
vn is the electron velocity in channel n �kn=vn in a.u.�. The
normalization of the solution On corresponds to unit flux
density in the outgoing channel. Note also that for the case of
ionization, the asymptotic phase of On should include the
Coulomb phase. T in Eq. �24� is a vector of ionization am-
plitudes that determines the n-photon ionization rate. Specifi-
cally, the differential partial ionization rate dwn in the direc-
tion r̂ is given by

dwn = �Tn�2�Ylm�r̂��2dr̂ , �26�

where l and m are the electron angular momentum and its
projection in channel n. Writing now the matching equations
for �E and its derivative and solving them for T, we obtain

T = �LO�−1��Lf��r=a, �27�

where

L = R
d

dr
− 1, R = u��du

dr
�−1�

r=a
. �28�

The equation for R corresponds to the standard definition of
the R matrix �25�.

In order to investigate the threshold behavior, we should
express the analytical properties of On as a function of the
channel energy kn

2=2�E+n�−Up� explicitly. In the case of
photodetachment, in which there are no long-range interac-
tions outside the R-matrix sphere, On can be expressed as a
linear combination of spherical Bessel and Neumann func-
tions. Consequently, we can write

O = ��k2�k−l−1/2 + i��k2�kl+1/2, �29�

where � and � are real entire functions of k2, and k and l are
diagonal matrices of linear and angular momenta. Substitut-
ing Eq. �29� into Eq. �27�, we obtain

T = kl+1/2�M − ik2l+1�−1g , �30�

where

M = − �L��−1��L���r=a, g = − �L��−1��Lf��r=a. �31�

Equation �30� is an analog of an equation of Ross and Shaw
�26�. The latter was obtained for collision channels not in-
volving photons. Both the matrix M and the vector g are
meromorphic functions of energy, E. For the purpose of in-
vestigating the threshold behavior, they are treated as ana-
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lytical functions of energy, assuming no poles lie near the
threshold.

Consider now the threshold behavior of the N-photon and
the �N+m�-photon detachment processes near the threshold
for N-photon detachment. This means that �E+N�−Up� is
small, and kN

2 =2�E+N�−Up� can be both negative and posi-
tive. Let us call the N-photon channel number 1 and the �N
+m�-photon channel number 2 and assume for simplicity that
all other channels are taken care of by the source terms S1
and S2, or the corresponding terms g1 and g2 in Eq. �30�. For
k1

2�0, both channels are open, and we have

Ti = si
Mjjgi − M12gi − isjgi

�det M�2 − isjMii − isiMjj − s1s2
, �32�

where si=ki
2li+1, i=1,2; j=2 if i=1 and j=1 if i=2; and

det M =M11M22−M12
2 . The most interesting case is l1=0, or

s1=k1. For the detachment rate in channel 1, we obtain, in
accordance with the Wigner threshold law ��T1�2�k1�,

�T1�2 = k1� c1

a + bk1
+ O�k1

2�� , �33�

where

c1 = �M22g1 − M12g1�2 + �s2g1�2,

a = �det M�2 + �s2M11�2, b = 2M12
2 s2 �34�

are all positive constants. For the threshold behavior in chan-
nel 2 ��N+m�-photon channel�,

�T2�2 = s2� c2

a + bk1
+ O�k1

2�� , �35�

where c2= �M11g2−M12g1�2. Below the N-photon threshold,
we have k1

2	0. Defining k1= i
, we obtain

�T2�2 = s2� c1 + �


a + �

+ O�
2�� , �36�

where

� = 2g2�M11g2 − M12g1�, � = 2�M22 det M + s2
2M11� .

�37�

Note that the signs of � and �, in contrast to b, are not
defined, therefore we obtain two types of Baz’ cusps �24�: �i�
“up-down” and �ii� “down-down.” In any event, the rate in
the “old” ��N+m�-photon� channel is always dropping above
the threshold of the “new” �N-photon� channel. In practice,
this threshold behavior can be observed by increasing the
light intensity. In this case, because the ponderomotive shift
is increasing, k1

2 is decreasing, and this leads to the growth of
the �N+m�-photon detachment rate. However, this particular
result has limited significance since we have used a two-
channel approximation and assumed that channel 1 is s-wave
dominated. Generally, one observes all four types of Baz’
cusps �24�, as we shall see in the next section.

V. HIGH-ENERGY ABOVE-THRESHOLD DETACHMENT

In order to judge the accuracy and convergence of our
approach, we begin our analysis by comparing some of our

results for multiphoton detachment rates for H− with the
available published results of Telnov and Chu �45� and of
Gribakin and Kuchiev �46�. According to our arguments re-
garding the proper normalization of the initial-state wave
function �presented in the Appendix�, we readjust our results
obtained with the Yukawa potential by multiplying them by
the factor �B /BYukawa�2=1.731, where B is the exact
asymptotic coefficient and BYukawa is the asymptotic coeffi-
cient resulting from the Yukawa potential. The results of
Gribakin and Kuchiev should correspondingly be renormal-
ized by multiplying them by the factor �B /BGribakin�2 /2
=1.104, where the additional factor 1 /2 rescales the cross
section back to those appropriate for a single-active-electron
model, as discussed in the Appendix. As one can see in Fig.
1, the agreement between the resulting three calculations is
excellent �i.e., within �10%� for n�11 for the laser-field
intensity I=1�1010 W

cm2 . For this laser intensity and 12�n
�22, our results �which are lower� and those of Telnov and
Chu �45� agree to within �17%, while for 23�n�30 the
results of Ref. �45� decrease at a slower rate than ours, most
likely owing to the different potentials used. �We note that
this high n region lies beyond the cutoff of the ATI plateau
for this intensity, n=17, and hence is far from the main focus
of this paper.� For n=12,13 �i.e., at the onset of the plateau�,
the results of Gribakin and Kuchiev �46� are substantially
lower than ours �as well as those of Ref. �45��, presumably
owing to their omission of rescattering in their calculations.
For a higher laser intensity, I=3�1010 W

cm2 , Fig. 1 shows that
the agreement between our results and the results of Ref.
�45� is within �13% over the entire range of n shown, as the
influence of the atomic potential on the final results becomes
smaller for this more intense laser field.

We analyze next the ATD spectra as a function of laser
intensity for the negative H− and F− ions irradiated by lin-
early polarized laser fields with frequencies �=0.0043 and

8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
n
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lo
g 10

 [Γ
(n

)  (
a.

u.
)]

I = 1x10
10
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I = 3x10
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2

FIG. 1. Partial rates ��n� �in atomic units� for n-photon above-
threshold detachment of H− by a linearly polarized CO2 laser field.
The present renormalized results �open circles� are compared to the
available published results of Telnov and Chu �45� �asterisks� for
two laser intensities and to the available published �and renormal-
ized� results of Gribakin and Kuchiev �46� �open triangles� for one
laser intensity, as indicated in the figure. See text for details of the
renormalization procedure.
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0.0253 a.u., respectively. In Figs. 2 and 3, we present the
respective partial rates ��n�, in a.u., as functions of the laser-
field intensity I= �c /8��F0

2, given in units of W
cm2 �using the

conversion factor 1 a.u.=6.436 41�1015 W
cm2 �. In Fig. 2, we

show the n-photon detachment rates for the H− ion, ��n�, for
8�n�65 and for a range of laser-field intensities such that
the n=8, 9, 10, and 11 multiphoton detachment channels
become closed. These results extend those of �17� �in which
the ZRP model was used� to the case of a finite-range poten-
tial, and we find very good agreement with those previous
results. For comparison, we note that in Ref. �17� the n=8, 9,
and 10 channels become closed at the intensities I=1.72,
2.83, and 3.92�1010 W

cm2 , whereas in our case these closures

occur for intensities I=1.76, 2.87, and 3.99�1010 W
cm2 , re-

spectively. Moreover, a pronounced enhancement �up to an
order of magnitude for laser-field intensities close to 3.99
�1010 W

cm2 � of groups of n-photon detachment rates is ob-
served near the even �i.e., 8 and 10� channel closures. One
observes in Fig. 2 four different types of threshold behaviors
of the open-channel rates at the detachment thresholds, as
predicted by Baz’ in Ref. �24�. As noted by Borca et al. �17�,
the most remarkable feature of the ATD spectrum, which
they explain as “an interplay of potential- and laser-induced
effects,” is that the enhancement occurs for n-photon detach-
ment rates on the ATD plateau. In fact, it appears to be most
pronounced in the lower-energy part of the rescattering pla-
teau, where the influence of the atomic potential is strongest.

Figure 3 displays a similar intensity dependence of the
partial rates, ��n�, for detachment of the F− ion �averaged
over the projections of the angular momentum l=1� for chan-
nels 7�n�70 in the region of intensities where, owing to
the increasing ponderomotive shift with increasing intensity,
the n=7, 8, 9, and 10 channels become closed. These clo-
sures occur at the laser-field intensities I=4.69, 6.97, 9.3, and
11.72�1012 W

cm2 , respectively. Comparing Figs. 2 and 3, one
observes that for fixed intensity of the laser field, the ATD
partial rates for the s- and p-electron detachment processes
show qualitatively different behavior in the plateau region:
while both have nearly equal rates for n values on the pla-
teau, for the s-electron initial state the rates form a mono-
tonically decreasing, dense structure as a function of increas-
ing n, whereas in the case of the p-electron initial state the
rates cross each other. This indicates a much more pro-
nounced interference in the high-energy part of the ATD
spectrum for the p- than for the s-symmetry initial state,
which has been noted also in Ref. �41�.

The present and previous �17� calculations show that the
threshold enhancements appear not in the next available
channel, but in channels with much higher energy. For ex-
ample, at the intensity corresponding to the seven-photon
threshold of F− �I=4.69�1012 W

cm2 �, the cusp becomes vis-
ible only in the n=14 channel and extends roughly to the n
=28 channel. In order to explain this phenomenon, we em-
ploy the rescattering model �6,7�, which suggests that if a
photoelectron whose initial energy is zero returns back to the
origin and interacts with or “rescatters” from the core, then
its final energy lies in the range between 3.17Up and 10Up
�5�. Thus, one can assume that the interchannel coupling is
strong when the channel energy difference lies exactly in this
range, i.e., the range of energies to which electrons are
rescattered. This may be illustrated for the case of the n=7
threshold. As noted above, this channel becomes closed
when the laser intensity is 4.69�1012 W

cm2 , which corre-
sponds to a ponderomotive energy of Up=0.0511 a.u., so
that 3.17Up /�=6.5 and 10Up /�=20.6. This means that
channels that are strongly coupled to the n=7 channel corre-
spond to 14	n	28, which agrees with the results of our
numerical calculations. If one next considers the n=9 thresh-
old, the corresponding ponderomotive energy is 0.1034 a.u.,
which leads to the following range of channels n being
strongly coupled with the n=9 channel: 22	n	50. This
also agrees with the results of our calculations. Similar con-
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FIG. 2. Intensity dependence of the partial rates ��n��I� for de-
tachment of the H− ion by a laser field operating at frequency �
=0.0043 a.u., in the region where the ponderomotive shift causes
the n=8, 9, 10, and 11 channel closures �at intensities 1.76, 2.87,
3.99, and 5.12�1010 W

cm2 , respectively�. These results compare well
with results of a ZRP model calculation �17�.
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FIG. 3. The same as Fig. 2 but for the F− ion irradiated by a
laser field of frequency �=0.0253 a.u., in the region of intensities
over which the n=7, 8, 9, and 10 channels become closed �at in-
tensities of the laser field equal to 4.69, 6.97, 9.30, and 11.72
�1012 W

cm2 , respectively�. The results for the partial rates have been
averaged over the projections of the initial angular momentum, l
=1.
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siderations apply as well to the H− spectrum �cf. Fig. 2�.
Notice that not all �n+m�-photon channels demonstrate

the rate enhancement at the closing of the n-photon channel,
but only a range of ATD channels on the plateau do. Clearly
the atomic potential plays a key role in facilitating interac-
tions between different multiphoton channels. Thus it is
mainly electrons that return to the atomic core, i.e., the
rescattered electrons, whose initial and final channels un-
dergo interaction. Since ATD plateaus originate from rescat-
tering processes, it is only ATD plateau channels that can
therefore become enhanced at the closing of lower-energy
multiphoton channels. This contrasts with a Rydberg reso-
nance or light-induced resonance interpretation of the en-
hancements, which one would expect to enhance the entire
ATD spectrum and not just a limited range of ATD channels.

Another notable feature in the enhancements of the ATD
spectra revealed by comparison of our numerical results for
the hydrogen and fluorine negative ions is that they are quali-
tatively different. While the enhancements for H− �having an
s outer electron� are pronounced for open channels at the
even-channel closures, for F− �having a p outer electron� the
pronounced enhancements manifest themselves when the
odd channels are closed. Therefore, our assumption about the
s-wave dominance near the threshold made in the previous
section is reasonable, i.e., that it is the closure of s-wave
channels accessible from the initial state that results in the
most pronounced enhancements. On the other hand, the as-
sumption about the two-channel coupling dominance is not
very well justified, since there is an entire group of
�n+m�-photon absorption channels that are strongly coupled
to the n-photon channel. Therefore not all �n+m�-photon
channels grow in magnitude as the intensity increases toward
the n-photon threshold, as suggested by Eqs. �35� and �36�.

VI. ANGULAR DISTRIBUTIONS

Dramatic changes of few photon angular distributions
�ADs� with varying laser intensity near detachment thresh-
olds have been studied both experimentally �47,48� and theo-
retically �49,50� for the case of H−. In Ref. �49�, the behav-
iors of angular distributions for electrons detached by two
and three elliptically polarized photons were investigated
near CCs. The angular distributions for two-photon detach-
ment by linearly polarized light near the corresponding CC
were studied experimentally in Refs. �47,48� and investi-
gated theoretically in Ref. �50�. The angular distribution of
ATD electrons for F− �41,43,51� as well as for other halogen
negative ions �51� was investigated for fixed laser intensity,
and comparisons were made to those for H− �41,51�. In con-
trast to these prior works for F−, the present work investi-
gates the intensity dependence of the ADs of electrons de-
tached from F− in the vicinity of multiphoton channel
closings.

In Figs. 4 and 5, we demonstrate the intensity dependence
of the eight- and nine-photon ADs for F− detachment by a
linearly polarized laser field having a frequency �
=0.0253 a.u. for the cases in which the laser-field intensity
approaches the values corresponding to the closing of these

particular thresholds. �Note that the detachment rates have
been averaged over the projections of the initial-state orbital
angular momentum, l=1.� For the eight-photon detachment
channel near its threshold, the ADs for different intensities
are all peaked along the polarization direction of the laser
field �i.e., along the horizontal axis in Fig. 4�, and no elec-
trons are ejected in the perpendicular direction. A more in-
teresting behavior of the ADs with changing laser-field inten-
sity is observed in Fig. 5. While at lower intensities the ADs
for the nine-photon detachment channel near the nine-photon
threshold are peaked along the polarization vector of the la-
ser field �̂, as the intensity of the laser field increases slightly
the ADs change dramatically with their maximum pointing
perpendicular to the laser-field polarization. In particular, for
the intensity I=9.21�1012 W

cm2 the emission of the detached

FIG. 4. Angular distributions �ADs� for F− detachment by eight
photons �averaged over the projections of the initial angular mo-
mentum, l=1� for a linearly polarized laser field of frequency �
=0.0253 a.u. when the laser-field intensity is varied in the vicinity
of the closing of the eight-photon channel, i.e., I=6.94, 6.95, 6.954,
6.96, 6.964, and 6.97�1012 W

cm2 �in order from top left to bottom
right panels�. The ADs for each intensity are peaked along the di-
rection of the laser polarization �̂, which is marked by the solid
horizontal line in each panel; no electrons are observed to be
ejected perpendicularly to �̂.
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electrons along the laser polarization is zero. For still higher
intensities, approaching the threshold for nine-photon de-
tachment, the AD becomes isotropic. Similarly dramatic
changes in the shapes of the ADs for other odd multiphoton
detachment channels of F− as a function of laser-field inten-
sity in the vicinity of the channel closings have been found in
our calculations, while the more usual or expected ADs
found for the eight-photon channel have been found also for
other even multiphoton channels. In contrast, we find that the
behaviors of the ADs for odd- and even-photon channels for
an H− ion �having initial orbital angular momentum, l=0� are
reversed. These AD results demonstrate once more the im-
portance of the symmetry of the initial electron state, i.e.,
whether it is an s or p electron.

In order to explain the peculiar behaviors of the ADs near
the thresholds, we employ the Keldysh-like theory developed
in Ref. �52�. As shown by Gribakin and Kuchiev �46�, at
threshold, when the kinetic energy of the detached electron is

low compared to its binding energy in the atomic potential,
namely p2 /2� �E0�, the n-photon detachment angular distri-
bution from an atomic state of angular momentum l and
projection m behaves like �cf. Eq. �42� in Ref. �46��,

d��n�

d�

 p� p sin �



�2�m�

exp� p2

�
� �

�1 + �2
− sinh−1 ���

� exp�−
�p2 sin2 �

��1 + �2 ��1 + �− 1�n+l+m

�cos�2
p cos ��1 + �2

��
�� , �38�

where 
=�−2E0 and �=
� /F0 is the Keldysh parameter.
�Note that in this analysis, we are only considering terms that
depend on the angle � �between the electron momentum p
and the polarization vector of the laser field �̂� and on the
magnitude of electron momentum, �p � � p.� It follows from
Eq. �38� that the detachment rate for the state with m�0 is
much smaller than that for m=0, owing to the presence of
the term �p sin � /
�2�m�. This is exactly what one sees in Fig.
6, which shows the angular distributions for the nine-photon
detachment channel of the F− ion by a linearly polarized
laser field �with polarization direction marked by the solid
horizontal line� having frequency �=0.0253 a.u. and inten-
sity I=9.21�1012 W

cm2 , which is very close to that necessary
to close the nine-photon channel, i.e., I=9.3�1012 W

cm2 . The
left panel in Fig. 6 corresponds to the initial state with m
=0, whereas the right panel corresponds to m=1 or −1. Note
that the detachment rates between these cases differ by three
orders of magnitude. A remarkable feature of these ADs is
that in each case there is no emission of the detached elec-
trons along the direction of laser polarization. For m=0, the
AD is peaked in the perpendicular direction. This can also be
explained on the basis of Eq. �38�. Namely, it follows from
the interference term in the last set of square brackets in Eq.
�38� that the detachment rates are zero for photoelectrons
emitted perpendicularly to the laser field, �=� /2, when n
+ l+m is odd, and that they are maximal when n+ l+m is
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FIG. 5. The same as in Fig. 4 for the nine-photon channel near
the closing of the nine-photon channel for six laser-field intensities,
I=8.90, 9.10, 9.21, 9.26, 9.29, and 9.30 �1012 W

cm2 �from top left to
bottom right panels, respectively�. The ADs, initially peaked along
the laser-field polarization �̂, for higher intensities become strongly
peaked in the perpendicular direction �for I=9.21�1012 W

cm2 the
probability for electron detachment in the direction of �̂ is zero�,
whereas at intensities close to the threshold they become isotropic.
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FIG. 6. The ADs for the nine-photon detachment channel of F−

by a laser field of frequency �=0.0253 a.u. and linear polarization
along the horizontal axis, for an intensity I=9.21�1012 W

cm2 . The
left panel corresponds to detachment of an initial state with �l ,m�
= �1,0�, whereas the right panel corresponds to initial states �l ,m�
= �1,1� or �1,−1�. The average of these ADs over the initial-state
angular momentum projections is presented in Fig. 5�c�.
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even. In the case considered, i.e., the n=9 channel for a
p-electron �l=1� initial state, for m=0 we observe an AD that
is peaked perpendicularly to the laser field, and for the other
values of m the probability of electron photoemission at the
angle �=� /2 is zero. As follows also from Eq. �38�, for the
ejection angle �=0 there are obviously no detached electrons
observed for m�0. Finally, we note that since the ADs pre-
sented in Figs. 4 and 5 are mainly influenced by the contri-
bution of the m=0 initial state, one can describe without loss
of generality the ADs near channel-closing thresholds using
Eq. �38� for this case. For very small photoelectron kinetic
energies near the threshold, one can expand the formula for
the differential partial rate �38� for m=0 with respect to
small p. One finds that d��n� /d� is proportional to p for n
+ l having even values, whereas for n+ l odd it is proportional
to p3cos2�, as has been noted in Ref. �48�. This explains the
threshold behavior of the ADs demonstrated in Figs. 4 and 5
��f� panel in each figure�.

We note in concluding this section that we have also in-
vestigated the intensity dependence of the ADs of ATD pla-
teau electrons in the vicinity of CCs. We have found gener-
ally that while the topological shapes of the ADs remain
unchanged, both the relative and absolute magnitudes of the
different lobes of the ADs may in many cases change, in
some instances dramatically. In addition, the results exhibit
sensitivity to the initial-state symmetry of the active electron.
These results for ADs of plateau electrons will be presented
elsewhere.

VII. CONCLUSIONS

Our finite-range model potential results for ATD rates and
detached electron angular distributions for the H− and F−

negative ions show dramatic changes with varying laser-field
intensity in the vicinity of multiphoton detachment channel
closings. These changes have been interpreted analytically.
The results for H− confirm results obtained within the ZRP
model for ATD plateau enhancements �17�. We expect that
similar enhancements will occur when the channels are
closed by changing the laser frequency, as has been predicted
for H− in �17�. Our results have demonstrated the importance
of the initial-state symmetry of the active electron. Depend-
ing on the s or p symmetry, very pronounced enhancements
of the low- to mid-energy regions of the ATD plateau have
been found for intensities in the vicinity of even- or odd-
photon detachment channel closings, respectively. Remark-
able also is that in our model for F− detachment, multiphoton
resonances between the bound atomic states have turned out
not to influence the enhancements in the high-order ATD
spectrum. We conclude, therefore, that threshold anomalies
at channel closings offer a clear and fully satisfactory expla-
nation of resonant-like enhancements of high-energy ATD
spectra, and we suspect that the same explanation likely
holds also for the high-energy above-threshold ionization of
neutral atoms, as observed experimentally for rare gases
�8–13�.

Variations in the ATD electron ADs with changing laser
intensity in the vicinity of channel closings have also been

found. These ADs have been shown to be highly sensitive to
the initial-state symmetry. Our results are consistent with the
predictions of Ref. �46�.

Note added in proof. Recently we were informed by N. L.
Manakov of calculations for multiphoton detachment of F−

using effective range theory �N. L. Manakov and M. V.
Frolov, JETP Lett. 83, 536 �2006��. Although carried out for
a different laser frequency, those results appear to be consis-
tent with the finite-range potential Floquet-Sturmian results
in this paper.
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APPENDIX: NORMALIZATION OF RATES FOR
H− DETACHMENT TREATED IN THE

SINGLE-ACTIVE-ELECTRON APPROXIMATION

In calculations of photodetachment of negative ions in-
volving the use of a model potential within the SAE ap-
proach, there is apparently much confusion regarding the
proper normalization of the final result. We discuss this prob-
lem in detail here for the illustrative case of the H− ion,
which has been treated in different ways by many authors. At
the end of this appendix, we note our generalization for the
case of the F− ion.

Many authors �see, e.g., �34,37,46,53,54�� claim that since
there are two equivalent electrons in the 1s2 subshell, the
final result for the photodetachment cross sections for H−

should be multiplied by a factor of 2. At the same time, some
of them �e.g., �46,53,54�� use the zero-range potential model
to describe the initial state

�1�r� = B
e−
r

r
, �A1�

where 
=�−2E1, and fail to use the proper normalization
coefficient B. In the pure ZRP model, B0=�
 /2�. However,
it has been known since the work of Bethe and Longmire
�55� that in order to account for the finite range of the e-H
interaction, one should use a different normalization con-
stant, B=1.629B0 �see, for instance, Ref. �56��. This happens
because the ZRP model overestimates the electron probabil-
ity density near the nucleus. Laughlin and Chu �57� noted
that Geltman’s calculations �54� fail to use the proper value
of B, but multiply the cross sections by a factor 2 because of
the two electrons in the 1s2 subshell. �The same procedure
was adopted by Becker et al. �53�.� As a result, Geltman’s
cross sections are too small by about a factor of
�1.6290�2 /2=1.327 as compared to the results of Chu and
coauthors �45,57–59�. Note that Chu and coauthors do not
have the extra factor of 2; they also use a more sophisticated
potential for describing the e-H interaction. Thus the ratio of
their cross sections to those calculated by Geltman �54� is
not exactly 1.327, but varies with energy.
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Gribakin and Kuchiev �46� do not use the zero-range po-
tential model explicitly, but they introduce the asymptotic
coefficient in the initial wave function �1, A=B�4�. With
their choice of A=0.75, we obtain B=0.212, which is close
to B0=0.194, while the correct value, according to Refs.
�56,60�, should be B=0.315. Like Geltman, Gribakin and
Kuchiev use the factor 2 in their final result, so that their
results are in agreement with those of Chu et al.

Whereas there is no doubt that the proper normalization
constant, B=0.315, should be used in photodetachment cal-
culations, the situation regarding the factor of 2 in the cross
section is not quite clear. Let us discuss this issue in more
detail in connection with the one-photon detachment process.

In restricted Hartree-Fock calculations, the two equivalent
electrons in the 1s2 subshell are described by the same or-
bital, and the two-electron wave function for the initial state
can be written in the form

�i�r1,r2� = �1�r1��1�r2� . �A2�

The final-state wave function in the independent-electron ap-
proximation is

� f�r1,r2� =
1
�2

��1s�r1��k�r2� + �1s�r2��k�r1�� , �A3�

where �1s�r� is the 1s hydrogenic orbital, and �k�r� is a
properly normalized plane wave that corresponds to the
final-electron wave vector k. The dipole matrix element �for
simplicity, we consider only one Cartesian component of the
dipole operator D1+D2�,

Mk = � f�D1 + D2��i� , �A4�

calculated with those functions, is

Mk = Mk
�1��2�1s��1� , �A5�

where Mk
�1� is the one-electron matrix element. Thus the one-

photon detachment cross section is

� = 2��1���1s��1��2. �A6�

If we assume here that the overlap integral �1s ��1�=1, then
we obtain �=2��1�. However, this assumption is not justi-
fied. The form of the initial-state orbital, Eq. �A1�, although
good for calculation of the photodetachment matrix element,
does not give a reliable result for the overlap. In particular, if
we use B=0.315, the overlap is 1.465, which is physically
meaningless. On the other hand, for B=B0=0.194, the value
of the overlap is 0.882, which suggests that the one-electron
cross section should be multiplied not by a factor of 2, but by
a factor 1.55.

To investigate this matter in more detail, we plot in Fig. 7
the three H− radial wave functions u1�r� ��1�r�
=u1�r� / �r�4��� calculated, respectively, with the use of the
Yukawa potential of Shakeshaft et al. �34� employed in the
present work, the potential of Laughlin and Chu �57�, and the
zero-range potential �56�. In the latter case, we use B
=0.315 for the normalization constant. We see that the accu-
rate potential of Laughlin and Chu, which includes the long-
range polarization interaction, leads to the proper asymptotic
behavior of the wave function. In particular, the asymptotic

coefficient B is equal to the proper value B=0.315 within 1%
accuracy. At the same time, the function obtained from the
Yukawa potential has a higher probability density at smaller
distances, which leads to BYukawa/B=0.760. The values of
the overlap integral are 0.882 and 0.691 for the Yukawa and
Laughlin and Chu potentials, respectively. This leads, ac-
cording to Eq. �A6�, to �=1.55��1� for the Yukawa potential
and �=0.955��1� for the Laughlin and Chu potential. It is
evident now that the agreement with Laughlin and Chu,
which Shakeshaft et al. obtain after introducing an extra fac-
tor of 2 in their cross section, has nothing to do with the
two-electron character of the problem, but rather with the
normalization of �1�r�.

There is actually a more serious problem with using the
initial wave function in the form �A2�. It is well known that
this form does not result in a positive electron affinity for
hydrogen H. Indeed, the best variational value of 
, 

=0.6875, gives −0.473 a.u. for the binding energy of H−,
which is higher than the energy of the neutral hydrogen
atom. One can try to improve the situation by introducing the
unrestricted Hartree-Fock wave function containing two dif-
ferent orbitals for 1s electrons, i.e.,

�i�r1,r2� =
1
�2

��1�r1��2�r2� + �1�r2��2�r1�� . �A7�

By choosing

�1�r� = c1e−�r, �2�r� = c2e−�r, �A8�

one can obtain a total energy of H− below −0.5 a.u. In par-
ticular, choosing �=1, �=0.25 one gets E=−0.5122 a.u.,
which corresponds to an electron affinity of 0.33 eV. Of
course, for more accurate values of the affinity, a function
with many variational parameters should be used. If one cal-
culates the photodetachment matrix element using the func-
tion �A7�, one obtains

0 2 4 6 8 10 12 14 16 18 20
r (a.u.)

0

0.3

0.6

0.9

1.2

u 1(r
) 

(a
.u

.)

Yukawa potential, Shakeshaft and Tang (1987)
Zero-range potential, Ohmura and Ohmura (1960)
Angular-momentum-dependent potential, Laughlin and Chu (1993)

FIG. 7. Comparison of the radial electron wave functions for
three different model potentials �34,56,57�, as noted in the figure,
describing H− within the SAE approximation.
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Mk = Mk,1
�1��1s��2� + Mk,2

�1��1s��1� , �A9�

where Mk,i
�1� is the one-electron matrix element corresponding

to the removal of the electron occupying the orbital i.
It is clear now that at energies close to the photodetach-

ment threshold, the process of detachment of the electron
from the orbital with lower binding energy �say, the orbital
�2� will dominate, so there is no justification for multiplying
the one-electron cross section by the factor 2. However, for
higher energies the detachment of the electron from the or-
bital �1 becomes important. In order to investigate the com-
petition between these two processes, we present the matrix
element Mk for the case of an initial-state wave function
having the form given in Eqs. �A7� and �A8�. Up to an over-
all numerical factor �which is not essential for our purposes
here�, we obtain that

Mk 
 cos �k����3/2� 1

��2 + k2�2�1 + ��3

+
1

��2 + k2�2�1 + ��3� , �A10�

where �k is the angle between the wave vector k and the
photon polarization vector �̂. At the threshold, k=0, the ratio

of the first to the second term is 0.512/32=0.016. This
means that the one-electron expression for the cross section
is reasonably accurate, and the factor of 2 in the final result is
not justified. However, with the growth of k2 the ratio in-
creases dramatically and reaches 4.096 at k��. This has a
clear physical meaning: at high energies, the process of re-
moval of the electron from the inner orbital becomes domi-
nant. However, the enhancement factor �as compared to the
ZRP model� becomes much greater than 2.

In summary, the one-electron model for H− detachment
can be used only at relatively low energies when the process
of electron removal from the orbital with higher binding en-
ergy is not important. In particular, the model can be used in
studies of threshold effects in multiphoton detachment,
which is the main purpose of the present paper. The absolute
values of our rates are not accurate, however, for two rea-
sons: first, because of the normalization factor in the one-
electron wave function, and second because of the impor-
tance of two-electron effects at higher energies. However,
there is absolutely no justification for the extra factor of 2 in
the final cross sections. Also, on the basis of similar argu-
ments, one can draw the conclusion that there is no need to
multiply the results for F−, obtained within the analogous
single-active-electron model, by a factor of 6 owing to the
degeneracy of the initial p state.

�1� P. Agostini, F. Fabre, G. Mainfray, G. Petite, and N. K. Rah-
man, Phys. Rev. Lett. 42, 1127 �1979�.

�2� L. F. DiMauro and P. Agostini, Adv. At., Mol., Opt. Phys. 35,
79 �1995�.

�3� M. Protopapas, C. H. Keitel, and P. L. Knight, Rep. Prog.
Phys. 60, 389 �1997�.

�4� N. B. Delone and V. P. Krainov, Phys. Usp. 41, 469 �1998�.
�5� W. Becker, F. Grasbon, R. Kopold, D. B. Milošević, G. G.

Paulus, and H. Walther, Adv. At., Mol., Opt. Phys. 48, 35
�2002�.

�6� K. J. Schafer, B. Yang, L. F. DiMauro, and K. C. Kulander,
Phys. Rev. Lett. 70, 1599 �1993�.

�7� P. B. Corkum, Phys. Rev. Lett. 71, 1994 �1993�.
�8� P. Hansch, M. A. Walker, and L. D. Van Woerkom, Phys. Rev.

A 55, R2535 �1997�.
�9� M. P. Hertlein, P. H. Bucksbaum, and H. G. Muller, J. Phys. B

30, L197 �1997�.
�10� M. J. Nandor, M. A. Walker, L. D. Van Woerkom, and H. G.

Muller, Phys. Rev. A 60, R1771 �1999�.
�11� E. Cormier, D. Garzella, P. Breger, P. Agostini, G. Chériaux,

and C. Leblanc, J. Phys. B 34, L9 �2000�.
�12� G. G. Paulus, F. Grasbon, H. Walther, R. Kopold, and W.

Becker, Phys. Rev. A 64, 021401�R� �2001�.
�13� F. Grasbon, G. G. Paulus, H. Walther, P. Villoresi, G. Sansone,

S. Stagira, M. Nisoli, and S. De Silvestri, Phys. Rev. Lett. 91,
173003 �2003�.

�14� H. G. Muller and F. C. Kooiman, Phys. Rev. Lett. 81, 1207
�1998�.

�15� H. G. Muller, Phys. Rev. A 60, 1341 �1999�.
�16� R. Kopold, W. Becker, M. Kleber, and G. G. Paulus, J. Phys. B

35, 217 �2002�.
�17� B. Borca, M. V. Frolov, N. L. Manakov, and A. F. Starace,

Phys. Rev. Lett. 88, 193001 �2002�.
�18� S. V. Popruzhenko, Ph. A. Korneev, S. P. Goreslavski, and W.

Becker, Phys. Rev. Lett. 89, 023001 �2002�.
�19� J. Wassaf, V. Véniard, R. Taïeb, and A. Maquet, Phys. Rev.

Lett. 90, 013003 �2003�.
�20� J. Wassaf, V. Véniard, R. Taïeb, and A. Maquet, Phys. Rev. A

67, 053405 �2003�.
�21� K. C. Kulander, K. J. Schafer, and J. L. Krause, in Atoms in

Intense Laser Fields, edited by M. Gavrila �Academic, Boston,
1992�, p. 247.

�22� R. Bhatt, B. Piraux, and K. Burnett, Phys. Rev. A 37, 98
�1988�.

�23� R. M. Potvliege, Phys. Rev. A 62, 013403 �2000�.
�24� A. I. Baz’, Sov. Phys. JETP 6, 709 �1958�.
�25� A. M. Lane and R. G. Thomas, Rev. Mod. Phys. 30, 257

�1958�.
�26� M. H. Ross and G. L. Shaw, Ann. Phys. �N.Y.� 13, 147 �1961�.
�27� M. Gailitis, Sov. Phys. JETP 17, 1328 �1963�.
�28� A. I. Baz’, Ya. B. Zel’dovich, and A. M. Perelomov, Scatter-

ing, Reactions and Decays in Nonrelativistic Quantum Me-
chanics �Nauka, Moscow, 1971�, Sec. IX.

�29� L. D. Landau and E. M. Lifshitz, Quantum Mechanics �Perga-
mon, Oxford, 1977�, Sec. 417.

�30� K. Krajewska, I. I. Fabrikant, and A. F. Starace, Bull. Am.
Phys. Soc. 51, 119 �2006�.

�31� R. M. Potvliege and R. Shakeshaft, in Atoms in Intense Laser
Fields, edited by M. Gavrila �Academic, Boston, 1992�, p.
373.

KRAJEWSKA, FABRIKANT, AND STARACE PHYSICAL REVIEW A 74, 053407 �2006�

053407-12



�32� R. M. Potvliege, Comput. Phys. Commun. 114, 42 �1998�.
�33� I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series

and Products �Academic, San Diego, 1980�.
�34� R. Shakeshaft and X. Tang, Phys. Rev. A 36, 3193 �1987�.
�35� R. M. Potvliege and R. Shakeshaft, Phys. Rev. A 38, 4597

�1988�.
�36� R. M. Potvliege and R. Shakeshaft, Phys. Rev. A 38, 6190

�1988�.
�37� M. Dörr, R. M. Potvliege, D. Proulx, and R. Shakeshaft, Phys.

Rev. A 42, 4138 �1990�.
�38� K. R. Lykke, K. K. Murray, and W. C. Lineberger, Phys. Rev.

A 43, 6104 �1991�.
�39� C. Blondel, P. Cacciani, C. Delsart, and R. Trainham, Phys.

Rev. A 40, 3698 �1989�.
�40� I. Yu. Kiyan and H. Helm, Phys. Rev. Lett. 90, 183001 �2003�.
�41� M. V. Frolov, N. L. Manakov, E. A. Pronin, and A. F. Starace,

Phys. Rev. Lett. 91, 053003 �2003�.
�42� D. B. Milošević, A. Gazibegović-Busuladžić, and W. Becker,

Phys. Rev. A 68, 050702�R� �2003�.
�43� M. V. Frolov, N. L. Manakov, E. A. Pronin, and A. F. Starace,

J. Phys. B 36, L419 �2003�.
�44� P. G. Burke, P. Francken, and C. J. Joachin, J. Phys. B 24, 761

�1991�.
�45� D. A. Telnov and S.-I. Chu, J. Phys. B 37, 1489 �2004�.
�46� G. F. Gribakin and M. Yu. Kuchiev, Phys. Rev. A 55, 3760

�1997�.
�47� R. Reichle, H. Helm, and I. Yu. Kiyan, Phys. Rev. Lett. 87,

243001 �2001�.
�48� R. Reichle, I. Yu. Kiyan, and H. Helm, J. Mod. Opt. 50, 461

�2003�.
�49� B. Borca, M. V. Frolov, N. L. Manakov, and A. F. Starace,

Phys. Rev. Lett. 87, 133001 �2001�.
�50� D. A. Telnov and Shih-I Chu, Phys. Rev. A 66, 063409 �2002�.
�51� A. Gazibegović-Busuladžić, D. B. Milošević, and W. Becker,

Phys. Rev. A 70, 053403 �2004�.
�52� A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, Sov. Phys.

JETP 23, 924 �1966�.
�53� W. Becker, S. Long, and J. K. McIver, Phys. Rev. A 42, 4416

�1990�.
�54� S. Geltman, Phys. Rev. A 43, 4930 �1991�.
�55� H. A. Bethe and C. Longmire, Phys. Rev. 77, 647 �1950�.
�56� T. Ohmura and H. Ohmura, Phys. Rev. 118, 154 �1960�.
�57� C. Laughlin and Shih-I Chu, Phys. Rev. A 48, 4654 �1993�.
�58� J. Wang, Shih-I Chu, and C. Laughlin, Phys. Rev. A 50, 3208

�1994�.
�59� D. A. Telnov and Shih-I Chu, Phys. Rev. A 50, 4099 �1994�.
�60� Yu. N. Demkov and V. N. Ostrovsky, Zero-Range Potentials

and Their Applications in Atomic Physics �Plenum, New York,
1988�.

THRESHOLD EFFECTS IN STRONG-FIELD… PHYSICAL REVIEW A 74, 053407 �2006�

053407-13


