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Energies and structures of 4HeN-ICl�X� complexes, N�30, are determined within the framework of a
recently developed Hartree-like approach �Phys. Rev. A 71, 033203 �2005��, in which the He atoms play the
role of the electrons and the I and Cl atoms play the role of the nuclei. The potential energy of the system is
represented as a sum of the He-ICl triatomic and He-He pair interactions fitted to results of ab initio calcula-
tions. The validity of the approach is evaluated through comparisons with the results of “exact” variational
calculations performed for the cases of N=1 and 2. The procedure, which furnishes also the wavefunctions,
allows for simulation of the infrared spectra of the ICl molecule embedded in the bath of HeN clusters.
Similarly to the case of the “bare” ICl, when the clusters are formed from bosonic He atoms the absorption
selection rules lead only to the P and R branches of the spectra �the Q branches are missing�. The spectra
exhibit a monotonically increasing blueshift, albeit with a decreasing rate, as the cluster size increases.
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I. INTRODUCTION

Helium nanodroplets have proven to be a unique matrix in
which to conduct high-resolution molecular spectroscopy as
well as for synthesizing new molecular species and clusters
�1�. Following the pioneering work on the infrared spectra of
SF6 �2,3� and later of OCS �4,5� embedded in He droplets,
rotationally resolved spectra have been reported for a wide
range of systems �see, e.g., Refs. �6–8��. In order to study
further the nature of the helium environment and its interac-
tion with dopant molecules on the microscopic scale, high-
resolution infrared and microwave measurements on small
doped helium clusters have been recently performed �see,
e.g., Refs. �9,10��. Theoretical approaches to describe the
structure and ground-state energetics of helium clusters �11�
have been provided by zero temperature diffusion Monte
Carlo �DMC� �12� and finite temperature Feymann’s path-
integral Monte Carlo methods �see, e.g., Ref. �13��. The pro-
jection imaginary time spectral evolution implementation of
the DMC method by Blume et al. �14� allows for evaluation
of the energies of low-lying excited states �see, e.g., Ref.
�15��. The recently developed reptation quantum Monte
Carlo approach, �16� in which the correlation function is
computed explicitly and is fitted to a multi-exponential func-
tion, yields excitation energies and spectral weights neces-
sary for simulation of spectra of solvated species �see, e.g.,
Ref. �13��. The principal difficulty of these methods is the
use of the inverse Laplace transform of the time correlation
function which is an ill-defined problem �14�.

Recently, we have shown that an alternative quantum
chemistry-like approach can be used efficiently to obtain en-

ergies and structural properties of HeN-Br2�X� complexes
�17–19�. The treatment also supplies the system’s wave func-
tions, allowing one to carry out spectral simulations. We
have demonstrated this for vibrotational Raman spectra of
nonpolar diatomic molecules �17,18�. Our results point to the
central role of the nuclear spin statistics of the surrounding
He atoms in defining the very different spectral features ob-
served experimentally for OCS �4� and SF6 �1� molecules
dependently on whether they are solvated in a fermionic or
bosonic environment. Using Br2�X� as a dopant and He2 as a
solvent we have shown �20� that a model potential energy
surface �PES� of the entire system can be constructed as a
sum of ab initio He-Br2 triatomic interactions �21� and semi-
empirical He-He �22� pair interactions. DMC calculations
�23� have indicated that the energies and density distributions
for clusters with N�16 are only weakly dependent on the
He-Br2 interaction, irrespective of whether it is described by
the ab initio triatomic potential with minima at T-shaped and
linear configurations �21,24�, or by a sum of He-Br and
Br-Br Morse potentials with a minimum only at the T-shaped
configuration �25�.

In this paper, we study the case of 4HeN-ICl clusters,
which are different from 4HeN-Br2 systems at least in two
important respects. First, ab initio calculations on the tri-
atomic He-ICl �26� predict three PES minima, which corre-
spond to “linear” �He on the side of the I end of the ICl
molecule�, near T-shaped, and “antilinear” �He on the side of
the Cl end of the ICl molecule� equilibrium structures. Mod-
eling of the PES as a sum of the He-ICl triatomic and He-He
pair interactions has been verified by comparison with ab
initio computations on He2-ICl �27�. The binding energies of
the three equilibrium structures decrease from linear to
T-shaped to antilinear. This higher, as compared to the case
of He-Br2, degree of anisotropy has a persistent effect even
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in larger HeN-ICl clusters �we have considered here values of
N up to 30�. Second, ICl�X� has a permanent dipole moment
and therefore simulation studies of its IR spectra bare more
relevance to experimental IR spectroscopy of “linear” mol-
ecules such as OCS �4�. We shall show that our treatment
explains the absence of the Q branches in the spectra of polar
molecules embedded in bosonic environments and anticipate
their presence in the case of fermionic embedding environ-
ments.

The paper is organized as follows. In the next section we
present, in the framework of an adiabatic treatment, a brief
outline of the Hartree approach, which includes a slight
modification of the He-He interaction potential, and describe
the theoretical methodology for simulation of infrared �IR�
spectra of polar diatomic dopants. In Sec. III, we characterize
the model potential energy surface we use, which is based on
ab initio calculations on tri- and tetra-atomic clusters
�26,27�, and present the results obtained. These include clus-
ter energies and density distributions, as well as angular mo-
menta and IR spectra, all considered as a function of cluster
size. The results are validated through comparisons with “ex-
act” variational calculations performed for the cases of N
=1 and 2. The analysis focuses on the effects of the embed-
ding environment on the IR spectra of the ICl molecule. The
summary and the outlook are outlined in Sec. IV.

II. THEORETICAL TREATMENT

A. Adiabatic model

Using satellite coordinates ��r ,Rk��, where r is the vector
joining the I and Cl halogen atoms and Rk are the vectors
from the center of mass of the ICl molecule to the different
He atoms, one can write the Hamiltonian of the HeN-ICl
system as

H = −
�2

2m

�2

�r2 + U�r� +
j2

2mr2 + �
k=1

N

hk�Rk,r�

+ �
k�l

Ṽkl�Rk,Rl,�k,�l� . �1�

It consists �19� of a diatomic part that corresponds to the ICl
molecule �the first three terms�, N He-ICl triatomic Hamilto-
nians �the fourth term�, and all the He-He interactions �the
fifth term� including not only potential terms but also dy-
namical couplings �28�. In Eq. �1�, m is the reduced mass of
the diatomic molecule, j is the angular momentum associated
with r, and U represents the intramolecular diatomic poten-
tial. The triatomic Hamiltonians have the form

hk�Rk,r� = −
�2

2�

�2

�Rk
2 +

lk
2

2�Rk
2 + W�Rk,r,�k� , �2�

where � is the reduced mass of the He-ICl system, lk is the
angular momentum associated with Rk, and W represents the
atom-diatom intermolecular potential that depends on the
pair of �Rk ,r� distances and the angle �k between the Rk and
r vectors.

We choose a body-fixed �BF� coordinate system with the
Z axis parallel to r, and solve the Schrödinger equation

��
k=1

R

hk + �
k�l

Ṽkl − E�
�N��r�	��

�N���Rk�;r� = 0 �3�

within the adiabatic approximation �i.e., for different fixed
values of the diatomic bond length r�. This can be accom-
plished by using, for example, the well-known Hartree
method. In Eq. �3�, each r-dependent eigenenergy, labeled by
�, the projection of the total orbital angular momentum L
=�k=1

N lk on the molecular axis, constitutes an additional po-
tential energy term for the diatomic molecule. As shown be-
low, in a bosonic helium environment the r-dependent
eigenenergies correspond to the case of �=0, that is to 	
states. For a total angular momentum J= j+L, with a projec-
tion 
=� onto the BF Z axis, and neglecting the Coriolis
couplings, the states of the solvated diatomic molecule are
described by the Schrödinger equation


−
�2

2m

�2

�r2 + U�r� + E�
�N��r� +

�2

2mr2 �J�J + 1� + �L2��

− � j��J��
�N� �r� = 0, �4�

where v is the stretching �vibrational� quantum number.
Since the total orbital angular momentum L is not a good
quantum number, we use as a characteristic quantity the
value of �L2� computed as an average over the distribution of
L values �19�. Thus, the total wave function is approximated
as

��N� � DM

J*

��r,�r,0���
�N���Rk�;r�J�v

�N� �r� , �5�

where DM

J are Wigner rotation matrices that depend on the

polar components of r in the space-fixed �SF� frame.

B. Overview of the Hartree approach

In order to obtain the energies and the helium density
distributions we use a Hartree-like approach as described in
Ref. �19�. Briefly, the wave function of the N bound helium
atoms is constructed as a symmetrized Hartree product of
single-particle wave functions. For a generic case, when Ni
bosons occupy the same single-particle orbital labeled as i,
the N-boson total wave function is expressed as

��N1,. . .,NM�
�N� =

1

�N
Ŝ��

i=1

N1

�1�Ri;r� �
i=N1+1

N1+N2

�2�Ri;r� ¯ �
i=�N1+¯+NM−1�+1

N

�M�Ri;r�� , �6�
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where �i
MNi=N, M �N, Ŝ is the symmetrization operator,

and 1/�N is the normalization factor, in which N denotes
the number of different Hartree products that can be obtained
by interchanging bosonic particles occupying different orbit-
als. As already discussed �19�, the total energy can be written
in terms of single particle energies of the bosons occupying
the �i orbitals and the equivalent to Coulomb and exchange
integrals appearing in electronic structure theory.

The single-particle wave functions in Eq. �6� are ex-
panded using a finite basis set composed of products of ra-
dial and angular functions

�i�R;r� = �
nlm

Cnlm
i Gn�R;r�Y�m��,�� , �7�

where Y�m�� ,�� are spherical harmonics. The radial basis
functions, Gn�R ;r�, are obtained from the solutions, seeking
for the lowest level, of the Schrödinger equation that corre-
sponds to the He-ICl triatomic subsystem with a fixed value
of �n,

�−
�2

2�

�2

�R2 + W�R;r;�n� − En�r�	gn�R;r;�n� = 0. �8�

The calculations were performed for nmax different equidis-
tant values of �n in the range �0,��. The radial basis used in
Eq. �7� is finally obtained from the radial functions
gn�R ;r ;�n� through Schmidt orthogonalization. The coeffi-
cients, Cnlm

i , are computed using a direct minimization pro-
cedure to force convergence to the global minimum �29�.

C. Infrared spectra

A molecule as ICl�X� that has a permanent dipole moment
in the ground electronic state can be promoted from an initial
vibrotational state �i� to a final vibrotational state �f� within
the same electronic state by absorption of one photon of
frequency �if that matches the energy difference between the
initial and final states. This difference belongs to the infrared
region. When such a molecule is embedded in a bath of He
atoms, we can envisage a similar process:

HeN-ICl�i� + ��if → HeN-ICl�f� , �9�

where now the indices i and f refer, respectively, to the initial
and final states of the entire HeN-ICl cluster. In the electric
dipole approximation within the first order perturbation
theory, the absorption intensity is proportional to the square
modulus of the matrix element of the transition moment op-
erator, � · ê, computed using the functions defined by Eq. �5�;
here, � is the dipole moment of the solvated molecule, and ê
defines the polarization of the electric field. Usually, � is
expressed in a BF reference frame whereas the electric field
defines a natural SF frame. Performing a rotation of the BF
frame into the SF frame, �SF=R−1�BF, one obtains

� · ê = �
p,q

�− 1�pe−pDpq
1*

��r,�r,0��q
BF, �10�

and the matrix elements of the transition moment become

��i
�N��� · ê�� f

�N�� � �
p,q

�− 1�pe−p� f
�N���q�i

�N����f�i

�� d�DMf
f

Jf Dpq
1*

DMi
i

Ji
*

.

As ab initio calculations reveal, the dipole moment of the
solvated molecule is only weakly affected by the interactions
with the surrounding He atoms and its direction remains
along the ICl bond, and only the q=0 component contributes
giving rise to a parallel transition. If one considers linearly
polarized light and uses the direction of polarization to define
the SF Z axis �p=0�, one arrives at

��i
�N��� · ê�� f

�N�� � �− 1�Mi� f
�N���0�i

�N����f�i
� Ji 1 Jf

− Mi 0 Mi
�

�� Ji 1 Jf

− 
i 0 
i
� . �11�

Since in the our case 
=�, for 	 states the second 3− j
symbol in Eq. �11� vanishes unless �J= ±1. Hence, only the
P and R branches survive and the Q transitions are not al-
lowed in the spectrum. In contrast, when 
�0 states are
involved �e.g., because of the presence of fermionic compo-
nents in the solvent and/or the presence of � ,� , . . ., states�,
the Q transitions become allowed as well. A Boltzmann dis-
tribution of rotational states of the clusters that corresponds
to a given temperature T gives rise to a line of intensity,

Ifi
�N��T� �

e−��i/kT�

�
i

e−��i/kT�

1

2Ji + 1�
Mi

�� f
�N���0�i

�N��� Ji 1 Jf

− Mi 0 Mi
�

��Ji 1 Jf

0 0 0
��2

, �12�

at a frequency � fi= ��Jf0vf

�N� −�Ji0vi

�N� � /� �in Eq. �12�, the simpli-

fied notation �i stands for �Ji0vi

�N� �.
A variety of causes may lead to the broadening of the

spectral lines. Here we consider the mechanism of vibra-
tional predissociation �VP�. An absorption of a photon that
leads to a vibrational excitation of the solvated molecule may
be followed by energy transfer to bonds involving the He
atoms. These weaker bonds may rupture giving rise to dis-
sociation of the cluster �hence, vibrational predissociation�.
Following the procedure outlined in Refs. �17,18�, one can
estimate the width of the line broadening caused by VP. First,
one calculates the �-dependent VP width for the He-ICl�v f�
triatomic species, �vf←vi

, using the framework of the adia-
batic angular model �30� and generates the angular distribu-
tion D�

�N����, which is normalized to N, by integrating the
square modulus of ��

�N���Rk� ;req� defined by Eq. �3� over all
variables except one. The VP line broadening is then ob-
tained by averaging �vf←vi

over the angular distribution,

� fi
�N� = �

0

�

d�D�
�N�����vf←vi

��� . �13�
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By dressing the lines with Lorentzians of appropriate
widths and summing up over all transitions, one arrives at
the following expression for the IR photoabsorption cross
section

�N��;T� =
1

�
�
f ,i

� fi
�N�

�2�� − � fi�2 + �� fi
�N�/2�2 Ifi

�N��T� . �14�

The cross section satisfies the condition

� d��N��;T� = �
f ,i

Ifi
�N��T� . �15�

III. RESULTS

A. Electronic structure calculations and potential energy
surfaces

For the He2-ICl�X� tetraatomic cluster, ab initio calcula-
tions �27� show that the interaction energy can be accurately
represented as the sum of energies of two He-ICl triatomic
species and the energy of the He-He interaction. Hence, we
extend this description to cluster of larger sizes and use the
following expression for the interaction energy:

WHeN−ICl��Rk�k=1
N ;r� = �

k=1

N

WHek−ICl�Rk;r�

+ �
k�l

VHek−Hel
��Rk − Rl�� . �16�

Ab initio calculations of the He-ICl�X� interaction have been
carried out at the CCSD�T� level of the theory fixing the
ICl�X� stretch at its equilibrium bond distance r=re

=2.321 Å �see Ref. �26��. To account for the dependence on
r, two sets of additional ab initio computations for He-ICl
using the same methodology have also been performed. The
interaction energies are calculated for several intermolecular
distances R for 11 � values between 0° and 180° and two ICl
bond lengths of r−=2.271 and r+=2.386 Å. These r values
correspond to the peaks of the first excited vibrational level
of the bare ICl�X� molecule. The results of the CCSD�T�
calculations of the interaction energies are listed in Table I.

Following the procedure outlined in Ref. �26� the entire
PES is described analytically. To this end, we represent the
R-dependent interaction potential, for fixed values of r and �,
by a Morse-vdW function whose parameters are obtained by
a nonlinear least square fit and are listed in Table II �for r
=re, see Table III in Ref. �26��. In order to define the PES
over a range of r values large enough for characterization of
the first two �v=0 and 1� vibrational levels of ICl�X�, neces-
sary for the spectral simulations, a quadratic dependence of
the energy on r has been assumed. In practice, for each ori-
entation �i �i=1–11�, the coefficients A and B of the expan-
sion

W�R,r;�i� = A�R,�i��r − re�2 + B�R,�i��r − re� + W�R,re,�i�

are readily obtained from the corresponding interaction en-
ergies W�R ,r− ,�i� and W�R ,r+ ,�i�. The model potential re-

produces the ab initio results very well with a maximum
standard deviation of 0.5 cm−1 and an average standard de-
viation of 0.17 cm−1 over the entire range of r, R, and �
values considered �see last column of Table II�.

The He-ICl potential energy surface exhibits three
minima. Over the r values considered, the global minimum
with an energy of −58.625 cm−1 at R=3.86 Å and r
=2.321 Å corresponds to a linear He-I-Cl ��=0° � configu-
ration. The second minimum, with energy of −40.116 cm−1

at R=3.80 Å and r=2.271 Å corresponds to a near T-shaped
��=110.9° � configuration of the complex. The third mini-
mum is found for the antilinear He-Cl-I geometry. Its energy
is −38.032 cm−1 and it is located at R=5.12 Å and r
=2.321 Å. The barrier between the linear and the near
T-shaped configurations is at −15.35 cm−1 and it is located at
R�4.44 Å, ��60°, and r=2.321 Å. The characteristics of
the barrier between the near T-shaped and the antilinear con-
figurations are −22.49 cm−1, R�4.98 Å, ��141.8°, and r
=2.386 Å. The three potential minima and the barriers be-
tween them are displayed in Fig. 1. As is clear from the
figure, the minimum that corresponds to the near T-shaped
configuration is sensitive to r—the smaller the value of r, the
lower the minimum. The other two minima show only neg-
ligible variations with r. Thus, the energy difference between
the minima that correspond to the linear and the near
T-shaped configurations increases as the r bond length
becomes larger.

For spectral simulations, it is also necessary to estimate
the dipole moment � of the ICl molecule in the presence of
He atoms. CCSD�T� calculations performed for various con-
figurations of the clusters with N=1 and 2 show that the
component of the dipole moment along the I-Cl bond is one
or two orders of magnitude larger than the component or-
thogonal to it. The magnitude of the dipole moment in the
triatomic case is sensitive to the value of r, but its depen-
dence on R and � is only minor. Similar values are obtained
for the tetraatomic system, as could be expected from the
nature of the intermolecular interactions, which essentially
coincide with the dipole moment of the isolated ICl mol-
ecule. Therefore, irrespective of the cluster size, we used the
values of 1.140, 1.284, and 1.465 Debye computed for the
three distances, r−, re, and r+, respectively, and to define ��r�
as a linear function of r.

The ICl�X 1	+� intramolecular interaction U�r� was ap-
proximated by a Morse function �31� with the following val-
ues of the parameters: well depth D=17 557.411 cm−1, char-
acteristic inverse length �=1.849 234 9 Å−1, and equilibrium
distance re=2.321 Å. For the He-He interaction we em-
ployed a parametrized potential of Aziz and Slaman �22�. To
avoid divergences in the potential at vanishing distances be-
tween the He atoms, a truncation of the potential is employed
�for details, see Ref. �19��.

B. Helium energies and density distributions

In the calculations presented here, the following masses
�amu� were used: mI=126.904473, mCl=34.968853, and
m4He=4.00260. A grid of 4096 points in the R range of
2.0–20.0 Å was employed to numerically solve Eq. �8�, us-
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ing a Numerov procedure. Convergence for the ground state
was achieved by using lmax=19, �mmax�=1, and nmax=7. The
convergence thresholds used for the the total energy and the
module of its gradient �with respect to the nonredundant
variational parameters �29�� were set to 10−6 and 10−5 cm−1,
respectively.

As in the case of HeN-Br2 clusters �19� the lowest energy
was found for �=0, a sort of “	” state of the system. Table
III shows the energies of the HeN-ICl clusters at the equilib-
rium ICl bond length and for N bosons equally distributed
over M =1, 2, and 3 single-particle orbitals. As expected for
a Bose quantum system, the lowest energy corresponds to all
the He atoms occupying the same orbital �M =1�: As is clear
from the table, the larger the number of occupied orbitals the
higher the total energy of the system. One should also note
that the relative energy differences between the various M

cases increase with the cluster size, as expected because of
the larger number of solvent particles contributing to the to-
tal binding energy.

In Fig. 2 we show the values of the total energies, EN, and
single particle evaporation energies, �EN−EN−2� /2, as a func-
tion of the cluster size N. For N=1 and 2 �J=0�, the Hartree
energy values of 18.38 and 30.33 cm−1 can be compared
with the “exact counterparts” of 18.29 and 33.51 cm−1 from
Refs. �26,27�. In contrast to the N=1 case, the N=2 size
shows a non-negligible relative error of about 9%. Additional
variational calculations within the diatomic rotational decou-
pling approach give an energy value of 33.47 cm−1, which
indicates that the error in the Hartree energy is due to the
Hartree approximation itself. We see that both total and
single particle evaporation energies change continuously and
smoothly, without any sign of shell structuring of the solvent

TABLE I. CCSD�T� interaction energies for the He–ICl molecule obtained with the aug-cc-pV5Z+ �3s3p2d2f1g� basis set for the He and
SDB-cc-pVTZ ECP for I at indicated values of R, r, and �. Distances are in Å and energies in cm−1.

�E �cm−1�

R /� 0° 22.5° 45° 67.5° 78.75° 90° 101.25° 112.5° 135° 157.5° 180°

r=2.271 Å

3.00 684.11

3.25 160.24 564.55 121.03 32.48 43.40

3.5 −13.65 99.57 202.43 136.04 76.60 20.23 −21.94 −22.86 714.36

3.75 −56.09 0.22 55.87 33.99 9.84 −14.38 −34.45 −39.34

4.00 −55.19 −27.86 1.53 −3.59 −12.91 −22.60 −32.26 −37.63 72.90

4.25 −43.62 −30.62 −15.25 −14.73 −21.44 1.82 267.24 457.70

4.5 −31.96 −25.84 −17.80 −15.82 −16.31 −17.62 −20.01 −23.56 −20.05 57.58 99.29

4.75 −22.82 −15.65 −13.37 −13.70 −23.17 −10.28 −11.75

5.00 −16.22 −11.86 −12.51 −10.87 −10.43 −10.37 −11.07 −12.98 −20.14 −26.39 −36.69

5.5 −27.60

6.00 −4.58 −4.49 −4.14 −3.66 −3.48 −3.40 −3.55 −4.10 −6.77 −11.48 −14.60

7.00 −1.62 −1.58 −1.47 −1.36 −1.27 −1.27 −1.34 −1.51 −2.32 −3.53 −4.19

9.00 −0.33 −0.31 −0.28 −0.28 −0.28 −0.26 −0.28 −0.33 −0.44 −0.57 −0.64

11.00 −0.09 −0.07 −0.07 −0.07 −0.07 −0.07 0.11 −0.13 −0.15

r=2.386 Å

3.00 753.11

3.25 186.93 587.90 121.97 37.54 50.41

3.5 −5.15 112.33 211.04 135.71 75.55 20.82 −18.98 −17.99 806.01

3.75 −54.77 3.90 58.41 33.27 9.14 −14.07 −32.90 −36.73

4.00 −56.22 −27.62 1.82 −4.25 −13.30 −22.49 −31.50 −36.43 93.52

4.25 −45.08 −31.36 −15.67 −15.23 −21.39 −30.33 9.93 385.92 700.02

4.5 −33.25 −26.72 −18.32 −16.15 −16.50 −17.64 −19.92 −23.52 −17.62 100.49 182.88

4.75 −23.82 −16.11 −13.50 −13.72 −23.04 2.92 12.56

5.00 −16.94 −12.30 −12.87 −11.02 −10.50 −10.39 −11.13 −13.15 −20.78 −24.00 −32.61

5.5 −30.49

6.00 −4.78 −4.67 −4.25 −3.70 −3.51 −3.44 −3.62 −4.19 −7.19 −12.70 −16.50

7.00 −1.67 −1.64 −1.51 −1.36 −1.32 −1.29 −1.36 −1.56 −2.45 −3.88 −4.69

9.00 −0.33 −0.31 −0.31 −0.28 −0.28 −0.28 −0.28 −0.33 −0.44 −0.61 −0.68

11.00 −0.09 −0.09 −0.07 −0.07 −0.09 −0.11 −0.15 −0.15
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atoms. In contrast, for other lighter dopants like N2O, solva-
tion shells are clearly found �32,33�. This could be due to the
dynamical correlation induced by the kinetic coupling terms,
whose effect is more important for light species. Furthermore

the evaporation energies increase rapidly with cluster size up
to N�14. Beyond this value we see a reduction in the rate of
evaporation. For N=30, however, we are still far from the
expected asymptotic �bulk� value of 4.94 cm−1 �see, e.g.,
Ref. �34��.

In Fig. 3�a� we show the angular density distributions for
the size range N=2–30 normalized to the number of helium
atoms. In the inset the distributions obtained from Hartree
and variational calculations for N=2 are compared: note that
they are almost identical, the Hartree being slightly more

TABLE II. Parameters for the analitycal representation of the He-ICl�X� interaction potential, see Ref.
�26�. Distances are in Å, angles in degrees, while energies and standard deviation are in cm−1. Figures in
parentheses are powers of 10.

� �0 �1 �2 �3 �4 sdev

r=2.271 Å

0 0.3385 1.7726 5.4073 −17038.6 6.63825�06� 0.399

22.5 15374.6 1.86307 1.4134 511867 −2.25675�07� 0.471

45 0.55926 1.60527 5.56862 61308 3.64064�06� 0.124

67.5 6.4676 1.6180 4.60974 145378 −1.31992�06� 0.055

78.75 2.6618 1.61824 4.8144 127807 −80037.4 0.068

90 1.24727 1.62011 4.95133 119689 585589 0.038

101.25 1.77406 1.66522 4.69542 133954 410668 0.035

112.5 1.61058 1.62273 4.85811 130072 1.24403�06� 0.070

135 1.87481 1.57011 5.55685 3581.42 8.66566�06� 0.264

157.5 20.8823 1.82036 5.09964 413184 −7.81258�06� 0.062

180 44.0871 1.90781 4.99438 639552 −1.88314�07� 0.127

r=2.386 Å

0 1.00887 1.75698 5.13414 −21139 6.63855�06� 0.422

22.5 4629.81 1.85099 2.05087 504859 −2.24958�07� 0.503

45 1.74539 1.60586 5.21264 66045 2.83059�06� 0.170

67 4.902 1.61867 4.71026 139030 −776461 0.057

78.75 2.86021 1.62301 4.78306 132648 −215727 0.063

90 2.4398 1.61913 4.7252 126275 91174.5 0.057

101.25 2.05728 1.652 4.65743 140479 202868 0.035

112.5 2.56862 1.58417 4.74817 131974 974458 0.087

135 3.59958 1.5342 5.42394 −22802.4 8.69692�06� 0.347

157.5 32.9632 1.79418 5.05879 559621 −1.72843�07� 0.088

180 68.0906 1.87809 4.97707 924537 −3.68669�07� 0.209
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FIG. 1. Minimum energy Wm in cm−1, and distance of minimum
energy Rm in Å, as functions of � and r. Solid, dotted, and dashed
lines correspond to r=2.271, 2.321, and 2.386 Å, respectively.

TABLE III. Energies �in cm−1� of the ICl-HeN clusters using the
Hartree-like scheme. The three columns represent different distribu-
tions of the bosons over the orbitals. The values correspond to the
lowest-energy “	” state.

N M =1 M =2 M =3

6 −86.89 −85.80 −85.29

12 −155.31 −153.06 −146.90

18 −216.49 −212.67 −205.89

24 −274.46 −267.74 −262.42

30 −330.71 −320.26 −317.36
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localized. We have also calculated the effective occupation
numbers �referred to as �� of the independent-particle �or,
equivalently, He-ICl� orbitals. The angular distributions for
the five lowest-lying orbitals are shown in Fig. 3�b� while the
corresponding energies are displayed in Table IV. The
lowest-energy �n=0� orbital is localized in the linear He-ICl
well, whereas the distributions of the n=1 and n=2 orbitals
are peaking at the asymmetric near T-shaped and antilinear
ICl-He wells, respectively �26�. The fourth orbital �n=3� is
also rather localized and displays a major peak at �=35°
whereas the fifth orbital �n=4� extends along a broader re-
gion and shows peaks around �=90°, 120°, 145°, and 170°.

The first He atom populates the axial iodine region �be-
tween 0° and 25°� where the global minimum of the He-ICl
PES is located. For N=2, the He-He repulsion causes the
density distribution to flow from the linear configuration well
to the near T-shaped angular region �between 80° and 140°�,
and �=0.9 and 1.1 for n=0 and 1, respectively. For N=4, the
population of the near T-shaped configuration orbital n=1
increases to about 2.8, whereas the the He density at the axial
iodine region remains nearly constant. Thus, the variation of
� for the n=0 orbital is only 1.3 for the size range N
=2–30. In contrast, the population of the n=1 orbital in-
creases rapidly with cluster size up to N�14 �for which �
=8�. Beyond this cluster size, it increases at a lower rate and
without giving any indication of saturation. Similarly to the
n=0 orbital, the population of the n=2 orbital, which is lo-
cated in the antilinear well, increases very slowly as the clus-
ter grows in size. For N=4, its population is about 0.2, and a
side peak centered around �=170° appears. For N=8, the
n=4 orbital starts to get populated, a shoulder being appear-
ing at around ��150°. The � values of both n=3 and n=4
orbitals reach a value of about 1 for N=14 and, therefore,
there is significant nonzero He density between the peaks at
the axial iodine region and the central peak centered at the
near T-shaped well. For N=20, the populations of the n=3
and n=4 orbitals reach the values of 2 and 1.5, respectively,
and two secondary peaks centered around �=42° and 78° are
clearly apparent. For larger cluster sizes, the angular density
distributions show no additional features and maintain the

sort of five-peak structure of the distribution for N=20. In
summary, the helium angular distributions show an aniso-
tropic layering around ICl of the quantum solvation struc-
ture, reflecting the strong anisotropy of the He-ICl potential
energy surface. The most intense feature is the peak centered
at the near T-shaped potential minimum. For N=30 this peak
contains about 14 He atoms axially distributed around the
ICl molecular axis. This angular region is, however, incom-

TABLE IV. Energies �in cm−1� of the five lowest independent-
particle picture orbitals for the three ICl bond lengths r=2.271,
2.321, and 2.386 Å.

Bound state r=2.271 r=2.321 r=2.386

n=0 −20.24 −20.38 −20.68

n=1 −16.57 −16.14 −15.80

n=2 −13.56 −13.49 −13.68

n=3 −7.49 −7.61 −7.86

n=4 −6.67 −6.78 −6.75
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FIG. 3. �a� Computed angular density distributions for the He
atoms surrounding the ICl molecule for the different cluster sizes.
Inset: Comparison of the angular distributions for two helium atoms
from variational �full lines� and Hartree calculations �dashed lines�.
The distributions are normalized to the number of helium atoms, N.
�b� Angular distributions of the five lowest independent-particle pic-
ture orbitals.
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plete and can still accommodate more helium atoms. The
distributions become increasingly more isotropic as the clus-
ter grows in size. However, for the largest cluster size exam-
ined here, N=30, the angular distribution is still markedly
anisotropic and far from the expected isotropic profile in the
nanodroplet regime. This is in contrast to the previously
studied 4He-Br2 case �19�, for which a rather isotropic �and
insensitive to the cluster size� distribution is already found
for N=18, but in agreement with the RQMC calculations by
Paolini et al. �35� on 4He-OCS and 4He-HCN polar systems,

indicating that the rate of approach to the nanodroplet regime
is mainly determined by the anisotropy and strength of the
specific He–dopant interaction and not by the molecular
weight of the dopant.

In Fig. 4, the radial helium density distributions around
the dopant’s mass center are represented for different cluster
sizes. The radial density distributions for the five lowest-
lying orbitals are also shown in the inset. We see that the
distributions of the n=0 and n=1 orbitals are peaked at R
around 4 Å. Due to the lighter mass of the Cl atom, the
distribution of the n=2 orbital, localized at the antilinear
ICl-He well, is clearly peaked at a larger distance to the ICl
mass center of about 5.3 Å. Note in Fig. 4 that along the
main peak centered at R nearby 4.2 Å, a secondary feature
centered at R�5.5 Å appears for N=8 �for which the �
value of the n=2 orbital is nearby one�. Overall, we see that
the two-peak structure of the radial distributions becomes
more diffused and more shifted towards larger R distances as
the cluster size increases.

We now wish to further consider the dependence of the
total energy on the ICl�X� bond distance. As mentioned, we
have examined ICl bond length distances of r=2.271, 2.321,
and 2.386 Å and found that for distances near the equilib-
rium bond length the energies can be fitted to better than 2%
accuracy with the logarithmic expression,

EN�r� = AN log�r − 2� + BN. �17�

The values of the parameters, along with the corresponding
statistical errors, as a function of the cluster size are dis-
played in Table V. For comparison, the energies of the five
lowest independent-boson orbitals are displayed in Table IV
for the three ICl bond length values. One sees in the table
that, in contrast to the n=0 and 3 cases, the binding energy
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picture orbitals.

TABLE V. Cluster size evolution of different quantities: AN and BN parameters in Eq. �17� together with
their statistical errors, averaged values of the squared orbital angular momentum, one half of the VP widths
from Eq. �13� �in parentheses, powers of 10�, and frequency shift and cross-section value �relative to the
N=10 size� for the maximum of the corresponding R�0� branch.

N AN �cm−1� BN �cm−1� �L2� �a.u.� � /2 �cm−1� � �cm−1� �

1 1.22±0.02 −21.82±0.02 17.63 1.35 �−4� 0.199474 10.6068

2 1.12±0.04 −32.41±0.06 28.44 1.36 �−4� 0.220891 10.3631

4 4.54±0.08 −56.24±0.10 40.55 4.11 �−4� 0.254435 3.5229

6 6.64±0.09 −79.56±0.11 48.47 8.22 �−4� 0.274715 1.7661

8 8.50±0.10 −101.50±0.12 54.34 1.16 �−3� 0.293495 1.2499

10 9.95±0.10 −122.60±0.13 58.80 1.45 �−3� 0.308136 1.0000

12 11.00±0.13 −143.13±0.17 61.93 1.69 �−3� 0.318816 0.8664

14 11.73±0.18 −163.31±0.23 64.59 1.90 �−3� 0.325956 0.7662

16 12.32±0.24 −183.14±0.31 67.63 2.07 �−3� 0.331057 0.7018

18 12.85±0.31 −202.63±0.39 71.30 2.23 �−3� 0.335137 0.6511

20 13.37±0.37 −221.79±0.48 75.61 2.38 �−3� 0.338617 0.6089

22 13.91±0.44 −240.66±0.57 80.51 2.54 �−3� 0.341797 0.5726

24 14.46±0.51 −259.25±0.65 86.01 2.68 �−3� 0.344797 0.5409

26 15.04±0.57 −277.61±0.73 92.11 2.83 �−3� 0.347797 0.5129

28 15.66±0.62 −295.77±0.80 98.83 2.98 �−3� 0.350857 0.4880

30 15.99±0.65 −304.79±0.833 106.22 3.12 �−3� 0.354037 0.4657
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for the orbital n=1 increases as the bond length decreases.
This behavior reflects the significant lowering of the near
I-shaped well as r decreases �to be compared with the rather
weak r dependence of the linear and antilinear wells, see Fig.
1�, since the n=1 orbital is chiefly localized in that potential
region. One should also note that the r dependence is more
marked for the n=1 independent-particle orbital while the
n=4 orbital, being spatially more extended �see Fig. 3�b��,
has an intermediate behavior and it exhibits its energy mini-
mum at the equilibrium ICl bond length. Note now in Table
V that the sign of the “slope” parameter AN is negative for
N=1, reflecting the r dependence of the occupied n=0
lowest-energy orbital. For N=2, the population of n=1 or-
bital is slightly larger �0.2� than the one of the n=0 orbital.
Therefore, the r dependence of the near I-shaped well domi-
nates and the sign of the slope becomes positive. From N
=2 to N�14, the value of the slope increases quite fast as a
consequence of the rapid increase of the � value for the n
=1 orbital. Hereafter, there is a reduction in the rate of slope
increase. This is a consequence of the slower rate of popula-
tion for the near I-shaped peak �see Fig. 3� and the filling of
secondary peaks localized at potential regions for which the
r dependence is extremely weak. From N=14 the deviation
from the logarithmic fitting starts to become noticeable.

In Table V we also list the averaged squares of the total
orbital angular momentum as a function of the cluster size.
For the smaller clusters �N�8�, they increase quickly with
size, then show an almost linear increase with N values be-
tween 10 and 16, and finally show a superlinear growth for
the larger clusters up to N=30. Together with the
r-dependent binding energy of the cluster, �L�2 contributes to
the distortion of the intramolecular potential of the ICl mol-
ecule, see Eq. �4�, determining the effective potential for the
solvated molecule. So, large values of the total orbital angu-
lar momentum push the effective equilibrium bond length to
longer distances leading to increase the effective moment of
inertia.

C. Spectral simulations

The IR spectral simulations corresponding to the process,

ICl�X,vi = 0� + h� → ICl�X,v f = 1� ,

in an environment of N bosonic 4He atoms were carried out
assuming a rotational temperature T=2 K as in precedent
works simulating Raman spectra �17,18�. For the clusters
studied here, the particular value of T has only a minor inci-
dence in modifying the relative intensities of the different
branches, although due to the 3− j symbols appearing at Eq.
�12�, R�0� always dominates over the rest. A natural broad-
ening of the spectral lines has been included, as described in
Sec. II C, by using a simple model which relies on the adia-
batic angular treatment of Ref. �30� for the VP process He
-ICl�X ,v f =1�→He+ICl�X ,v f�=0�. In Fig. 5 we show the
ground state energy of the complex, averaged over the v=1
vibrational state of the ICl molecule, and the VP half width
as functions of the angle �. The similarity between the angu-
lar dependence of the energy and the angular dependence of
the minimum energy path shown in Fig. 1 is evident. The

width � is negligible, except in the vicinity of the linear and
antilinear arrangements. This function is used together with
the distributions shown in Fig. 3�a� as integrands in Eq. �13�.

Figure 6 displays the IR profiles of the first four intense
branches, R�0�, P�1�, R�1�, and P�2�, for the cases N=2, 10,
20, and 30. They are plotted as functions of the frequency
shift with respect to the �Ji=0,vi=0�→ �Jf =0,v f =1� “for-
bidden” transition �380.084 899 cm−1� in the bare ICl mol-
ecule. One notices the absence of the Q branches, which is
consistent with what has been found experimentally for the
linear OCS molecule �4�. The profiles display a blueshift,
albeit with a decreasing rate, as the size of the cluster
increases.

In Table V we show the cluster size dependence of the VP
half width �fifth column�, the location �frequency shift� of
the maximum photoabsorption cross section �sixth column�,
and its magnitude relative to the value at N=10 �last column�
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for the dominant R�0� branch. All three quantities exhibit
monotonic size dependencies with a convergence tendency.
For the cases N=1 and 2 the frequencies appear toward the
red from the �Ji=0,vi=0�→ �Jf =1,v f =1� transition
�0.226 277 698 cm−1� of the bare ICl molecule, while for
larger clusters the effect of solvation is a shift to the blue. As
long as the ICl molecule is only slightly perturbed, its energy
levels can be approximated as EJv�Ev+BvJ�J+1�, where Bv
are effective rotational constants depending on the vibra-
tional excitation and the centrifugal distortions are neglected.
Hence, size dependent B0 and B1 values can be obtained
from the relative positions of the R and P branches. For
instance, denoting by �10 the distance in frequency between
the R�1� and R�0� lines, and by �21 the corresponding mag-
nitude involving R�2� and R�1�, one readily obtains B0

=1.5�10−�21 and B1=�10−0.5�21. In this way, a tiny in-
crease of the rotational constants as the cluster size grows is
found. In wave numbers, B0 ranges from 0.113 806 at N=1
to 0.113 846 at N=30. The corresponding values for B1 are
0.113 134 and 0.113 173. For the bare ICl molecule these
rotational constants become B0=0.113 813 and B1
=0.113 139 cm−1, which are lower than those found for all
sizes except N=1. One can interpret these results as an indi-
cation of an effective increase in the moment of inertia of ICl
when it is solvated by one He atom, and an effective de-
crease in the moment of inertia when it is solvated in a larger
cluster. Since rather moderate values of the square of the
orbital angular momentum are attained, the behavior of the
moment of inertia is a direct consequence of the dependence
of the binding energy on the ICl bond length, which from
N=2 decreases as r increases. In fact, for N from 4 to 30, the
minimum of the effective potential for the solvated ICl is
located at shorter r values than the minimum of the potential
of the isolated molecule, giving rise to a reduction in the
moment of inertia. This is in apparent contradiction with the
experimental findings in droplets �4�. However, for much
larger cluster sizes than those studied here, note that since
the binding energy should become insensitive to variations of
r, and �L2� could attain large values, one expects that the
equilibrium bond length of the solvated molecule be larger
then the corresponding to the isolated molecule, recovering
the agreement with the experiment.

IV. SUMMARY AND OUTLOOK

Using a realistic potential, which is based on accurate ab
initio calculations, we performed a Hartree-type study of the
energies, density distributions, and IR spectra of ICl�X�
-�4He�N clusters in the size range of N=1−30. This study
extends our earlier application of the method �19�, which is

in essence a “multiconfigurational” treatment, to polar mol-
ecules embedded in a finite-size bosonic solvent. Our main
findings can be summarized as follows:

�1� The 	 ��=0� state of the clusters, when all the He
atoms occupy the same orbital, is the energetically most pre-
ferred one.

�2� The helium density distributions around the ICl mol-
ecule are strongly anisotropic, which is a consequence of the
anisotropy of the He-ICl potential; the anisotropy of the dis-
tribution is quite apparent even for the largest cluster consid-
ered here �N=30�.

�3� The size variations of the cluster energies and densi-
ties are smooth with no indication of shell effects.

�4� The variation of the cluster energies with the ICl bond
length is well represented by a logarithmic function. The
“slope” of the logarithmic dependence increases with the
cluster size. The rate of increase is substantial up to N=14,
but slows down thereafter.

�5� The calculated IR spectra of the ICl molecule embed-
ded in an environment of 4He atoms lack the Q branches as
long as only 	 states are involved.

�6� For most clusters in the size range considered here the
effective momement of inertia of the solvated ICl molecule
is smaller than that of the bare ICl. It is expected, however,
that the opposite will become true as the number of solvent
4He atoms becomes large enough.

Our future studies will explore the cases of ICl embedded
in 3He and mixed 3He/ 4He clusters and will address the
issue of the role played by the nuclear spin statistics in the
phenomenon of finite-size quantum solvation. We will also
consider clusters of para-H2 and ortho-H2, as well as their
mixtures, as solvation environments. One may expect these
to produce effects similar to those found in bosonic and fer-
mionic helium clusters. Data obtained in recent spectro-
scopic studies of hydrogen clusters �36� and of different mol-
ecules embedded in them �37–39� provide both an impetus
and a calibration basis for theory.
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