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We study the influence of electron-scattering processes on the angular distributions of point particles moving
through a free-electron gas. Previous calculations for slow ions are extended to all �nonrelativistic� velocities.
The formulation is based on the extension of the multiple-scattering theory to the case of particles moving
through a free-electron gas, using Lindhard’s dielectric function to separately evaluate the contributions of
binary �electron-hole� and collective �plasmon� excitations. We find that the angular spread of the beam of
particles is dominated by binary collisions. The results for the width of the angular distribution are compared
with an integral expression derived by Lindhard.
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I. INTRODUCTION

The phenomenon of multiple scattering is one of the rel-
evant processes in the interaction of ionized particles with
matter, and in particular, is the process that determines the
angular spread of a beam of particles after traversing dense
or dilute media. This process has been extensively studied
over the years, and the basic theoretical aspects have been
described by several authors using various statistical ap-
proaches �1–8�.

The angular spread of a beam of ions traversing matter is
usually dominated by multiple-scattering effects produced by
atomic interactions. The electronic contribution to this pro-
cess is in most cases negligible due to the very small mass
ratio between target electrons and incident ions. However, in
channeling experiments, where the atomic collisions with
crystal atoms are strongly reduced �9,10�, multiple scattering
by target electrons may produce a notorious contribution and
increase the dechanneling fraction. These effects have been
taken into account for protons in various crystals �11� and
may be expected to be more pronounced in the case of
muons or pions �12–14�.

In a previous study �15� we have considered the effects of
electronic multiple scattering for the case of slow ions in a
free-electron gas �representing the conduction or valence
electrons in a solid�. The purpose of the present work is to
extend the previous study to higher energies in order to have
a complete characterization of the electronic contribution to
the multiple scattering in all ranges, and also, to provide
elements for more comprehensive analyses of channeling ef-
fects in future studies.

The extended formulation refers to singly charged par-
ticles and is based, on one side, on the standard theory of
multiple scattering in random media �7,8�, and on the other,
on the perturbative description provided by the dielectric
function formalism �16,17� appropriate to the case of swift
particles.

The basic formulation of the momentum-transfer prob-
ability in single-scattering theory is described in Sec. II. Cal-
culations showing the contributions of individual and collec-
tive excitations are included in this section. Finally,
calculations of the angular distributions resulting from the

multiple-scattering process are described and analyzed in
Sec. III, where we also compare our results with a general
expression obtained by Lindhard �16�.

II. SINGLE SCATTERING

We start by considering the process of inelastic scattering
of an incident ion due to the interaction with the valence
electrons of a solid. The electrons will be represented as a
free-electron gas with density ne, Fermi velocity vF, and one-
electron radius rs �with 4�rs

3 /3=1/ne and vF=1.919/rs in
atomic units�.

We formulate the scattering process following the dielec-
tric function formalism. According to Refs. �17,18� the scat-
tering probability for momentum transfer �q� and energy
transfer �� may be expressed as

d4P

d3qd�
=

e2

�2q2 Im� − 1

��q,������� − �q� · v�� , �1�

where ��q ,�� denotes the dielectric function and v� is the ion
velocity. We will assume that the energy loss of the ion is
sufficiently small �relative to its initial energy� so that the
value of v will be kept constant in the calculations.

Following Ref. �15� we first integrate over frequencies �,
and then separate the momentum transfer into parallel �q��
and perpendicular �q�� components relative to the initial
beam direction, d3q=d2q�dq�. Integrating over q� we get the
differential probability of scattering with perpendicular mo-
mentum transfer q�,

d2P

d2q�

=� d3P

d3q
dq� =

e2

��2 � dq�

�q�
2 + q�

2 �
Im	� − 1

��q,���	�=q�v
,

�2�

with the relation �=q�v.
This expression yields the probability of scattering of the

incident ion and the associated angular deflection in single-
scattering events, and includes also the dynamical screening
produced by the electron gas.

For the evaluation of Eq. �2� we use the complete expres-
sion of Lindhard for the dielectric function �16� in the form
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��q,�� = �1�q,�� + i�2�q,�� , �3�

with

�1�q,�� = 1 +
3�P

2

q2vF
2 f1�u,z� , �4�

�2�q,�� =
3�P

2

q2vF
2 f2�u,z� , �5�

where

f1�u,z� =
1

2
+

1

8z

1 − �z − u�2�log	 z − u + 1

z − u − 1
	 +

1

8z

1 − �z

+ u�2�log	 z + u + 1

z + u − 1
	 , �6�

f2�u,z� =�
�

2
u , z + u � 1

�

8z

1 − �z − u�2� , 
z − u
 � 1 � z + u

0, 
z − u
 � 1,
� �7�

with u=� /qvF and z=q /2kF.
Due the azimuthal symmetry we may replace d2q�

=2�q�dq� in Eq. �2�. Then, after changing the integration
variable from q� to q=�q�

2+q�
2 we obtain

dP

dq�

� vG�q�,v�

=
2e2

��
q��

q�

qmax dq

q�q2 − q�
2

Im	� − 1

��q,���	�=�q

, �8�

where we introduce the notation �q=q�v=v�q2−q�
2 , which

defines an integration line in the �� ,q� plane. The upper limit
of integration qmax will be indicated below. This expression
defines the function G�q� ,v�, which depends on the ion ve-
locity v and perpendicular momentum transfer q�.

The integral in Eq. �8� extends over the regions in which
Im� −1

��q,�� ��0, illustrated in Fig. 1, and contains two contri-

butions: individual and collective excitations, which will be
treated separately.

A. First contribution: Individual excitations †�2„q ,�…Å0‡

The contribution of binary excitations, or electron-hole
pairs, is given by the shaded region, where �2�q ,���0
�18–20�. The parabolic curves correspond to the two limiting
cases implicit in the condition 
z−u
�1, namely, �±�q�
= �vF /2kF�q2±qvF �note that vF=kF in atomic units�.

The integration over q is performed along the part of the
integration line,

�q�q,q�� = v�q2 − q�
2 , �9�

which crosses the shaded region between �+�q� and �−�q� in

Fig. 1 �full lines�. Two illustrative cases are shown, corre-
sponding to q�=1 and q�=3.5 �values in atomic units�,
which provide one contribution �q�=3.5� or two separate
contributions �q�=1� to the function Geh�q� ,v� belonging to
electron-hole excitations. The low-q contribution is compara-
tively very small �as follows from the numerical calcula-
tions� due to the strong screening effects present in this re-
gion. The upper limit of the integral in Eq. �8� denoted by
qmax is given by the intersection of the curves �q and �−�q�.
It should be noted that the integration line �q depends on the
three quantities: q ,q�, and v; note also that if q�→0 the
curve for �q becomes a straight line, �q→qv �line a in the
figure�.

B. Second contribution: Plasmon excitations †�„q ,�…=0‡

To analyze the plasmon contribution it is necessary to
determine first the resonance line, corresponding to the solu-
tions of �1�q ,��=0 in the region where �2�q ,��=0, that is,

f1�u ,z�=
−q2vF

2

3�P
2 . The solution of this equation was determined

numerically using Eq. �6�. It yields a dispersion relation for
plasmons, which may be alternatively denoted by �=�r�q�
or q=qr���.

Since the plasmon line has the property of a Dirac’s delta
function the integral in Eq. �8� reduces now to a single value.
To determine this value we expand the energy-loss function
around the resonance line and obtain formally the expression

FIG. 1. Regions of integration considered to obtain the probabil-
ity function Geh�q� ,v� for the scattering of protons by individual
electrons in a free-electron gas, with transverse momentum transfer
q�, according to the dielectric formulation for v=4 a.u. and rs

=2 a.u. The dashed region between the curves �+ and �− indicates
the range of individual excitations, where �2�q ,���0. The lines
a ,b ,c show different lines of integration, given by �q=v�q2−q�

2 ,
corresponding to three fixed values of q�. The straight line �a� �
=qv corresponds to the case q�=0, while the curves �b� and �c�
correspond to q�=1 a.u. and q�=3.5 a.u., respectively.
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	Im� − 1

�„q,�q�q,q��…�	pl
= 	� �2

�1
2 + �2

2�	
�2→0

= ����1„q,�q�q,q��…�

=
�


�1��qr�

��q − qr� , �10�

where

�1��qr� = 	 �

�q
�1„q,�q�q,q��…

+
�

��q
�1„q,�q�q,q��…

qv
�q2 − q�

2 	
q=qr

, �11�

with qr determined by

�1„qr,�q�qr,q��… = 0, �12�

which corresponds to the intersection of the plasmon reso-
nance line �r�q� with the integration line �q�q ,q�� of Eq.
�9�.

To find the contribution of plasmons to the scattering
probability we use the integral expression of Eq. �8�. Be-
cause of the delta behavior of Eq. �10� the full contribution
to the integral is given by a single point �qr ,�r� in the �q ,��
plane for each value of q�. Thus, the corresponding expres-
sion for the probability is finally given by

Gpl�q�,v� =
1

v

dP

dq�

=
2e2q�

�vqr
�qr

2 − q�
2

1


�1��qr�

, �13�

where the value of qr is determined by Eq. �12� �note that qr
is a function of v and q��.

The resulting functions Geh�q� ,v� and Gpl�q� ,v�, corre-
sponding to electron-hole and plasmon excitations, are de-
picted in Fig. 2, for the example of v=4 a.u. and rs=2 a.u.
For high velocities, the plasmon contribution is important in
the range of low q�, whereas binary excitations dominate the
high-q� region. This is in accordance with the usual physical
picture of the relative significance of each type of excitations
�19�. It should be noted that the q�

max value for plasmon ex-
citation coincides with the critical point in the spectrum of
binary excitations, as observed in Fig. 2.

In order to understand the dependence of Geh�q� ,v� and
Gpl�q� ,v� on q�, its origin is discussed within the �-q plot
in Fig. 3. We show the plasmon line together with typical
integration lines �q�q ,q�� �Eq. �9��, for a velocity v=4 a.u.
and four values of q�. The intersection point C corresponds
to the critical values �qc ,�c� and in this particular case yields
q�=q�

pl-max=0.66. This corresponds to the maximum perpen-
dicular momentum transfer in plasmon excitation, so that for
q��q�

pl-max �like case d in Fig. 3� the plasmon contribution
vanishes. Taking into account that Im�−1/�� has a peak at
the critical point C and decreases with increasing distance
from this point, it follows that Geh�q� ,v� has a maximum at
q�=0.66, while Gpl is the dominating contribution for q�

�q�
pl-max=0.66, as illustrated in Fig. 2.

With respect to the contribution of plasmon excitations,
since Gpl�q� ,v�=0 for q��q�

pl-max, it follows that there is a
critical velocity, vcrit=�c /qc, so that Gpl�0 for v�vcrit �be-
cause there is no intersection of �q�q ,q�� with �r�q�, for any
q�, if v�vcrit�. This is of course a consequence of the exis-
tence of a well-defined threshold for plasmon excitation in
Lindhard’s theory.

III. MULTIPLE SCATTERING

Following the formulation of Ref. �15� �see also Ref. �8��
we express the electronic multiple-scattering �EMS� function
in the small-angle approximation by

FIG. 2. Comparison between the functions Geh�q� ,v� for the
scattering of protons with individual electrons, and Gpl�q� ,v� for
the scattering of protons with plasmons in a free-electron gas, as a
function of the transverse momentum transfer q� for rs=2 a.u. and
v=4 a.u. Note that at the point q�

pl-max=0.66, where the plasmon
term vanishes �in this particular example�, the electron-hole term
shows a critical �cusp� behavior.

FIG. 3. Region of integration to obtain the plasmon contribution
to the probability function Gpl�q� ,v� for three illustrative values of
q� �0, 0.4, and 0.66�. The broad solid line �r is the plasmon reso-
nance line. As explained in the text the plasmon contribution is
concentrated in the crossing points, indicated by A ,B ,C, for the
three assumed values of q�. Curve �d� shows a case with q�

�q�
pl-max where there is no plasmon contribution.
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f�	,x� = �
0




�d�J0��	�exp�− x�0���� . �14�

The function �0��� is determined from the previously de-
fined scattering function G�q� ,v� for the present case of an
electron gas, by

�0��� = ne� �1 − J0��
ion��d� = �
0

2kF

�1

− J0��q��/M1v��G�q�,v�dq�, �15�

with 
ion=�q� /M1v, being M1 the ion mass, and where the
differential cross section d� is given by

d� =
1

nev
dP =

1

ne
G�q�,v�dq�, �16�

where we used the relation between the momentum transfer
q� and the ion angular deflection 
ion in the small-angle
approximation, namely, �q�=M1v
ion.

We have calculated the multiple-scattering angular distri-
bution according to Eqs. �14�–�16� using the values of
G�q� ,v� for the electron-hole and plasmon excitations cal-
culated previously, and considering the three alternatives:
electron hole contribution �eh�, plasmon contribution �pl�,
and the sum of both �Gtotal�q� ,v�=Geh�q� ,v�+Gpl�q� ,v��.
Our results show that the angular distribution f�	 ,x� is domi-
nated by electron-hole excitations, and is well represented by
a Gaussian function with an angular width 	1/2, defined by
f�	1/2 ,x� / f�0,x�=0.5, which is therefore the relevant quan-
tity of interest to characterize the EMS distribution.

The differences between the results of 	1/2 corresponding
to binary excitations and the total �plasmon plus binary� are
always very small, showing the relatively small contribution
of plasmons to the total effect. Additionally, we find that the
angular spread follows in a good approximation a simple
dependence with the square root of the target thickness,
	1/2�c�x.

The small contribution of plasmons to the total width
shows an interesting contrast between energy loss and
multiple-scattering terms, since, as is well known, plasmon
excitation yields a significant fraction of the total stopping
power at high energies �partition rule �19��. We can under-
stand this difference by noting that individual and collective
contributions add up linearly in the energy loss but quadrati-
cally in the angular dispersion, being this dominated by the
higher-momentum transfers involved in binary collisions, as
illustrated in Fig. 2.

The results for the width of the EMS distribution are
shown in Fig. 4, for two typical values of rs �rs=1.5 a.u. and
rs=2 a.u.�. We have chosen a typical target thickness x
=800 a.u. �values for other thicknesses may be obtained by
using the square-root dependence of 	1/2�. The solid and
open symbols in this figure are the results including only
electron-hole pairs and the total contribution �electron-hole
and plasmons�. The up and down triangles shown at low
energies �for both rs values� are the results obtained from our
previous calculations following a nonlinear approach �15�,

which yields a more accurate description for low energies.
The present results can be compared with the values of

	1/2 obtained using Lindhard’s formula, Eq. �4.19� in Ref.
�16�, applied here to protons, namely,

	1/2 = �ln 2���2��1/2

=
�x ln 2

M1v
2 ��e2

�
Im�2�

0


 dq

q
�

0

qv

d�
�2/v2 − q2

��q,�� ��1/2

,

�17�

where M1 is the proton mass and all quantities are given here
in absolute units. The calculations shown here were provided
by Gärtner �21�, and were also reproduced by our own cal-
culations using the dielectric function of Eqs. �3�–�7� by di-
rect integration in the �-q plane. We find a remarkable agree-
ment of the Lindhard’s prediction �dashed lines in Fig. 4�
with the full calculations produced by the multiple-scattering
formalism in the linear approximation.

The use of a linear approach is well established for swift
particles �v�vF�. Hence the present calculations would be
more accurate at high energies. Conversely, in the low-
energy range, our previous calculations �15� based on a non-
linear treatment of the interactions would be more appropri-
ate. The transition from high to low energies is relatively
smooth, as Fig. 4 indicates, so that in practice an interpola-
tion procedure may be fully adequate.

In summary, we have investigated the influence of
electronic-scattering processes on the angular dispersion of
atomic projectiles moving through a free-electron gas. We

FIG. 4. Comparison between the values of 	1/2 for protons tra-
versing an 800 a.u. foil, including only individual excitations �solid
symbols� and adding plasmon contribution �open symbols� for rs

=1.5 a.u. and rs=2 a.u., as indicated. The dashed lines show the
values obtained using Lindhard’s relation, Eq. �17�. For compari-
son, we also include the low-velocity results from Ref. �15� ob-
tained from a non-linear formulation �appropriate for slow ions�.
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have performed numerical calculations based on the general
multiple-scattering theory, using the dielectric function ap-
proach to represent the dynamical interactions. The angular
widths of the distributions obtained from these calculations
are in excellent agreement with a previous expression de-
rived by Lindhard and apply in the range of velocities larger
than the Fermi velocity.
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