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The low-energy behavior of the partial-wave Jost function for scattering by a long-range 1/rs �s�2� central
potential is investigated analytically using the linear variant of the variable-phase equation. An exact expansion
of the Jost function in powers of the wave number k is derived iteratively and shown to be simpler compared
to the modified effective-range expansion of the phase shift. Improved expansions are determined explicitly for
s=3 and s=4. It is suggested that the Jost function offers a practical alternative for interpolating low-energy
cross sections and extracting scattering lengths; this is illustrated by fitting the Jost function, up to a normal-
izing constant, to the integral cross section for elastic collisions of slow electrons with N2 molecules.
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I. INTRODUCTION

The low-energy behavior of scattering cross sections can
often be summarized by using a small number of parameters
such as the scattering length and the effective-range value
�1�: the latter was introduced by Bethe �2� in the early days
of quantum mechanics in order to interpret low-energy
nucleon-nucleon scattering cross sections. Bethe’s effective-
range expansion for the cotangent of the partial-wave phase
shift is only an example of the many low-energy laws which
have been developed during the last 50 years for many dif-
ferent types of long-range interactions, and the subject has a
long and rich history �3�. Even in the simple case of scatter-
ing by a spherically symmetric potential the threshold behav-
ior of the partial-wave phase shifts is trivial only if the po-
tential vanishes at large distances. Much more care is
required if the potential exhibits a long-range tail, as is al-
ways the case in collisions between charged or polarizable
particles such as electrons, atoms, and molecules which at
large separations interact via long-range dispersion forces.

In recent years there has been a renewed interest in such
expansions due to the impressive progress made in the ex-
perimental techniques for cooling and trapping atoms and
molecules �4,5�. Using samples of cold atoms or molecules,
or mixtures of the two, the long-range interactions between
the particles can be studied with an unprecedented accuracy.
Progress, albeit less spectacular, has also been made in ex-
periments involving the scattering of slow electrons or posi-
trons by various targets; in particular, it has become possible
to produce beams of slow electrons with energies of only a
few meV �6�.

For a given potential it is in general possible to predict the
low-energy behavior of scattering observables; inversely, it is
also possible to gather information about the long-range part
of the interaction potential by fitting the low-energy expan-
sions to collision data or to extract scattering lengths by ex-
trapolating numerical or experimental data down to threshold
�6,7�.

If the interaction potential is spherically symmetric and
vanishes faster than any power of the distance r, the partial-

wave phase shifts can be expanded in odd powers of the
collision wave number k. However, if it decreases as 1/rs

�s�2�, the phase shift also contains other powers of k and, in
certain cases, logarithmic contributions. These nonanalytic
terms have characteristic coefficients that depend on the form
of the long-range interaction.

The case of s=4 arises when a neutral polarizable system
interacts with a charged particle, and it has been extensively
studied �8–12�. It seems that the “anomalous” behavior of
the partial-wave phase shifts at low energy caused by a 1/r4

interaction was first discussed by Thaler �8� in connection
with the polarizability of the neutron. Shortly thereafter,
O’Malley, Spruch, and Rosenberg �9� showed how Bethe’s
effective-range theory needs to be modified in this case, and
their results have been rederived using different mathemati-
cal methods �10,13,14�. The multichannel quantum-defect
theory developed by Watanabe and Greene �11� further ex-
tends the approach of O’Malley et al. to coupled channels
and a broader energy range.

The leading term of the Jost function for the case of 2
�s�3 has been derived rigorously by Klaus �15�, while a
repulsive 1/r3 interaction has been analyzed in detail by Gao
�16�. Several iterative derivations, based on the variable-
phase approach and valid for different types of long-range
potentials, have also been developed and applied to isotropic
�10,17� as well as anisotropic interactions �18,19�.

While the semiclassical or JWKB approximation is a
powerful method in the case of the Coulomb potential �20�, it
is less suitable for the dispersion-type potentials that vanish
more rapidly than 1/r2 �21�. However, still avoiding the use
of complicated analytical solutions of the Schrödinger equa-
tion, threshold laws and effective-range expansions can be
determined in a straightforward manner by treating the long-
range part of the potential as a perturbation �see, for ex-
ample, Sec. 132 of Ref. �21��. The idea is to expand the
scattering amplitude or the reactance matrix in a perturbation
series which is then truncated at a certain perturbative order,
typically the first; the truncated perturbation series is in turn
reexpanded in powers and logarithms of k. The method has
been used by several authors to derive low-energy expan-
sions for scattering by central potentials vanishing as 1/r3

�22�, 1 /r4, 1 /r6, and 1/r8 �23–25� and for a linear combina-
tion of a 1/r4 and a 1/r6 potential �13�. Although an expan-*Electronic address: fa.gianturco@caspur.it
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sion determined in this manner essentially represents the on-
set of a perturbation series rather than the onset of an exact
series in k, it is known �10,13,18� that the approach results in
expansions which are qualitatively correct up to a certain
order in k.

More recently Cavagnero �26� developed a secular pertur-
bation theory that can be used to construct analytical low-
energy solutions for a 1/rs potential algebraically, and the
method has been adopted by Rosenberg �14,27–29� for an-
isotropic interactions. Rosenberg also presented diagram-
matic rules which facilitate the evaluation of higher-order
terms of the perturbation series.

Despite the wealth of studies on the subject, it seems that
few attempts have been made so far to combine and collect
the various laws within a simple and exact formula. We are
only aware of a study by van Haeringen and Kok �30� who
defined a modified effective-range function which is a mero-
morphic function of k2 and which generalizes the more usual
effective-range function k2l+1 cot �l associated with scatter-
ing by short-range potentials. Unfortunately one does not
know in detail how to determine this function explicitly for a
given potential. From a fundamental point of view it is cer-
tainly unsatisfactory that no explicit, exact low-energy ex-
pansion for a general 1 /rs long-range potential can be found
in the literature.

In this paper we shall show how one can manage to derive
an exact series in k for the lth partial-wave Jost function
associated with scattering by a central potential vanishing as
1/rs �s�2�. We shall focus on the Jost function rather than
on the phase shift because of the greater mathematical sim-
plicity of the former. Traditionally one expands the tangent
or the cotangent of the phase shift in k: on the other hand, it
could be advantageous to use instead the Jost function be-
cause the latter often varies less rapidly than, say, the tangent
of �l �31�. Besides that, the Jost function contains more in-
formation than the phase shift alone: it also determines the
enhancement factor �1�, an important quantity in the theory
of final-state interactions �32�.

In the spirit of the variable-phase approach to potential
scattering �33�, we shall define the Jost function Fl�k ,r� for
every radial distance r. The asymptotic Jost function is then
obtained by taking the limit r→�. This formalism, apart
from having computational advantages �34,35�, allows one to
visualize the Jost function’s evolution from the origin to r
=� and therefore lends itself particularly well to theoretical
explorations. Since we are interested in the low-energy limit,
it is natural to expand the r-dependent Jost function in pow-
ers of k and to investigate the long-range behavior of the
r-dependent low-energy expansion: thus we are led to define
two sets of unknown long-range constants �l

�m� and �l
�m� �m

=0,1 ,2 , . . . �, which generalize the scattering length and the
effective-range parameter: we shall show below that they
indeed allow one to express the asymptotic Jost function
around k=0 in a simple and ordered manner. In order to
demonstrate the usefulness of the present approach in prac-
tical cases, the resulting general series �29� will then be ap-
plied to rederive and extend known expansions for potentials
which vanish as 1/r3 and 1/r4. As a simple application, we
shall use the Jost function for the case of s=4 in order to

interpolate an integral cross section measured recently for
electron-N2 collisions and to deduce from it the scattering
length.

Although the present theory has been motivated by recent
attempts of using single-channel modified effective-range
theory �MERT� in the analysis of beam experiments involv-
ing the scattering of slow electrons on biomolecules �6,7,36�,
our principal aim is here to develop a framework that be-
comes more useful than those already existing for an in-
depth understanding of low-energy scattering by dispersion
potentials in general.

In Sec. II the Jost function is therefore cast in the form of
a perturbation series; in Sec. III, the low-energy expansion of
the asymptotic Jost function is derived, while Sec. IV deter-
mines explicitly the initial terms of the expansion for the
case of s=3 and of s=4. In Sec. V the expansions of the
phase shift and of the Jost function for s=4 are compared by
fitting them to an experimental cross section for N2+e− col-
lisions. Section VI finally presents our conclusion.

II. PERTURBATION SERIES FOR THE JOST FUNCTION

The radial wave function ul�k ,r� for the lth partial-wave
satisfies the Schrödinger equation,

� �2

�r2 + k2 −
l�l + 1�

r2 − V�r��ul�k,r� = 0, �1�

where r is the radial distance and V�r� is the mass-scaled
potential. The latter is assumed to be given by

V�r� = Cs/r
s �s � 2� �2�

at large distances. The wave function ul�k ,r� can be normal-
ized such that it is an analytic and even function of k at every
distance r. Whenever the potential is less singular at the ori-
gin than 1/r2, this is ensured by the boundary condition

ul�k,r� →
jl�kr�
kl+1 →

rl+1

�2l + 1�!!
�r → 0� , �3�

where jl is the Riccati-Bessel function �56�. If the potential is
more singular at the origin than 1/r2, the origin is an irregu-
lar singular point �37� of the Schrödinger equation �1� and
the boundary condition �3� is not valid. If the potential is
singular and repulsive, the wave function ul�k ,r� can never-
theless be defined such that it is analytic and even in k.
Attractive singular potentials, in contrast, pose serious diffi-
culties �38�, and we shall exclude them from the present
discussion.

At each distance r, we may express the wave function
ul�k ,r� as a linear combination of the spherical Riccati-
Hankel functions hl

�1��x� and hl
�2��x� using two “osculating

constants” �37� Fl
�1��k ,r� and Fl

�2��k ,r� such that

ul�k,r� =
1

2kl+1 �hl
�1��kr�Fl

�1��k,r� + hl
�2��kr�Fl

�2��k,r�� , �4�
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�ul�k,r�
�r

=
1

2kl �hl
�1���kr�Fl

�1��k,r� + hl
�2���kr�Fl

�2��k,r�� , �5�

where a prime indicates the first derivative. This way of
matching the wave function and its first derivative to a pair
of reference solutions is familiar from the variable-phase
method �33�: it guarantees that the coefficients Fl

�1��k ,r� and
Fl

�2��k ,r� become constant at distances where the potential
vanishes. Since ul�k ,r� is an even function of k, the coeffi-
cients Fl

�1� and Fl
�2� are not independent: from the parity be-

havior of the Riccati-Hankel functions it follows that

Fl
�1��− k,r� = Fl

�2��k,r� � Fl�k,r� . �6�

The coefficient Fl�k ,r�, viewed as a function of the wave
number k, defines the Jost function for the potential set arti-
ficially to zero at distances larger than r, while the Jost func-
tion for the true potential is defined as the asymptotic value
�1,38,39�

Fl�k,�� = lim
r→�

Fl�k,r� . �7�

In this paper we shall always assume that the wave num-
ber k is real. Since it is convenient in this case to use only
real-valued quantities, we rewrite Eqs. �4� and �5� using
regular and irregular Riccati-Bessel functions jl and nl and
two osculating constants Al�k ,r� and Bl�k ,r�,

ul�k,r� =
jl�kr�
kl+1 Al�k,r� − klnl�kr�Bl�k,r� , �8�

�ul

�r
�k,r� =

jl��kr�
kl Al�k,r� − kl+1nl��kr�Bl�k,r� . �9�

The Jost function is thus rewritten as

Fl�k,r� = Al�k,r� − ik2l+1Bl�k,r� , �10�

Fl�− k,r� = Al�k,r� + ik2l+1Bl�k,r� . �11�

The variable phase �l�k ,r� �33� is determined �up to modulo
	� by the ratio tan �l�k ,r�=k2l+1Bl�k ,r� /Al�k ,r�; it is the
phase shift for the potential cut at r. The asymptotic phase
shift is �l�k ,��: as is well known it determines the partial-
wave scattering amplitude. The integral cross section of the
lth partial wave is then obtained as �1�


l =
4	

k2 �2l + 1�sin2 �l = 4	�2l + 1�
k4lBl

2

Al
2 + k4l+2Bl

2 . �12�

The coefficients Al and Bl satisfy a linear version of the
variable-phase equation �34,35,40� and are given below in
their integral form:

Al�k,r� = Al�k,d� − �
d

r

dr�klnl�kr��V�r��ul�k,r�� , �13�

Bl�k,r� = Bl�k,d� − �
d

r

dr�
jl�kr��
kl+1 V�r��ul�k,r�� , �14�

where d is an arbitrarily fixed distance. The set of Eqs. �8�,
�13�, and �14�, is equivalent to the Schrödinger equation �1�.
The boundary condition �3� is equivalent to Al�k ,0�=1 and
Bl�k ,0�=0: these conditions, however, will not be needed in
the following discussion.

Iteration of Eqs. �13� and �14�, starting with A�0��k ,r�
�Al�k ,d� and B�0��k ,r��Bl�k ,d�, generates the Neumann
series

Al�k,r� = 	
n=0

�

Al
�n��k,r� , �15�

Bl�k,r� = 	
n=0

�

Bl
�n��k,r� , �16�

whose members obey the recursion relations

Al
�n+1��k,r� = − �

d

r

dr�klnl�kr��V�r��ul
�n��k,r�� , �17�

Bl
�n+1��k,r� = − �

d

r

dr�
jl�kr��
kl+1 V�r��ul

�n��k,r�� , �18�

where

ul
�n��k,r� =

jl�kr�
kl+1 Al

�n��k,r� − klnl�kr�Bl
�n��k,r� ,

n = 0,1,2, . . . . �19�

In Appendix A it is shown that 	n=0
� Al

�n��k ,r� and
k2l+2	n=0

� Bl
�n��k ,r� converge uniformly in k and in r to the

solutions Al�k ,r� and k2l+2Bl�k ,r�. One should note that de-
coupling Eqs. �13� and �14�, as was proposed by Pupyshev
�40�, is not necessary in our present method: since the series
�15� and �16� converge uniformly on the entire radial axis,
the asymptotic Jost function is given by the series

Al�k,�� = 	
n=0

�

Al
�n��k,�� , �20�

Bl�k,�� = 	
n=0

�

Bl
�n��k,�� . �21�

Choosing the distance d to lie in the asymptotic region where
the potential has assumed its asymptotic form �2�, we may
rewrite the series �20� and �21� as


 Al�k,��
k2l+1Bl�k,�� � = 	

n=0

�

�Csk
s−2�n
Mn

AA�kd,�� Mn
AB�kd,��

Mn
BA�kd,�� Mn

BB�kd,��
�

� 
 Al�k,d�
k2l+1Bl�k,d� � , �22�

where M0 is the 2�2 unit matrix and the matrices Mn are
multiple integrals obeying the recursion relation
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Mn+1
AA �x,t� Mn+1

AB �x,t�
Mn+1

BA �x,t� Mn+1
BB �x,t�

�
= �

x

t

dt�t�−s
− nl�t��jl�t�� nl�t��nl�t��
− jl�t��jl�t�� jl�t��nl�t��

�
�
Mn

AA�x,t�� Mn
AB�x,t��

Mn
BA�x,t�� Mn

BB�x,t��
� �n = 0,1,2,3, . . . � . �23�

�The partial-wave index l on the Mn integrals has been omit-
ted.� The perturbation series �22� maps the value of the Jost
function at d into its asymptotic value, and it will be the basis
of the low-energy expansion of the next section.

III. LOW-ENERGY EXPANSION

The idea behind the formalism of this section is rather
simple. We exploit a peculiar feature of the perturbation se-
ries �22�: its repeated integrals depend on the wave number k
only through the product kd. In fact this implies that an ex-
pansion of any of these integrals in powers of k is also an
expansion in powers of d. The limiting value of the series
�22� �i.e., the asymptotic Jost function�, on the other hand,
does not depend on the choice of d. Therefore, when the
integrals in Eq. �22� are expanded around k=0, we certainly
need to retain only terms of zero order in d, provided that the
values Al�k ,d� and Bl�k ,d� can also be expanded in powers
and logarithms of d.

Since we are interested in the low-energy behavior of the
asymptotic values Al�k ,�� and Bl�k ,��, we must investigate
limits for both k→0 and r→�. First of all we note that the
wave function ul�k ,r� and the basis functions jl�kr� /kl+1 and
klnl�kr� in Eqs. �8� and �9� are all analytic and even functions
of the wave number k: this means that the coefficients
Al�k ,r� and Bl�k ,r� are also analytic and even in k. At each
finite distance r we can therefore expand them in k2,

Al�k,r� = 	
m=0

�

al
�m��r�k2m, �24�

Bl�k,r� = 	
m=0

�

bl
�m��r�k2m. �25�

By expanding also the reference functions jl�kr� /kl+1 and
klnl�kr� in k2, one sees that al

�m��r� and bl
�m��r� �m

=0,1 ,2 , . . . � solve a recursive linear system of coupled first-
order differential equations. Similar equations for the vari-
able phase have been studied before by Levy and Keller �10�
and by Ali and Fraser �17�.

In the case of s�2l+3 the zero-energy functions al
�0��r�

and bl
�0��r� tend to finite limits al

�0���� and bl
�0���� in the

asymptotic limit r→�. From Eq. �8� it then follows that the
zero-energy wave function behaves asymptotically as

ul�0,r� →
rl+1

�2l + 1�!!
al

�0���� +
�2l + 1�!!

2l + 1
r−lbl

�0���� �26�

and the partial-wave scattering length is then defined as the
ratio −bl

�0���� /al
�0���� �21�.

Generally, however, the functions al
�m��r� and bl

�m��r� �m
=0,1 ,2 , . . . � diverge �unless Cs=0�, so that the asymptotic
Jost function cannot be obtained from Eqs. �24� and �25� by
simply taking the limit r→�. Nevertheless one may expect
that the expansions of Al�k ,�� and Bl�k ,�� in k are inti-
mately linked to the long-range behavior of al

�m��r� and
bl

�m��r�. The long-range asymptotic forms of al
�m��r� and

bl
�m��r� �m=0,1� are given in Appendix B for the special case

of s=3, l=0. Similar forms exist for the general case of s
�2 and arbitrary l=0,1 ,2 , . . . . One sees that al

�m��r� and
bl

�m��r� can both be expanded in powers and in logarithms of
r—i.e., in the functions rp lnq�r /��, �p ,q��R2 where � is a
constant length that we have introduced only in order to
obtain a dimensionless quantity r /� and which can be chosen
freely.

For future convenience, the zero order terms of the long-
range forms al

�m��r� and bl
�m��r� will be called �l

�m� and �l
�m�

�m=0,1 ,2 , . . . �. Note that they are not necessarily the lead-
ing terms. Furthermore, they depend on the choice made for
� if al

�m��r� and bl
�m��r� contain terms of logarithmic order in

r �note the identity ln�r /��=ln�r /���+ln��� /���. The explicit
example of Eq. �B9� in Appendix B, or a dimensional analy-
sis, then suggest that the long-range forms of al

�m��r� and
bl

�m��r� can be compactly written as


 Al�k,r�
k2l+1Bl�k,r� � = 	

n=0

�

�Csk
s−2�n
Qn

AA�k,r� Qn
AB�k,r�

Qn
BA�k,r� Qn

BB�k,r�
�

�
 �l
�0� + �l

�1�k2 + Ok4

�l
�0�k2l+1 + �l

�1�k2l+3 + Ok2l+5� , �27�

where Q0�k ,r� is the 2�2 identity matrix and the matrices
Qn��k ,r� �n��1� expand in nonzero powers of kr and possi-
bly in logarithms of r /�. �The symbol O means “the order
of.”� The Qn matrices can be generated by iterating the dif-
ferential version of the variable-phase equations �13� and
�14� after expanding the equations in k �or in x=kr�, and by
absorbing all integration constants in the �l

�m� and �l
�m� con-

stants.
Inserting the long-range form �27� in the perturbation se-

ries �22� then gives the double series


 Al�k,��
k2l+1Bl�k,�� � = 	

n,n�=0

�

�Csk
s−2�n+n�

� 
Mn
AA�kd,�� Mn

AB�kd,��
Mn

BA�kd,�� Mn
BB�kd,��

�
� 
Qn�

AA�k,d� Qn�
AB�k,d�

Qn�
BA�k,d� Qn�

BB�k,d� �
� 
 �l

�0� + �l
�1�k2 + Ok4

�l
�0�k2l+1 + �l

�1�k2l+3 + Ok2l+5� ,

�28�
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where Mn�kd ,�� expands in powers and logarithms of kd
while Qn�k ,d� expands in powers of kd and logarithms of
d /�. The leading terms of the above series are given explic-
itly in Eqs. �B15� and �C1� of the Appendix for two specific
cases, s=3 and s=4. We may immediately simplify Eq. �28�
by noting that the sum on the right-hand side cannot depend
on d: in fact all terms of nonzero order in d must cancel
exactly when the expansions for Mn�kd ,�� and Qn��k ,d� are
multiplied out. We thus obtain our principal result,


 Al�k,��
k2l+1Bl�k,�� � = 	

n=0

�

�Csk
s−2�n
Ln

AA�k�� Ln
AB�k��

Ln
BA�k�� Ln

BB�k��
�

� 
 �l�k�
k2l+1�l�k� � , �29�

where the 2�2 matrices Ln�x� �n=0,1 ,2 , . . . � are obtained
by multiplying out the expansions of the perturbation inte-
grals and of the long-range forms in Eq. �28� and where we
have defined the functions

�l�k� = 	
m=0

�

�l
�m�k2m, �30�

�l�k� = 	
m=0

�

�l
�m�k2m �31�

via their expansions around k=0.
It is very important to note that the matrices Ln �n

=0,1 ,2 , . . . � in Eq. �29� are either constants or depend only
logarithmically on k: in fact, in Eq. �28� a term of order �kd�p

stemming from the perturbation integrals must be multiplied
with a term of order �kd�−p in the long-range form of the Jost
function to yield a term of zero order in d, and the product
�kd�p�kd�−p does obviously not depend on k. Ln may still
depend logarithmically on k because a logarithmic term
ln�kd� stemming from the perturbation integrals splits as
ln�k��+ln�d /��—i.e., into a term that only depends on k and
a term that only depends on d: in this case the k-dependent
part remains present in Eq. �28� while the d-dependent term
must cancel with some other term that also depends logarith-
mically on d.

The matrices L0, L1, and L2 are given more explicitly by

L0�k�� = 1, �32�

L1�k�� = Q1�k,d� + M1�kd,�� , �33�

L2�k�� = Q2�k,d� + M1�kd,��Q1�k,d� + M2�kd,�� .

�34�

Since the above expressions do not depend on d, a finite
number of terms in the expansions of Mn�kd ,�� and
Qn��k ,d� is sufficient to determine Ln�k�� for a given order
of n. In particular, the first-order correction L1 given by �33�
coincides with the term of constant or logarithmic order in
the expansion of the perturbation integral M1�x ,�� around
x=0.

An explicit evaluation of the Ln�x� functions in Eq. �29�
for higher orders of n is difficult because it requires analyz-
ing the repeated integrals of the perturbation series �22�. In
Sec. IV, we shall, however, evaluate the first- and second-
order terms, L1 and L2, for the case of s-wave scattering by
potentials which vanish as 1/r3 and as 1/r4.

We introduced the series �l�k� and �l�k� defined in Eqs.
�30� and �31� mainly in order to simplify the notation, with-
out proving their convergence, and in principle it might be
possible that they both diverge �unless k=0�. In this case the
series �29� remains well-defined provided that its terms are
summed in the order of increasing powers of k using the
well-defined coefficients �l

�m� and �l
�m�. Similarly one may

wonder whether the 2�2 matrix series 	n�Csk
s−2�nLn�k��

converges alone: these are mathematical issues that would
merit further attention. For the moment it is probably safer to
regard Eq. �29� as a series in k rather than as a series in
Csk

s−2 since it stems from an expansion of the perturbation
series �22� in powers of k: note that it is simple enough to be
truncated at any desired order in k, the functions Ln�x� being
either constants or diverging only logarithmically for x→0.

In the case of Cs=0, the series �29� reduces to the usual
Taylor series for the Jost function around k=0, while in the
presence of a long-range interaction �Cs�0� the Taylor se-
ries is modified by nonanalytic functions. It should be noted,
however, that the long-range constants encoded in �l�k� and
�l�k� implicitly depend on the Cs coefficient: in fact one may
expect that both �l�k� and �l�k� are quite sensitive to the
long-range part of the potential since they generalize the
scattering length.

By retaining in Eq. �29� only the leading terms for k→0
the threshold behavior of the partial-wave Jost function is
seen to be

Fl�k,�� � 
�l
�0� − ik2l+1�l

�0� if 2l + 3 � s ,

�l
�0� − ik2l+1��l

�0� + CsL1
BA�k���l

�0�� if 2l + 3 = s ,

�l
�0� − iCsk

s−2L1
BA�k���l

�0� if s � 2l + 3.
�

�35�

The above equation holds for the general case of Fl�0,��
�0. In the special case of Fl�0,��=0, the series �29� re-
mains valid, but its leading terms then differ from those in
Eq. �35�.

On the other hand, the present derivation does not allow
us to give a general estimate for the maximum energy value
up to which the series �29�, truncated after a certain order in
k, will be a useful approximation. The reason for this is that
the constants �l

�m� and �l
�m� �m=0,1 ,2 , . . . � in Eqs. �30� and

�31� are defined “at infinity;” i.e., they summarize the accu-
mulated effects of the potential from the origin to r→� and
may therefore be fairly large, an hypothesis that is confirmed
numerically in Sec. V for a concrete case. Finding some
estimate would certainly require more knowledge about the
details of the specific physical system: it would at least be
necessary to know the distance at which the potential takes
up its long-range form. It is a recognized problem in poten-
tial scattering that effective-range expansions are usually
valid only within a very small energy range near threshold
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�3,12,16�, although the expansions can be extended to higher
energies by including higher powers of k, a procedure which
also requires using more parameters �long-range constants
�l

�m� and �l
�m� in our method�. It therefore follows that in

order to predict or to explain the behavior of scattering ob-
servables over larger energy domains other methods like
quantum-defect theory �41,42� may be better suited �see also
our remarks in the concluding Sec. VI�.

In many situations �e.g., elastic scattering� the physically
relevant information is contained in the phase shift alone and
the complete Jost function is then not needed. The expansion
of tan �l�k ,�� around k=0 is found from Eq. �29� by equat-
ing like powers of Csk

s−2 on both sides of the identity

tan �l�k,��Al�k,�� = k2l+1Bl�k,�� .

To order �Csk
s−2�2 we thus obtain

tan �l�k,�� = − k2l+1
l�k� + L1
BACsk

s−2 + �L1
AA

− L1
BB�Csk

s+2l−1
l�k� − L1
ABCsk

s+4l
l�k�2 + �L2
BA

− L1
BAL1

AA�Cs
2k2s−4 + �L2

AA − L2
BB + L1

ABL1
BA

+ L1
AAL1

BB − L1
AAL1

AA� � Cs
2k2s+2l−3
l�k�

+ �2L1
AAL1

AB − L1
ABL1

BB − L2
AB�Cs

2k2s+4l−2
l�k�2

− L1
ABL1

ABCs
2k2s+6l−1
l�k�3 + OCs

3k3s−6−�, �36�

where we have suppressed the argument k� of the logarith-
mic terms Ln�k�� and where we have introduced the ratio


l�k� = −
�l�k�
�l�k�

�37�

which expands in even powers of k,


l�k� = 
l
�0� + 
l

�1�k2 + 
l
�2�k4 + ¯ . �38�

In the case of 2l+3�s, the coefficient 
l
�0�=
l�0� is the scat-

tering length as defined by the long-range asymptotic form of
the zero-energy wave function �26�, while 
l

�1� is a quantity
analogous to the effective-range parameter. In the special
case of �l�0�=0 the scattering length becomes infinite.

The first two terms in Eq. �36�, i.e.,

tan �l�k,�� � − k2l+1
l�k� + L1
BA�k��Csk

s−2 �39�

essentially summarize Eqs. �67�, �68�, and �69� of Levy’s and
Keller’s historical paper �10�. In the particular case of 2l
+3�s, the function L1

BA�x� �i.e., the term of order x−� in the
expansion of M1

BA�x ,�� around x=0� can be determined ex-
plicitly by splitting M1

BA�x ,�� as

M1
BA�x,�� = − �

0

�

t−s�jl�t��2dt + �
0

x

t−s�jl�t��2dt . �40�

The two integrals on the right-hand side are of orders 1 and
x2l+3−s, respectively, so that L1

BA�x� is seen to coincide with
the first one, which is known analytically �10�:

L1
BA�x� = − �

0

�

t−s�jl�t��2dt �41�

=−
	

2
�

0

�

t1−s�Jl+1/2�t��2dt �42�

=−
	

2s

��s − 1���l +
3

2
−

1

2
s�

�2�1

2
s���l +

1

2
+

1

2
s� ,

2 � s � 2l + 3. �43�

Similarly, the term �L2
BA−L1

BAL1
AA�Cs

2k2s−4 in Eq. �36� is
the second-order contribution that has been evaluated by Wa-
dehra �43� for the case of 2l+5�2s.

Since no approximation has been made in the present
derivation, we believe that the series for the Jost function
�29� is exact within its �unknown� radius of convergence. We
should point out that a simpler perturbative treatment, start-
ing from a truncated perturbation series, would have led to a
scattering length that is correct only to a certain perturbative
order �13�: in fact the term of order k2l+1 in Eq. �36� can also
be obtained in an approximate manner by truncating the per-
turbation series �22� after a finite number of iterations and by
then expanding the truncated series in k. For example, trun-
cating Eq. �22� after zero iterations—i.e., neglecting com-
pletely the long-range part of the potential—would give
k2l+1Bl�0,d� /Al�0,d� instead of the exact value k2l+1�l

�0� /�l
�0�.

If the ratio Bl�0,d� /Al�0,d� is only used as a fitting param-
eter, there is nothing wrong with using this approximation,
since replacing it by the correct numerical value of the scat-
tering length gives the correct threshold law. Similarly we
know that the modified effective-range expansions obtained
in first order in the interaction strength �13,22,24,25� are use-
ful fitting formulas up to a certain order in k. Therefore, it is
important to note that the �l

�m� and �l
�m� coefficients �m

=0,1 ,2 , . . . � in the series �29� are not defined implicitly by
the series itself but, in a rather simple manner, by the
asymptotic long-range behavior of the wave function.

One notices that the “modified effective-range expansion”
�29� for the Jost function is very much simpler than the cor-
responding formula �36� for the phase shift: while ��l ,�l� is
mapped linearly to �Al ,Bl�, tan �l depends on 
l�k� in a non-
linear manner due to the presence of higher powers of 
l�k�.
This result is not surprising, considering that the variable-
phase equations for Al and Bl are linear whereas the equation
for tan �l�k ,r� is nonlinear. The occurrence of higher powers
of 
l�k� in the threshold law �36� for tan �l is certainly not an
artifact of our derivation: in fact the higher-order expansions
for s=4 derived recently by Rosenberg �14� and by Macri
and Barrachina �12� also contain higher powers of the scat-
tering length and terms mixing the scattering length and the
effective-range parameter. Although it has become custom-
ary to expand tan �l or cot �l explicitly in powers and loga-
rithms of k, it seems therefore more natural to express tan �l
as the ratio k2l+1Bl�k ,�� /Al�k ,��, the expansions of Al and Bl

being so much simpler.
Another argument for using the Jost function is the fol-

lowing. Let us assume that Al�k ,�� and Bl�k ,�� are well
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approximated within a certain energy range by the series �29�
truncated after some finite order of Csk

s−2. Then the tangent
is of course well approximated by the ratio k2l+1Bl /Al using
the truncated series for Al and Bl. In contrast higher powers
of Csk

s−2 would in general be needed in the explicit expan-
sion �36� of tan �l in order to achieve the same level of
accuracy �57�. This will be particularly the case in the vicin-
ity of energies at which the phase shift passes through 90°.
Using the Jost function in the form of Eq. �29� it could there-
fore be possible to extend the energy domain in which modi-
fied effective-range theory is applicable.

IV. SPECIFIC EXPANSIONS: s=3 AND s=4

We have evaluated our series �29� for two cases of physi-
cal interest—i.e., for s=4 and s=3—in both cases truncating
it after n=2. We shall also indicate the corresponding expan-
sions of tan �l, although, as we mentioned in the preceding
section, it may often be more convenient to express tan �l in
terms of the Jost function.

The algebraic details are given in Appendixes B and C.

A. The case of s=3, l=0

A spherically symmetric 1 /r3 interaction can occur be-
tween two identical particles such as an S and a P state atom
of the same species �21�. Anisotropic 1/r3 potentials are en-
countered more frequently in nature as they include dipole-
dipole and charge-quadrupole interactions �19�; we should
therefore point out that the results established here are valid
only for an isotropic interaction, although the formalism can
be generalized to anisotropic forces.

For the case of s=3, l=0, the series �29� becomes

A0�k,�� = �1 −
	

2
C3k +

1

2

�ln 2k� + � −

5

3
�2

− 1 +
	2

4
�C3

2k2

+ OC3
3k3−���0�k� + 
�ln 2k� + � −

3

2
�C3k

−
	

2
�ln 2k� + � −

4

3
�C3

2k2 + OC3
3k3−��k�0�k� ,

�44�

kB0�k,�� = 
�ln 2k� + � −
3

2
�C3k +

	

2
�ln 2k� + � −

5

3
�C3

2k2

+ OC3
3k3−���0�k� + �1 +

	

2
C3k +

1

2

�ln 2k� + �

−
4

3
�2

−
14

9
+

	2

4
�C3

2k2 + OC3
3k3−��k�0�k� , �45�

where �=0.577 22¯ is the Euler-Mascheroni constant and
�0�k� and �0�k� expand in even powers of k, as explained in
Sec. III. Using Eqs. �B10�–�B14� of Appendix B, we have
checked to order k2C3

2 that the form of Eqs. �44� and �45�
remains unchanged in a transformation �→��.

In the ordinary case of A0�0,���0, Eqs. �44� and �45�
extend the leading term derived by Klaus �15� to higher or-

der in k. In the special case of A0�0,��=0, however, the
leading term of A0�k ,�� is twice as large as predicted by
Klaus who treated this case separately. A possible explana-
tion for this discrepancy is given in Appendix B.

Using Eq. �36� we furthermore obtain the following ex-
pansion in k for the tangent of the s-wave phase shift:

tan �0�k,�� = 
− 
0�k� + �ln 2k� + � −
3

2
�C3�k + 	
− 
0�k�

+ �ln 2k� + � −
19

12
�C3�C3k2 − �ln 2k� + �

−
3

2
�C3
0�k�2k3 + 
�ln 2k� + � −

5

3
�2

+
1

4

−
	2

2
�C3

2k3 − 	�ln 2k� + � −
19

12
�C3

2
0�k�2k4

− �ln 2k� + � −
3

2
�2

C3
2
0�k�3k5 + OC3

3k3−�

�46�

which extends to second order in k the threshold law derived
by Shakeshaft �22�: it contains several terms of second order
in the interaction strength; note in particular the contribution
C3

2k2	�ln 2k�+�− 19
12

� which dominates over the usual k3

term at low energies. This new term is interesting because it
improves the threshold law in the ultralow-energy range in
which the phase shift is essentially determined by the “gen-
eralized scattering length” 
0�0�. It should be noted that
Shakeshaft’s expansion of tan �0, given by Eq. �5� of Ref.
�22�, depends on two correlated parameters d and A0 in such
a way that changing d alters the coefficient of the k2 term if
the leading term, k� �const+C3 ln kd�, is to remain un-
changed. This clearly shows that Eq. �5� in Ref. �22� is cor-
rect only to first order in k. Here we have instead derived a
formula which is exact up to and including order k2, and it is
obvious that Eq. �46�, truncated after order k2, does not
change its form if we rescale �→��, provided that we also
make the substitution 
0�k�→
0��k��
0�k�+ln��� /��C3.
This invariance further confirms the exactitude of many of
the algebraic constants in Eqs. �44� and �45� which we cal-
culated “by hand” and which are quite difficult to verify
otherwise. The contributions of order C3k3−� and higher have
been retained in Eq. �46� only for the sake of completeness:
in reality they compete with terms of third perturbative order
which we did not attempt to evaluate.

The threshold behavior of tan �l has also been discussed
by Gao �16� for the particular case of a purely repulsive 1/r3

potential. Since Eq. �59� in Ref. �16� is exact only to first
order in kC3, we may rewrite it as

tan �0 = kC3�ln�2kC3� + 3� − 3
2� + O�kC3�2−�, �47�

which is a special case of our more general expression �46�:
it corresponds to the value 
0�0�=−�ln�C3 /��+2��C3. While
Gao’s expression is parameter free, our Eq. �46� is valid for
both repulsive and attractive interactions and also for the
more realistic situation in which the potential deviates at
short distances from its long-range 1/r3 form: the price to
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pay for this increased generality is the need for the function

0�k� of which we only know that it expands in k2.

From Eq. �46� one may further obtain the s-wave integral
cross section: as is well known �3,21� it diverges logarithmi-
cally for k→0.

B. The case of s=4

The prominent example of an isotropic 1/r4 potential is
the charge-induced dipole interaction between a charged par-
ticle and a neutral, polarizable system—for example, an elec-
tron and an atom or a molecule. Although the effects of such
a potential on low-energy scattering phase shifts have been
extensively studied �9,10,14,26,28,44�, the threshold behav-
ior of the Jost function has been derived only fairly recently
by Macri and Barrachina �12� by using the detailed proper-
ties of the Mathieu functions. Here we rederive it �and ex-
tend it to slightly higher order in k� using the perturbative
approach.

For the case of s=4, l=0, the series �29� takes the form

A0�k,�� = �1 +
2

3
�ln 2k� + � −

11

6
�C4k2 +

2

9

�ln 2k� + �

−
9

5
�2

−
983

900
+

	2

4
�C4

2k4 + OC4
3k6−���0�k�

+ 
	

3
C4k2 −

2	

9
�ln 2k� + � −

28

15
�C4

2k4

+ OC4
3k6−��k�0�k� , �48�

kB0�k,�� = 
	

3
C4k2 +

2	

9
�ln 2k� + � −

9

5
�C4

2k4

+ OC4
3k6−���0�k� + �1 −

2

3
�ln 2k� + �

−
11

6
�C4k2 +

2

9

�ln 2k� + � −

28

15
�2

−
889

900

+
	2

4
�C4

2k4 + OC4
3k6−��k�0�k� , �49�

while the expansion �36� for the tangent of the s-wave phase
shift is now given by

tan �0�k,�� = − k
0�k� +
	

3
C4k2 +

4

3
�ln 2k� + �

−
11

6
�C4k3
0�k� −

	

3
C4k4
0�k�2 +

	

135
C4

2k4

−
8

9

�ln 2k� + � −

37

20
�2

+
31

1200

−
	2

8
�C4

2k5
0�k� +
8	

9
�ln 2k� + �

−
221

120
�C4

2k6
0�k�2 −
	2

9
C4

2k7
0�k�3 + OC4
3k6−�;

�50�

it extends the O’Malley-Spruch-Rosenberg modified
effective-range expansion �9� to higher powers in k. The un-
known function 
0�k� expands in powers of k2 and can be
adjusted to experimental data for a given physical system. It
should be mentioned that Eq. �50� gives the Fk4 term of
Buckman’s and Mitroy’s MERT5 expansion �45� exactly: in
fact F is determined entirely by the scattering length and the
polarizability.

Equations �48� and �50� confirm Macri and Barrachina’s
expansions �12�, and they could also be recovered from Wa-
tanabe and Greene’s theory �11� which also makes use of
Jost functions. Some of the higher-order terms in Eq. �50�
have also been known before, at least approximately, from
Rosenberg’s variational study �14�. Our equations are sim-
pler in appearance, both compared to Macri and Barrachina
�12� and to Rosenberg �14�, because we have encoded all
unknown parameters in the Taylor series for �0�k� and �0�k�:
once more we emphasize that these parameters are not arbi-
trary but have been defined in Sec. III via the long-range
behavior of the wave function.

The first-order corrections to the threshold law of the Jost
function for higher partial waves �l�1� can also be found
analytically �see again Appendix C�. In particular, for the p
wave we write

A1�k,�� = 
1 −
2

15
�ln 2k� + � −

31

30
�C4k2 + OC4

2k4−���1�k�

+ �−
	

15
C4k2 + OC4

2k4−��k3�1�k� , �51�

k3B1�k,�� = �−
	

15
C4k2 + OC4

2k4−���1�k� + 
1 +
2

15
�ln 2k�

+ � −
31

30
�C4k2 + OC4

2k4−��k3�1�k� �52�

and accordingly, for the phase shift,

tan �1�k,�� = − k3
1�k� −
	

15
C4k2 −

4

15
�ln 2k� + �

−
31

30
�C4k5
1�k� +

	

15
C4k8
1�k�2 + OC4

2k4.

�53�

The terms linear in C4 that appear in Eqs. �50� and �53�
are all well known from Hinckelmann and Spruch’s
first-order perturbative analysis �13�. The derivation in
Ref. �13� was, however, unnecessarily complicated as the
“d-dependent terms” we discussed in Sec. III were regrouped
only in the very final step, whereas we rearranged them at an
early stage so that they are no longer explicitly present in our
series �29�.
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V. APPLICATION TO ELASTIC N2-ELECTRON
COLLISIONS

Field has kindly provided us with an experimental integral
cross section for scattering of slow electrons on N2 mol-
ecules in the energy range from 10 meV to 0.7 eV �46�. In
order to test some of the explicit expansions derived above,
we have fitted both the partial-wave Jost functions and the
partial-wave phase shifts for l=0 and l=1 to this cross sec-
tion. A more stringent test would require precise numerical
data for the phase shifts or the reactance matrix.

The threshold for excitation from the vibrational ground
state to the N2 �v=1, j=0� vibrational level lies at
2327.13 cm−1—that is, 0.288 527 eV. The collision between
e− and N2 is therefore a multichannel problem, involving
both rotational and vibrational degrees of freedom. However,
the inelastic cross section is known to be very small �47–49�
in the low-energy range �E�0.7 eV� considered here. We
therefore make the simplifying assumption that the electron
essentially “sees” a spherically symmetric target with no in-
ternal structure, a simplification which has been successfully
used before to interpret several electron-molecule collision
experiments �6,7,36,47�.

The spherical polarizability of N2 is known to be −C4
=11.8 a.u. �48�, and the reduced atom-molecule interaction
potential behaves asymptotically as V�r�=C4 /r4. The value
of the polarizability can also be deduced quite accurately
from the experimental cross section by fitting it together with
the scattering length using only the leading terms of the
modified effective-range expansion �9�. However, in the fol-
lowing C4 will be taken constant.

The energy range of 10 meV�E�0.7 eV covered by the
experiment is such that only the s- and p-wave phase shifts
are expected to be important: in fact, Eqs. �39� and �43� with
s=4 indicate that at an energy of 0.7 eV the d-wave partial
cross section is negligible. We therefore approximate the in-
tegral cross section 
 as the sum of the s- and p-wave partial
cross sections, 
=
1+
2. In order to extract phase shifts
from the experimental cross section, we express the partial
cross sections 
l �l=0,1� in terms of either tan �l or the Jost
function. The latter is expressed in terms of the real functions
Al and Bl �l=0,1�. We then substitute for tan �0 and tan �1

the low-energy forms �50� and �53�, and similarly we use for
the Jost function the forms �48�, �49�, �51�, and �52�. In order
to simplify our formulas we choose the unit length � such
that ln 2k�+� becomes ln ka0 where a0 is the Bohr radius.
The task is then to determine the unknown functions 
l�k� �in
the case of using tan �l� and �l�k� and �l�k� �in the case of
using the Jost function� such that the experimental cross sec-
tion is well approximated by the “model” cross section 
1
+
2. The two methods, based, respectively, on the expansion
of tan �l and on the expansion of the Jost function, will be
abbreviated “T” and “J.”

Knowledge of the integral cross section alone is in gen-
eral insufficient to extract the underlying phase shifts unam-
biguously �45�. However, at sufficiently low collision ener-
gies, the p-wave phase shift is determined entirely by the C4
coefficient, so that it is then possible to extract the s-wave
parameters from the integral cross section alone �although

the p-wave contribution to the cross section may still be
important�. In particular the sign of the scattering length can
be read off from the slope of the cross section with respect to
k.

In a first step, we therefore fixed the p-wave functions as

1�k��0, �1�k��1, and �1�k��0, assuming that their pre-
cise forms have no influence at low energy. Considering only
experimental data for wave numbers smaller than 0.15a0

−1

and using a total of three free parameters in both methods �T
and J�, we then fitted the s-wave functions to obtain �in
atomic units� for T3,


0�k� = 0.667 706 − 33.662k2 − 2038.33k4, �54�

and for J3,

�0�k� = 1.0 − 22.2032k2, �55�

�0�k� = − 0.6651 + 49.8841k2. �56�

Figure 1 shows the experimental cross section �E� together
with the model cross sections �T3 and J3�: the experimental
cross section is reproduced neatly within the energy range of
the fit �but not much beyond�. The two methods yield nearly
the same value for the scattering length: T3 gives 
0�0�
=0.668a0, compared to 0.665a0 from J3, and 0.56 Å=1.1a0
from Ref. �47�. Ideally the function 
0�k� deduced from T3
would be identical to the ratio −�0�k� /�0�k� deduced from
J3: however, at higher energies they start to differ �see Fig.
2�, due to the fact that both the expansion for tan �l and the

FIG. 1. Comparison of the models T3 and J3 �see text�. E �black
dots�: the experimental cross section measured by Field et al.
J3 �solid curve� and T3 �dotted-dashed curve�: cross section ob-
tained by fitting, respectively, the s-wave Jost function �J3� and
the tangent of the s-wave phase shift �T3�, using in each method
three free parameters and considering only experimental data for
k�0.15a0

−1.
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expansions for the Jost function are truncated at finite order
of C4k2.

Next, in an attempt to find out which expansion �T or J� is
better suited for interpolating the cross section at higher en-
ergies, we increased the number of free parameters from 3 to
5. Using the Jost function we now managed fairly easily,
without many trials and errors, to fit �l�k� and �l�k� �l
=0,1� such that they reproduce the experimental cross sec-
tion well in the entire energy range up to 0.7 eV �see Fig. 3�.
In the five-parameter model J5, the fitted functions for the s
and p wave are �in atomic units�

�0�k� = 1.0 − 28.0546k2 + 565.862k4, �57�

�0�k� = − 0.642 233 + 41.8624k2, �58�

�1�k� = 1.0, �59�

�1�k� = − 6.12428. �60�

The s-wave scattering length deduced from J5—that is, the
ratio −�0�0� /�0�0�=0.64a0—is still in fairly good agreement
with J3 and T3. The function −�0�k� /�0�k� is again plotted
in Fig. 2. Certainly the solutions �57�–�60� are not unique:
for example, we could have omitted the k4 term in �0�k� by
adding instead a k4 correction to �0�k�. Therefore we do not
attempt to interpret them. Furthermore, it is likely that effects
stemming from the anisotropic 1/r3 quadrupole and isotropic
1/r6 van der Waals interaction would also need to be taken
into account in order to determine the “true” parameters.

In Fig. 3 one notices that the curve J5 extrapolates
smoothly well beyond the range of the experimental data.
However, this part of the curve should be regarded with a
great deal of skepticism: even if we make the assumption
that the influence of higher partial waves and inelastic chan-
nels can still be neglected at energies above 0.7 eV, higher
orders of k2 in the s-wave functions �0�k� and �0�k� could
become important, and our theory does not make any predic-
tion on their actual values. Although the expansions allow us
to extrapolate the cross section downward in energy, their
predictive power for higher energies seems to be rather lim-
ited.

While neither of the three-parameter models J3 and T3
showed any significant advantage over the other, it is inter-
esting that we did not manage to fit the tangent expansion for
wave numbers k higher than �0.18a0

−1, using trial functions
of the form


0�k� = 
0
�0� + 
0

�1�k2 + 
0
�2�k4 + 
0

�3�k6, �61�


1�k� = 
1
�0�. �62�

Although we tried to adapt the 
l
�m� �m=0,1 ,2 , . . . � param-

eters in a continuous manner, starting at low energies �where
the model works�, we did not manage to match the model
cross section to the experimental one, with or without includ-
ing the k6 term in the expression for 
0�k�. The curve T4 in
Fig. 3 shows the model cross section obtained after optimiz-

FIG. 2. The fitted function 
0�k� as obtained from T3 �dotted-
dashed curve�, J3 �dashed curve�, and J5 �solid curve�. The s-wave
scattering length is given by 
0�0�.

FIG. 3. Fits obtained using higher orders of k. E �black dots�:
experimental values by Field �46�. J5 �solid curve�: cross section
obtained by fitting both the s-wave and the p-wave Jost function to
the experimental data, using a total of five parameters. J5� �dashed
curve�: same as J5 but omitting terms of second order in C4 �see
text�. T4 �dotted-dashed curve�: cross section obtained by fitting
tan �0 and tan �1 using a total of four free parameters.
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ing 
0�k� and 
1�k� on the interval 0�k�0.2a0
−1 using a

total of four parameters: clearly it no longer matches the
experimental cross section. This failure seems to be related
to the appearance of higher orders of 
0�k� in Eq. �50� which
contribute very high orders of k: in fact, after truncating Eq.
�50� at order k5 we did manage to fit tan �l �l=0,1� to the
cross section using a total of four parameters. However, since
there can be no doubt that the higher orders of k do occur in
Eq. �50�, we think that they should be retained: the fact that
it proved impossible to extend the T4 and T5 models to
higher energies could be seen as an indication that terms of
third order in the interaction strength must be included in the
expansion of tan �l. Simply omitting the higher orders of k
could make the expansion too flexible in the sense that it
could then be fitted to rather arbitrary cross sections and
would thus be less reliable for extracting scattering lengths
and phase shifts or for gathering information about the de-
tails of the long-range interactions.

Our conclusion, for this particular experimental integral
cross section, is that if all known terms are included in the
expansions for both the Jost function and the tangent of the
phase shift, the Jost function can still be fitted at energies
where the tangent expansion breaks down.

Finally, in order to demonstrate the importance of the
second-order terms in the threshold laws �48� and �49� we
recalculated the cross section 
1+
2 from the functions �l�k�
and �l�k� �l=0,1� given in Eqs. �57�–�60� by inserting them
into �48� and �49� but now omitting all terms of order C4

2: the
resulting cross section is represented in Fig. 3, curve J5�.
The deviation of J5� from J5 shows that second-order effects
become important at energies of around 50 meV. Of course
the numerical constants in Eqs. �57�–�60� may be readjusted
in order to achieve a better agreement of the “first-order
cross section” �i.e., the cross section obtained from the Jost
function without second-order corrections� and the experi-
mental one. However, we found the first-order Jost function
more difficult to fit to the cross section, and we thus con-
clude that the second-order corrections are not only impor-
tant from a theoretical point of view but that their presence
can also improve the numerical fits.

VI. CONCLUSION

We have derived a simple series in k for the partial-wave
Jost function associated with scattering by a central potential
that vanishes as 1/rs �s�2�: this series is given in Eq. �29�.
It is a perturbation series reexpanded in k that has been re-
formulated in such a way that it can now be easily truncated
at any desired order in k; it further explains the general struc-
ture of modified effective-range expansions for different po-
tentials. Clearly it can be generalized to superpositions of
power-law potentials and to coupled partial waves for non-
spherical potentials. We have demonstrated its usefulness by
rederiving and improving existing expansions for two long-
range potentials of particular interest, s=3 and s=4, in both
cases including the contributions which are of second order
in the strength of the long-range interaction. In the case of
s=3, l=0 the second-order correction is expected to be im-
portant even in the ultralow energy range.

We argued that near-threshold expansions of scattering
observables can become simpler when formulated in terms
of the Jost function rather than in terms of the phase shift,
and for the particular case of scattering of slow electrons on
N2 molecules we showed that the Jost function can be di-
rectly fitted �up to a normalizing factor� to the observed cross
section.

Further deriving an expansion valid over a large energy
range is still a difficult task. An alternative to the effective-
range approach makes use of the wave function and its de-
rivative at a fixed distance d where the collision energy is
dwarfed by the potential. The wave function and its deriva-
tive at d can then be related to asymptotic scattering quanti-
ties using energy-dependent analytical �11,16,26,50� or nu-
merical �51–53� solutions of the long-range 1/rs potential.
This idea has already been exploited as a starting point of
quantum-defect theory �41,42�, and it provides another pos-
sible approach to the understanding of threshold effects in
potential scattering.

In conclusion, the present work proposes a more robust
perturbation expansion for potential scattering off structured
targets in situations where the isotropic interaction domi-
nates. It has been shown how the use of the Jost function
through the formulation of Eq. �29� can lead to a more direct
understanding of the role played by the various, potential-
linked parameters which include the scattering length and the
effective-range parameter.
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APPENDIX A: CONVERGENCE OF THE PERTURBATION
SERIES

In this appendix, the symbol C denotes a constant, though
not necessarily the same at each occurrence.

Substitution of Eqs. �13� and �14� for Al�k ,r� and Bl�k ,r�
in Eq. �8� yields a Volterra equation for the wave function
�cf. Chap. 12 of Ref. �38��:

ul�k,r� = ul
�0��k,r� + k−1�

d

r

dr�gl�kr,kr��V�r��ul�k,r�� ,

�A1�

ul
�0��k,r� =

jl�kr�
kl+1 Al�k,d� − klnl�kr�Bl�k,d� , �A2�

gl�x,x�� = nl�x�jl�x�� − jl�x�nl�x�� . �A3�

Iteration of �A1� generates the Neumann series

LOW-ENERGY EXPANSION OF THE JOST FUNCTION… PHYSICAL REVIEW A 74, 052715 �2006�

052715-11



ul�k,r� = 	
n=0

�

ul
�n��k,r� , �A4�

ul
�n��k,r� = k−n�

d

r

drn ¯ �
d

r2

dr1gl�kr,krn� ¯ gl�kr2,kr1�

� V�rn� ¯ V�r1�ul
�0��k,r1� . �A5�

Note that u�n��k ,r� in Eq. �A5� is the same as in Eq. �19�.
The Riccati-Bessel functions jl�x� and nl�x� and the

Green’s function �A3� are bounded as follows �38�:

�jl�x�� � C� x

1 + x
�l+1

, �A6�

�nl�x�� � C�1 + x

x
�l

. �A7�

If x�x�,

�gl�x,x��� � C� x

1 + x
�l+1� x�

1 + x�
�−l

. �A8�

Thus the nth member of the series �A4� is bounded as

�ul
�n��k,r�� � Cn+1�

d

r

drn ¯ �
d

r2

dr1� r

1 + kr
�l+1

�� rn

1 + krn
�−l

¯ � r2

1 + kr2
�l+1� r1

1 + kr1
�−l

��V�rn�� ¯ �V�r1��� r1

1 + kr1
�l+1

�A9�

=Cn+1� r

1 + kr
�l+1�

d

r

drn ¯ �
d

r2

dr1

�
rn

1 + krn
¯

r1

1 + kr1
�V�rn� ¯ V�r1�� �A10�

=C� r

1 + kr
�l+1 1

n!�C�
d

r

dr�
r�

1 + kr�
�V�r����n

�A11�

�C� r

1 + kr
�l+1qn

n!
, �A12�

where q=C�d
�dr�r��V�r���. Using Eqs. �17� and �18� we ob-

tain the following bounds:

�Al
�n+1��k,r�� � C

qn

n!
�

d

r

dr��V�r���
r�

1 + kr�

� C
qn

n!
�

d

�

dr��V�r���r�, �A13�

�Bl
�n+1��k,r�� � C

qn

n!
�

d

r

dr��V�r���� r�

1 + kr�
�2l+2

� C
qn

n!
k−2l−2�

d

�

dr��V�r��� . �A14�

Comparing Eqs. �A13� and �A14� to the geometric series
shows that 	n=0

� Al
�n��k ,r� and k2l+2	n=0

� Bl
�n��k ,r� converge

uniformly on the open region ��k ,r� :0�k�� ;d�r���.
Differentiating the series �15� and �16� with respect to r and
using Eqs. �17�, �18�, and �A4� one sees that they satisfy the
variable-constant equations �13� and �14�.

APPENDIX B: EXPLICIT ANALYSIS FOR s=3, l=0

The step from �22�–�29� in Sec. III is investigated explic-
itly here for the specific case of s=3, l=0. We shall now omit
the partial-wave index l=0 on all symbols, and we expand
the Jost function as

A�k,r� = a0�r� + k2a1�r� + Ok4, �B1�

B�k,r� = b0�r� + k2b1�r� + Ok4. �B2�

1. Long-range behavior

For distances where the potential is V�r�=C3 /r3 the
variable-phase equations �13� and �14� take the form

�

�r

 A

kB
� =

C3

2kr3
 sin 2kr 1 + cos 2kr

cos 2kr − 1 − sin 2kr
�
 A

kB
� .

�B3�

Using the Taylor series for sine and cosine one sees that
am�r� and bm�r� �m=0,1�, which give A�k ,r� and B�k ,r�
correctly up to and including order k2, verify the following
linear first-order equations:

d

dr

a0

b0
� = C3
 r−2 r−3

− r−1 − r−2�
a0

b0
� , �B4�

d

dr

a1

b1
� = C3�−

2

3
− r−1

1

3
r

2

3
�
a0

b0
� + C3
 r−2 r−3

− r−1 − r−2�
a1

b1
� .

�B5�

The long-range forms of am�r� and bm�r� �m=0,1� can be
determined from these differential equations by making the
ansatz


am�r�
bm�r� � = 
�m

�m
� + 	

n=1

�

C3
n
am

�n��r�
bm

�n��r�
� . �B6�

We thus obtain
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a0�r�
b0�r� � = 
�0

�0
� + C3� − r−1 −

1

2
r−2

− ln
r

�
r−1 �
�0

�0
� + C3

2�
1

2
r−2�ln

r

�
+

3

2
� −

1

6
r−3

− r−1�ln
r

�
+ 2� 1

4
r−2 �
�0

�0
� + OC3

3, �B7�


a1�r�
b1�r� � = 
�1

�1
� + C3�−

2

3
r − ln

r

�

1

6
r2 2

3
r �
�0

�0
� + C3� − r−1 −

1

2
r−2

− ln
r

�
r−1 �
�1

�1
� + C3

2�
1

2
ln2 r

�
+

1

6
ln

r

�
, r−1�ln

r

�
+ 1�

−
2

3
r�ln

r

�
−

5

4
� ,

1

2
ln2 r

�
−

1

6
ln

r

�
�
�0

�0
�

+ C3
2�

1

2
r−2�ln

r

�
+

3

2
� −

1

6
r−3

− r−1�ln
r

�
+ 2� 1

4
r−2 �
�1

�1
� + OC3

3. �B8�

One sees that in the general case of �0�0 only a0�r� remains finite when r→�, whereas b0�r�, a1�r�, and b1�r� diverge.
Similarly it can be shown that am�r� and bm�r� �m=2,3 , . . . � generally diverge. Combining Eqs. �B7� and �B8� results in the
following long-range form for the r-dependent Jost function �this form can also be derived by iterating Eqs. �B3� using the
variable x=kr and replacing ln x by ln�r /�� in the end�


 A�k,r�
kB�k,r� � = 
1 + kC3� − �kr�−1 −

2

3
kr + O�kr�3, −

1

2
�kr�−2 − ln

r

�
+ O�kr�2

− ln
r

�
+

1

6
�kr�2 + O�kr�4, �kr�−1 +

2

3
kr + O�kr�3 �

+ �kC3�2�
1

2
�kr�−2�ln

r

�
+

3

2
� +

1

2
ln2 r

�
+

1

6
ln

r

�
+ O�kr�2, −

1

6
�kr�−3 + �kr�−1�ln

r

�
+ 1� + O�kr�

− �kr�−1�ln
r

�
+ 2� −

2

3
kr�ln

r

�
−

5

4
� + O�kr�3, +

1

4
�kr�−2 +

1

2
ln2 r

�
−

1

6
ln

r

�
+ O�kr�2� + OC3

3�
�
 �0 + k2�1 + Ok4

k�0 + k3�1 + Ok5� . �B9�

In Sec. III we pointed out that the long-range functions ��k� and ��k� generally depend on the choice made for �. However
the form of Eqs. �B7� and �B8� must, of course, be independent of this choice. In fact it may be checked that Eqs. �B7� and
�B8� are invariant under the transformation

� → �� �B10�

�0 → �0� = �0 �B11�

�0 → �0� = �0 + C3 ln��/����0, �B12�

�1 → �1� = �1 + C3 ln��/����0 + 1
2C3

2 ln2��/����0 − 1
6C3

2 ln��/����0, �B13�

�1 → �1� = �1 + C3 ln��/����1 + 1
2C3

2 ln2��/����0 + 1
6C3

2 ln��/����0 + OC3
3. �B14�

In order to determine the exact transformation law for �1 it would be necessary to evaluate b1�r� to third order in C3.

2. Low-energy expansion

Substituting for A�k ,d� and B�k ,d� on the right-hand side of �22� the long-range form �B9� with r=d, and further expanding
M1�kd ,�� and M2�kd ,�� around k=0 �see Appendix D� gives
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 A�k,��
kB�k,�� � = 
1 + kC3� −

	

2
+ x−1 +

2

3
x + Ox3,

1

2
x−2 + ln 2x + � −

3

2
+ Ox2

ln 2x + � −
3

2
−

1

6
x2 + Ox4,

	

2
− x−1 −

2

3
x + Ox3 �

+ �kC3�2�Ox−1 +
1

2

�ln 2x + � −

5

3
�2

+
3

2
+

	2

4
� + Ox , Ox−1 −

	

2
�ln 2x + � −

4

3
� + Ox

Ox−1 +
	

2
�ln 2x + � −

5

3
� + Ox , Ox−1 +

1

2

�ln 2x + � −

4

3
�2

+
17

18
+

	2

4
� + Ox�

+ OC3
2� � 
1 + kC3� − x−1 −

2

3
x + Ox3, −

1

2
x−2 − ln

x

k�
+ Ox2

− ln
x

k�
+

1

6
x2 + Ox4, x−1 +

2

3
x + Ox3 �

+ �kC3�2�
1

2
x−2�ln

x

k�
+

3

2
� +

1

2
ln2 x

k�
+

1

6
ln

x

k�
+ Ox2 −

1

6
x−3 + x−1�ln

x

k�
+ 1� + Ox

− x−1�ln
x

k�
+ 2� −

2

3
x�ln

x

k�
−

5

4
� + Ox3, +

1

4
x−2 +

1

2
ln2 x

k�
−

1

6
ln

x

k�
+ Ox2� + OC3

3�
 ��k�
k��k� � ,

�B15�

where x=kd. The above expression is a special case of �28�.
Multiplying out the individual terms and retaining only those
that are of zero order in d results in Eqs. �44� and �45�. Note
that the logarithmic terms in Eq. �B15�, ln�kd� and ln�d /��,
combine neatly so that ln d drops out.

3. The special case of A„0,�…=0

The discrepancy between �44� and �45� and Eq. �3.4b� of
Ref. �15� might be explained qualitatively as follows. In the
case of A�k=0,��=�0=0, it could be possible that the esti-
mates in Ref. �15� amount to approximating the radial wave
function u�k ,r� at large distances and for small energies by
the long-range form of the zero-energy solution �cf. �B7��,

u�k,r� � �0 + Ok2. �B16�

Although the approximation �B16� is correct to order k2 at
any large distance r, it is not correct at large distances if k is
fixed and positive. In fact, at sufficiently large distances the
kinetic energy dominates over the potential, and the true so-
lution oscillates sinusoidally. Nevertheless, let us insert
�B16� on the right-hand side of �13� and �14�, take the limit

for r→� and denote the result Ã and B̃,

Ã�k,�� � A�k,d� + C3k2�
kd

� cos t

t3 dt��0 + Ok2�

= a0�d� + C3
1

2
�k2 ln k +

1

d2��0 + Ok2, �B17�

kB̃�k,�� � kB�k,d� − C3k2�
kd

� sin t

t3 dt��0 + Ok2�

= kb0�d� − C3
k

d
�0 + Ok2. �B18�

Although these expressions are correct only to first order in
C3, they become exact in the limit d→�,

Ã�k,�� = C3��0/2�k2 ln k + Ok2, �B19�

kB̃�k,�� = �0k + Ok2, �B20�

which coincides with the result of Eq. �3.4b� in Ref. �15�.
However, by repeating the procedure, now using instead

of �B16� the better approximation

u�k,r� � k−1 sin�kr�A�k,d� + cos�kr�B�k,d� , �B21�

we obtain

Ã�k,�� = C3�0k2 ln k + Ok2, �B22�

kB̃�k,�� = �0k + Ok2, �B23�

in accordance with our Eqs. �44� and �45�.
Of course the fact that �B16� is not a valid approximation

does not imply that the resulting expression �B19� is incor-
rect. However it suggests that the derivation of Eq. �3.4b� in
Ref. �15� should be further checked.

APPENDIX C: EXPLICIT ANALYSIS FOR s=4, l=0

As in the preceding section, we substitute for A�k ,d� and
B�k ,d� in Eq. �22� their long-range forms and further expand
M1�kd ,�� and M2�kd ,�� around k=0, to obtain
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1

15
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2
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ln2 x

k�
−

2
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+ Ox2, Ox−5
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2

9
ln2 x

k�
+

2

135
ln

x

k�
+ Ox2� + OC4

3�
 ��k�
k��k� � , �C1�

where x=kd. The above expression is again a special case of �28�. Multiplying out the individual terms and retaining only
those of zero order in d then gives �48� and �49�. Again the logarithms ln kd and ln r /� combine in such a way that ln d
cancels.

APPENDIX D: INTEGRALS

In the case of l=0, the Riccati-Bessel functions are j0�x�=sin x and n0�x�=−cos x. In this case the integrals Mn�x� �n
=1,2� defined by �23� can be expanded in x using elementary arithmetics: both the simple and the double integrals, M1�x� and
M2�x�, are first related to Si x and Ci x using partial integrations, and their expansions around x=0 are then obtained from the
known expansions of Si x and Ci x �54�. In the case of the double integrals M2�x� we have further used the identity

�
0

� cos t

t
Si tdt = − �

0

� sin t

t
Ci tdt = 0, �D1�

which follows from Eqs. �11.1.1� and �11.4.6� of Ref. �55�. The calculations are rather tedious. In the case of the double
integrals we have therefore only evaluated the terms of logarithmic order, which are the only ones that appear in the
second-order perturbative correction of the threshold law.

1. s=3, l=0

In the case of s=3, l=0, we have

M1�x,�� = �
x

�

dtt−3
 cos t sin t cos t cos t

− sin t sin t − sin t cos t
�

= � −
	

2
− 2	
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�
�− 1�m

�2m + 1�!
�2x�2m−1
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3

2
+

1

2
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m=1

�
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3
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� , �D2�

M2�x,�� = �
x

�

dtt−3
 cos t sin t cos t cos t

− sin t sin t − sin t cos t
��

x
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dt�t�−3
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2. s=4, l=0

In the case of s=4, l=0, we have

M1�x,�� = �
x
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�D4�

M2�x,�� = �
x
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3. s=4, lÐ1

In the case of s=4, l�1, the matrix

M1�x� = �
x

�

dtt−4
− nl�t�jl�t� nl�t�nl�t�
− jl�t�jl�t� jl�t�nl�t�

� �D6�

can be read off from Eqs. �B2�, �B5�, and �B7� of Ref. �13�,
noting that the integrals I, J, and K used by Hinckelmann and
Spruch are related to M1 as

C4k3M1
AA�kd,�� = − J , �D7�

C4k3M1
AB�kd,�� = K − I , �D8�

C4k3M1
BA�kd,�� = − I , �D9�

C4k3M1
BB�kd,�� = J . �D10�

Hence, for l�1,
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�56� The regular and irregular Riccati-Bessel functions are defined
as jl�x�=�	x /2Jl+1/2�x� and nl�x�= �−1�l+1�	x /2J−l−1/2�x�.
The Riccati-Hankel functions are hl

�1��x�= jl�x�+ inl�x� and
hl

�2��x�= jl�x�− inl�x�.
�57� As a simple example consider expanding the function f�x�

= �1+ax� / �1+bx� around x=0. While only terms of order x
need to be retained in both the nominator and the denominator,
higher orders of x are needed in order to represent the function
by its Taylor series, except in the special case of a=b.
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