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We apply the recently generalized Levinson theorem for potentials with inverse-square singularities �Sheka
et al., Phys. Rev. A 68, 012707 �2003�� to Aharonov-Bohm systems in two dimensions �2D�. By this theorem,
the number of bound states in a given mth partial wave is related to the phase shift and the magnetic flux. The
results are applied to 2D soliton-magnon scattering.
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I. INTRODUCTION

In 1949 Levinson �1� established one of the most beauti-
ful results of scattering theory: the Levinson theorem sets up
a relation between the number of bound states, Nl

b, in a given
lth partial wave and the phase shift �l�k�: namely, �l�0�
−�l���=�Nl

b.
Ten years later, in 1959, Aharonov and Bohm �2� discov-

ered the global properties of the magnetic flux. Nowadays
the Aharonov-Bohm �AB� effect is often involved to under-
stand different quantum-mechanical phenomena �3�.

The aim of this paper is to generalize the Levinson theo-
rem to systems which exhibit AB effects. We denote such
systems as AB systems. Recently, the analog of the Levinson
theorem was established by Lin �4� for the simplest AB sys-
tem with constant magnetic flux �. Here we establish a more
general relation, valid for a magnetic field with a vector po-
tential of the form

A�r� =
����
2�

� � �
����
2��

e�,

��0� = 2��, ���� = 2�� . �1�

Here � and � are the polar coordinates in two spatial dimen-
sions.

The paper is organized as follows. In Sec. II we formulate
the scattering problem for the AB systems �1�. We prove the
Levinson theorem for the simplest so-called centrifugal AB
model in Sec. III A. The general form of the theorem is
established in Sec. III B. We compare our results with those
for the conventional AB system in Sec. IV and discuss the
physical meaning of the extra term in the generalized theo-
rem. In Sec. V we apply our results to two-dimensional �2D�
magnetic systems. Namely, we consider the soliton-magnon
scattering, which can be described in the framework of AB
scattering of the general form �1�. Concluding remarks are
presented in Sec. VI.

II. SCATTERING PROBLEM FOR THE AB SYSTEM:
NOTATIONS AND PARTIAL-WAVE EXPANSION

Let us consider the Schrödinger-like equation for a spin-
less particle in a magnetic field in two dimensions:

�− i � − A�2	 + V�r�	 = i�t	 . �2�

We will consider a central �axially symmetric� potential
V�r�=V��� and a magnetic vector potential in the form �1�.
Such a form of the magnetic field is typical for the
Aharonov-Bohm effect; it corresponds to the magnetic in-
duction

B = � 
 A = ez������
2��

+ ������r�� .

Thus, the magnetic field has a singular point at the origin
�vortex line�. The total magnetic flux is �Bzd

2x=����.
We will denote the systems with the above-mentioned po-

tentials as AB systems. For such systems it is possible to
apply the standard partial-wave expansion, using the ansatz

	�r,t� = 	
m=−�

�

�m
E ���exp�im� − iEt� , �3�

where 
m ,E� is the complete set of eigennumbers and E and
m are the energy and the azimuthal quantum number, respec-
tively. Each partial wave �m

E is an eigenfunction of the spec-
tral problem

H�m
E ��� = E�m

E ��� �4a�

for the 2D radial Schrödinger operator H=−��
2+Um��� with

the partial potential

Um��� = V��� +
�m −

����
2�

�2

�2 . �4b�

Let us formulate the scattering problem. A continuum
spectrum exists for E�0. Note that the eigenfunctions for
the free particle, V���=����=0, have the form*Electronic address: Denis�Sheka@univ.kiev.ua
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�m
free��� 
 Jm�k��, k = �E � 0, �5�

where k is a “radial wave number” and Jm is a Bessel func-
tion. Free eigenfunctions like �m

free play the role of partial
cylinder waves of the plane wave:

exp�ik · r − iEt� = 	
m=−�

�

imJm�k��eim�−iEt. �6�

The behavior of the eigenfunctions in the potentials V���
and ���� can be analyzed at large distances from the origin,
��R, where R is a typical range of the potentials. In view of
the asymptotic behavior Um���
m2 /�2, which is valid for
fast decreasing potentials V��� and ����, in the leading ap-
proximation in 1/� we have the usual result

�m
E 
 J�m��k�� + �m�k�Y �m��k�� , �7�

where Ym is a Neumann function. The quantity �m�k� stems
from the scattering; it can be interpreted as the scattering
amplitude. In the limiting case k�� �m� it is convenient to
consider the asymptotic form of Eq. �7�,

�m
E 


1
��

cos�k� −
�m��

2
−

�

4
+ �m�k�� ,

where the scattering phase or the phase shift �m�k�
=−arctan �m�k�. The phase shift contains all information
about the scattering process. In particular, we give the gen-
eral solution of the scattering problem for the plane wave �6�.
With Eqs. �3� and �7�, the asymptotic solution of the
Schrödinger-like equation �2� for ��R can be written as

	�r,t� = 	
m=−�

�

Cm�J�m��k�� + �m�k�Y �m��k���exp�im� − iEt� ,

�8�

where Cm are constants. To solve the scattering problem for
the plane wave let us choose the constants Cm by comparing
Eq. �8� with the expansion �5� for the free motion. Using the
asymptotic forms for the cylinder functions in the region �
�1/k, we obtain

	�r,t� = eik·r−iEt + F���
eik�−iEt

��
,

F��� =
exp�− i�/4�

�2�k
	

m=−�

�

�e2i�m − 1�eim�. �9�

The total scattering cross section is given by the expression

Stot = �
0

2�

�F�2d� = 	
m=−�

�

Sm, �10�

where Sm= �4/k�sin2 �m are the partial scattering cross sec-
tions.

III. LEVINSON THEOREM FOR THE AB MODEL

For regular 2D potentials V��� without magnetic field
�����=0�, the 2D analog of the Levinson theorem has the
form �5–7�

�m�0� − �m��� = ��Nm
b + Nm

hb��m�,1� . �11�

Here Nm
b is the number of bound states in a given mth partial

wave and Nm
hb is the number of half-bound states �recall that

a zero-energy state is called a half-bound state if its wave
function is finite, but does not decay fast enough at infinity to
be square integrable�.

Here all partial potentials Um��� satisfy the asymptotic
conditions

lim
�=0

�2Um��� = m2, �12a�

lim
�=�

�2Um��� = m2, �12b�

which provide a regular behavior at the origin and fast de-
caying at infinity.

The presence of the nonlocal magnetic field can break the
asymptotic conditions �12�. Namely, if the field does not van-
ish at the origin, ��0�=2���0, the asymptotic condition
�12a� is broken. In the same way, a not vanishing field at
infinity, ����=2���0, breaks the asymptotic condition
�12b�. There appear inverse-square singularities in the effec-
tive partial potential at the origin or in the inverse-square tail
at infinity. The standard Levinson theorem fails for this case
�4,8�, and some generalization is needed.

Before we discuss the general case, let us consider the
simplest AB model, which nevertheless contains the main
features of the problem.

A. Simplest “centrifugal” AB model

We start with vector potentials of the form

A�r� = �� � � when � � R ,

� � � otherwise,
� �13�

where � and � are nonzero constants. For this simple model
the potential V����0, so the effective partial potentials �4b�
for the correspondent spectral problem �4� can be rewritten
as follows:

Um��� = �
�2

�2 when � � R ,

�2

�2 otherwise, �
� � m − �, � � m − � .

The scattering problem for this so-called centrifugal model
has an exact solution �see �8��
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�m
cf�k� =

�m� − ���
2

� − arctan �̃�
cf�� � kR� ,

�̃�
cf��� =

J���� ���J������ − J���� ���J������

J������Y ���� ��� − J���� ���Y ������
.

Using the asymptotic form of the cylinder functions, one can
easily derive the Levinson relation for the centrifugal model
�8�:

�m
cf�0� − �m

cf��� =
�

2
���� − ���� . �14�

As an example we consider a solenoid of zero radius with
constant magnetic flux �0 and returned flux uniformly dis-
tributed on the surface of a cylinder at radius R; the vector
potential of such a system is �9,10�

A = � �0

2��
e� when � � R ,

0 otherwise.
� �15�

The magnetic induction B=
�0

2�� �����−���−R��ez consists of
the usual AB flux line at �=0 and an infinitely thin magnetic
field shell at �=R. Identifying the parameters �=�0 /2� and
�=0, one can rewrite the Levinson relation �14� as follows:

�m�0� − �m��� =
�

2
��m − �0/2�� − �m�� . �16�

Note that the Levinson relation takes nonzero values for any
nonvanishing AB field flux �0, which can take also an inte-
ger value. In particular, if m��0 /2��0, the Levinson re-
lation is equal to −�0 /4.

B. Levinson theorem for general AB systems

Let us discuss the case of the general AB system with the
vector potential of the form �1�. We suppose that the particle
potential V��� is less singular than �−2 at the origin and de-
cays faster than �−2 at infinity. Then the partial potential �4b�
satisfies the asymptotic conditions

Um��� 
 �
�2

�2 , when � → 0,

�2

�2 , when � → � ,� �17�

where �=m−� and �=m−�. In the presence of magnetic
flux at least one of the parameters � and � has a nonzero
value. This breaks the regular asymptotic conditions �12�. In
the general case there appears an effective potential, which
has an inverse-square singularity at the origin ���m� and an
inverse-square tail at infinity ���m�. The Levinson theorem
for such singular potentials was generalized in our recent
paper �8�. Namely, when an effective partial potential has the
asymptotic behavior �17�, the generalized Levinson theorem
�8� reads

�m�0� − �m��� = ��Nm
b +

��� − ���
2

� . �18�

Identifying the parameters � and � one can rewrite the
Levinson relation in the following form:

�m�0� − �m��� = ��Nm
b +

�m − �� − �m − ��
2

� . �19�

IV. DISCUSSION

The Levinson theorem �19� establishes a relation between
the number of bound states in a given mth partial wave, total
phase shift, and magnetic flux.

Let us discuss the physical meaning of the extra term

�

2
��m − �� − �m − ��� �20�

in the Levinson relation. This term results from the long-
range behavior of the AB potential. The singular behavior of
the AB potential at the origin creates a “vorticity” �, which
induces wave functions with m greater �smaller� than � to go
around the origin in the counterclockwise �clockwise� direc-
tion. Thus the short-wavelength scattering data are shifted by
�� /2���m �−�m−� � �. The same situation takes place for AB
potentials with a long-range tail, which creates a “vorticity”
�, and the long-wavelength scattering data are changed by
�� /2���m−� �−�m � �. As a result, the correction to the
Levinson relation takes the form �20�.

Let us compare our results with those for the conventional
AB system �2,11�:

A = �
1

2
B�e� when � � R ,

BR2

2�
e� otherwise. � �21�

Such a field produces a constant magnetic induction B=Bez
inside a cylinder of radius R and provides an empty induc-
tion outside. The Levinson relation for this case reads

�m�0� − �m��� =
�

2
��m� − �m − ���, � =

1

2
BR2,

in agreement with exact results �12,13�.
Let us recall that the AB total scattering cross section

vanishes when ��Z. Nevertheless, any AB field changes the
standard Levinson relation, even when ��Z. Due to the
nonlocality of AB potentials, the total phase shifts do not go
to zero with increasing �m�. To treat such a singularity regu-
larization is usually involved �12� to determine the total scat-
tering amplitude �9� or the total scattering cross section �10�.
The same picture takes place not only for the conventional
AB system �21�, but also for the general case �1�. An excep-
tion is a simple AB system with

A�r� = � � � . �22�
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In this case one has a standard Levinson relation in the form
�m�0�−�m���=�Nm

b . One should note that nevertheless each
scattering state �m�k� corresponds to a given general angular
momentum �= �m−��. The Levinson theorem for this par-
ticular case was first obtained by Lin �4�.

The Levinson relations should be modified for the critical
case when half-bound states occur. The Levinson theorem
for the system with possible half-bound states was consid-
ered first by Bollé et al.�5� and reestablished later by another
method by Dong et al. �7�. Without magnetic field the
Levinson relation has the form of Eq. �11�, so the half-bound
states affect in the same way the two modes with m= ±1.
The presence of the magnetic field breaks the symmetry
�m�k�=�−m�k�, and in the general case the contribution of the
half-bound states in the form �11� cannot be adequate. How-
ever, for the particular case �22�, the problem can be solved
�4�.

If the particle potential V��� has an inverse-square singu-
larity or an inverse-square tail, then the Levinson theorem in
the form �19� fails. Instead, one has to calculate the effective
intensities � and � of the singularities in the partial potential
as follows:

�2 = lim
�=0

�2Um���, �2 = lim
�=�

�2Um��� , �23�

and then one obtains the Levinson theorem in the form �18�.

V. APPLICATIONS TO MAGNETISM: SCATTERING
ON A MAGNETIC SOLITON IN 2D

ISOTROPIC MAGNETS

All mentioned above results can be applied to a wide class
of AB systems. Here we do not consider a quantum-
mechanical example of the general AB-scattering system.
Namely, we apply our results to the description of the
soliton-magnon interaction in a 2D magnet. Note that it is
possible to apply the quantum AB theorem to a classical
system, because magnons in a magnet can be formally de-
scribed by a Scrödinger-like equation with an effective mag-
netic field in the form which is typical for AB systems.

We consider the model of a 2D isotropic Heisenberg fer-
romagnet, where the elementary linear excitations of the spin
system �magnons� can coexist together with nonlinear ones
�solitons�. In terms of the angular variables for the normal-
ized magnetization m= �sin � cos � ; sin � sin � ; cos ��, the
structure of the simplest nonlinear excitation, the so-called
Belavin-Polyakov soliton, is described by the formulas �14�

tan
�0���

2
= �R

�
��q�

, �0 = �0 + q� .

Here q�Z is the topological charge of the soliton and R and
�0 are arbitrary parameters.

To analyze the soliton-magnon interaction, one considers
small oscillations of the magnetization �� ,�� on the back-
ground of the soliton ��0 ,�0�. These oscillations can be de-
scribed in terms of the complex-valued “wave function” �
=�−�0+ i sin �0��−�0�. The linearized equations have the
form of the Schrödinger-like equation �2� with an effective
potential �15,16�

V��� = −
q2

�2 sin2 �0

and an effective magnetic field in the form

A�r� =
����
2�

� �, ���� = − 2�q cos �0��� ,

��0� = 2�q, ���� = − 2�q .

The partial potential �4b� has the form �15�

Um��� =
m2 + 2mq cos �0��� + q2 cos 2�0���

�2 .

Using Eq. �23�, one can calculate the intensities of the
inverse-square singularities:

� = �m − q�, � = �m + q� .

The Levinson theorem reads

�m�0� − �m��� = ��Nm
b + Nm

hb +
�m − q� − �m + q�

2
� . �24�

As found by Ivanov �17�, the soliton with a topological
charge q has 2 �q� internal zero-frequency modes, when m
� �−q+1;q�. Namely, modes with m� �−q+2;q� form
bound state, while the mode with m=−q+1 is the half-bound
state. Finally the Levinson theorem for the soliton-magnon
scattering takes the form �we chose q�0�

�m�0� − �m���
�

= �q when m � − q ,

1 − m when − q � m � q ,

− q when m � q .
�

This result agrees with our previous analytical and numerical
calculation for the soliton with q=1; see Ref. �15�.

Note that the phase shift varies in a wide range, so it
cannot be described, not even approximately, in the frame-
work of the Born approximation. It was the source of numer-
ous inconsistencies between previous attempts to calculate
the soliton-magnon interaction in magnets �18–20�. The rea-
son is that due to the nonlocality of the AB magnetic field,
the perturbative Born approximation is not adequate for the
AB scattering �12,21�.

VI. CONCLUSION

In conclusion, we have applied our recent results �8� for
the scattering in a singular potential to AB systems and es-
tablished a generalization of the Levinson theorem. The
theorem constructs the relation between the number of bound
states Nm

b in a given mth partial wave, the total phase shift
�m�0�−�m��� of the scattering state, and the magnetic flux
�. When the magnetic flux parameter takes different values
at the origin and at infinity, �=��0� /2� and �=���� /2�,
the Levinson relation takes the form of Eq. �19�. The total
phase shift can be treated as a counter for the bound states.
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The generalized Levinson theorem �19� can be applied to
different AB systems, including quantum Hall systems, su-
perconductors, and so forth �3�. The method can be used not
only for quantum-mechanical AB systems. In particular, we
have verified the theorem for the case of the soliton-magnon
interaction in the 2D isotropic Heisenberg model.
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