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High-precision variational calculations for the rovibrational states in the range of the total orbital momentum
L=0-4 and vibrational quantum number v=0-4 for the H,* and HD* molecular ions are presented. Relativ-
istic and radiative corrections of orders R..a?, R,a*(m/M), R.a’, R.a*(m/M), and, partially, R..a* are taken
into consideration as well as the finite size structure of proton and deuteron. It is found that the relative
theoretical uncertainty due to uncalculated contributions of orders R..a* and higher to the reference transition

frequency interval (L=0,v=0)—(0,1) is about 1 ppb.
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I. INTRODUCTION

In recent years laser spectroscopy experiments have been
proposed [1,2] for high precision measurements of the vibra-
tional spectrum of the hydrogen molecular ions H," and
HD™. These experiments present metrological interest and
are aimed at a sup-ppb precision. In order to improve the
present accuracy of the electron-to-proton mass ratio [3] the
uncertainty of the spectroscopic data (as well as of the theo-
retical calculations of the spectra to compare to) should be
below 1 part per billion (1 ppb). To meet these stringent
requirements, the theoretical calculations should achieve at
least a level of 10 kHz (or ~10~'! in atomic units).

The variational calculations of the nonrelativistic energies
during past years have reached a numerical precision of
107-1072* a.u. [4-9]. The ultimate accuracy of ~107>* a.u.
has been obtained for the H," molecular ion ground state [8].
These calculations demonstrate that at least the nonrelativis-
tic rovibrational transition frequencies can be determined
with the accuracy well below the 1 kHz level.

The next important step is evaluation of the relativistic
and radiative corrections to the binding energies of the rovi-
brational levels. This can be systematically performed using
series expansion of the binding energy in terms of the cou-
pling constant, in our case, the fine structure constant, «. The
key quantity for the leading order R.,® radiative correction,
the Bethe logarithm, have been obtained in our previous
works for a range of states of the total orbital momentum
(L=0-4) and vibrational quantum number (v=0-4) for
HD* [10] and H," [11]. This work is aimed to continue our
program and to calculate contributions of orders R..a?,
R..a?(mIM), R..a’, R.a*(m/M), and partially, R..a*.

The following notations are used throughout this paper.
P,, P,, and p, are the momenta and R;, R,, r, are the coor-
dinates of nuclei and electron with respect to the center of

PACS number(s): 31.30.Jv, 31.15.Pf, 31.15.Ar
II. VARIATIONAL WAVE FUNCTION

The variational bound state wave functions were calcu-
lated by solving the three-body Schrodinger equation with
Coulomb interaction using the variational approach based on
the exponential expansion with randomly chosen exponents.
This approach has been discussed in a variety of works
[13-15]. Details and particular strategy of choice of the
variational nonlinear parameters and basis structure that have
been adopted in the present work can be found in Ref. [5].

Briefly, the wave function for a state with a total orbital
angular momentum L and of a total spatial parity 7=(-1)"is
expanded as follows:

ViR = 2 VIFRE)GIT(Rr,r),

l1+1h=L

N
GiZ(R’ rl’rZ) = 2 [Cn Re(e_anR_Bnrl_'ynrz)

n=1

+D, Im(e A (1)

where the complex exponents, a, (3, vy, are generated in a
pseudorandom way.

When exponents «,, B,, and vy, are real, the method re-
veals slow convergence for molecular type Coulomb sys-
tems. Thus the use of complex exponents allows to repro-
duce the oscillatory behavior of the vibrational part of the
wave function and to improve convergence [5,15,16].

In Table I the most difficult cases of the last vibrational S

TABLE 1. Convergence for the last vibrational state in H," and
HD* molecular ions (L=0).

mass of a molecule, and N E[Hy* (v=19)] E,[HD*(v=22)]
r,=r,-R, r=r,~R, R=R,-R,. 6000 ~0.4997312306491204 ~0.49986577736371
7000 —-0.4997312306491499 —0.49986577838595
Here we assume that indices 1 and 2 stand for the protons in 8000 -0.4997312306491572 -0.49986577850697
case of H,", and R;=R,—the coordinate of a deuteron in 9000 —0.4997312306491612 ~0.49986577853072
case of HD™. The atomic units (A=e=m,=1) are employed. 10000 -0.4997312306491616 ~0.49986577853699
We use the CODATA02 recommended values of the fundamen- extrap —0499731230649163(1) —0499865778539(2)
tal constants [12] for all our calculations.
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TABLE II. Nonrelativistic energies, H2+.

v=0 v=1 v=2 v=3 v=4
L=0 —0.59713906307939 —0.58715567909619 —0.57775190441508 —-0.56890849873086 —-0.56060922084967
L=1 —0.59687373878471 —0.58690432091919 —0.57751403405745 —-0.56868370826019 —-0.56039717140029
L=2 —0.59634520548939 —0.58640363152869 —-0.57704023716302 —0.56823599297158 —0.55997486482005
L=3 —0.59555763898031 —0.58565761187766 —0.57633435021963 —-0.56756903483351 —0.55934583822827
L=4 —0.59451716923896 —0.58467213422891 —0.57540200329884 —-0.56668823662971 —0.55851528162590

states in H,* and HD* are considered. It is worthy to note
that the latter state has 22 nodes in the wave function and
especially difficult for a variational computation. These two
examples demonstrate flexibility and efficiency of the varia-
tional expansion (1).

Numerical values of the nonrelativistic energies for the
rovibrational states are presented in Tables II and III. In gen-
eral, an accuracy of about 1074-1071 a.u. is achieved when
the basis set of N=3000—-4000 functions is used.

III. LEADING-ORDER RELATIVISTIC CORRECTIONS

The leading order relativistic corrections (R..a”) at
present are well understood and are described by the Breit-
Pauli Hamiltonian. Consideration of this part can be found in
many textbooks, see, for example, Refs. [17,18], or reviews
[19]. Here we present in explicit form expressions for differ-
ent terms, which contribute to this order.

The major contribution comes from the relativistic correc-
tion for the bound electron,

4

E® = a2<— p—g + 4—772[21 S(ry) + zza(r2)]>. 2)
8m, 8mj,

The other corrections are due to a finite mass of nuclei and

are called the recoil corrections of orders R.,a*(m/M),

R.a*(m/M)?, etc. The first is the transverse photon ex-

change,

The contribution of the last term in (3) is not negligible and
amounts to about 10% of Ef) -
. Lo wph )
The next is the relativistic kinetic energy (Ey;,=\m?*+p?
~m+p*/2m+---) correction for heavy particles,

P, P
ED=-a —L+—5). (4)
i 8M;  8M3
Further in the R..a? order, one must consider the nuclear spin
. . .1 .
dependent recoil corrections. For the proton, spin-; particle,
one has
2
5 a4mZ
Efarvin= gy 2 (8(K,). (5)
P
In case of deuteron (spin one) this term vanishes. The
leading-order electric charge finite size correction is defined
(both for proton and deuteron) by

E 27TZ,~(R,~/aO)2

EQ) = (a(ry)), (6)

i=1,2 3

where R is the root-mean-square (rms) radius of the
nuclear electric charge distribution. The rms radius for the
proton is R,=0.8750(68) fm, and for the deuteron,
R,;=2.1394(28) fm. These contributions are connected with
internal structure of complex particles. For a detailed discus-
sion of this rather nontrivial problem we refer the reader to
Refs. [20,21].
The complete contribution to this order thus is

2
2 a’Z, [pP  ri(rp)P 2 2 2 2 2
Et(r—)ph = ‘ + 3‘-’ Eaz = El('c) + E{(u)1 + Eir—z;)h + E%):zrwin + EElu)c (7)
ZmeMl ry rl
+ a’z, <PeP2 + rz(rzpe)P2>
3
2mM; \ 1, r IV. LEADING-ORDER RADIATIVE CORRECTIONS
2
o« 22, | PP, + R(RP))P, 3) The radiative corrections of an order R,a” for a one elec-
2M\M,\ R R? tron molecular system can be expressed by the following set
TABLE III. Nonrelativistic energies, HD*.
v=0 v=1 v=2 v=3 v=4
L=0 -0.59789796860903 —0.58918182955696 —-0.58090370021837 —-0.57305054655187 —-0.56561104207681
L=1 -0.59769812819221 —-0.58899111199204 —-0.58072182812093 —0.57287727709421 -0.56544616627757
L=2 —0.59729964335178 —-0.58861082938979 —0.58035919519988 —-0.57253181032597 —-0.56511744976373
L=3 —-0.59670488276189 —-0.58804326416284 —-0.57981800202787 —-0.57201626923251 —-0.56462694206205
L=4 —-0.59591734221281 —0.58729178437422 —-0.57910149556549 —-0.57133378604600 —-0.56397766686762
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TABLE IV. Mean values of the various operators for the ro vibrational states in the H," molecular ion.

(L,v) ) (a(ry)) P} Ry, Ry, Ope
00 6.28566006 0.206736476 79.7976 1.17012 4.60193 —-0.13443
01 6.12451981 0.201310665 334.898 1.14081 12.8961 -0.13129
02 5.97622857 0.196294589 762.804 1.11408 19.8790 —-0.12839
03 5.84001186 0.191662497 1304.21 1.08980 25.6616 -0.12573
04 5.71519854 0.187391848 1908.37 1.06787 30.3383 -0.12329
10 6.27803905 0.206491321 85.0505 1.16881 4.83433 —-0.13426
11 6.11739733 0.201081174 347.549 1.13960 13.0953 -0.13113
12 5.96957939 0.196079943 780.922 1.11296 20.0477 —-0.12825
13 5.83381405 0.191461983 1326.12 1.08876 25.8023 -0.12560
14 5.70943357 0.187204849 1932.62 1.06691 30.4531 -0.12317
20 6.26290998 0.206004543 96.9109 1.16624 5.29343 —-0.13395
21 6.10325966 0.200625549 373.998 1.13720 13.4883 —-0.13084
22 5.95638294 0.195653844 818.125 1.11073 20.3802 —-0.12798
23 5.82151544 0.191063990 1370.76 1.08670 26.0792 —-0.12534
24 5.69799573 0.186833736 1981.78 1.06501 30.6783 -0.12293
30 6.24049435 0.205283078 117.976 1.16241 5.96806 —-0.13348
31 6.08231719 0.199950377 416.435 1.13364 14.0648 —-0.13040
32 5.93683922 0.195022551 876.247 1.10743 20.8670 -0.12756
33 5.80330618 0.190474472 1439.63 1.08365 26.4834 —-0.12496
34 5.68106608 0.186284177 2057.10 1.06219 31.0059 -0.12257
40 6.21111375 0.204336991 151.874 1.15740 6.84220 -0.13287
41 6.05487522 0.199065216 477.892 1.12898 14.8100 -0.12983
42 5.91123830 0.194195146 957.799 1.10310 21.4943 -0.12703
43 5.77946208 0.189702063 1534.80 1.07964 27.0022 —-0.12446
44 5.65890704 0.185564385 2160.23 1.05850 31.4240 -0.12210

of equations (see Refs. [10,22,23]). Only the spin- The one-loop vacuum polarization (R..a),
independent part is considered. . X 4o
The one-loop self-energy correction (R,.a”), E(3) 3a2< ) (Z,8(r,) + Z,(r>)). (11)
4a? 3
E = 3m (ln 2~ ALY e~ §)<Zl 8ry) + Z,8(r2), The one transverse photon exchange [R..a(m/M)],
(8) (3>—32{ (1 4B(L, —)5
where Eic-pn 5 3mM na-4p(Lv) + (8(r;)
B(Lv) = (J(Hy = Eg)In[(Hy - Ep)/R..]J) ©) 1472 ot )] 1)
(. [Ho0112) ~ S,

is the Bethe logarithm. The latter quantity presents the
most difficult numerical problem in computation of QED
corrections for the three-body bound states. In Ref. [10,11]
the calculations for the considered range of rovibrational
states in H," and HD* have been performed. An operator J
in (9) is the electric current density operator of the system,
Jzzazapa/ma'
The anomalous magnetic moment (R..a?),

2
Efﬁl)om=%[%(E)}Zﬁ(rlﬂéﬁ(rz»- (10)
m, T

Sometimes this term is incorporated into Eq. (2) as a contri-
bution from the form factors of an electron [24].

where Q(r) is the Q term introduced by Araki and Sucher

[25]:

O(r-p)
4713

o(r) = 1irr(l)< +(Inp+ 75)5(1‘)>. (13)
p—

It is worthy to note here that the splitting onto nonrecoil and
recoil parts [Egs. (8) and (12)] is not exactly rigorous, since
the Bethe logarithm contains contributions both from the
self-energy and exchange photon diagrams.
Summarizing the contributions one gets
Eps=EY +EQ)

anom

3 3
+Ef,p) +E®

tr-ph- (14)
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TABLE V. Mean values of the various operators for the rovibrational states in the HD* molecular ion.

(L.v) ;) (lry)) (&(r,)) (P (P Ry, Rpe Ry Que Qpe
00 6.30019995  0.207348142  0.207042599 104.444 104372 1.17449  1.17077 5.35463 -0.13486  —-0.13459
01 6.15902236  0.202601179  0.202288865  449.739  449.457  1.15048  1.14337  15.1448 -0.13211 -0.13184
02 6.02761433  0.198166795  0.197845838  1043.443  1042.82  1.12824  1.11812  23.5990 -0.12955 -0.12927
03 5.90545344  0.194027841  0.193696014 1814.06 1813.00 1.10768  1.09494  30.8177 -0.12717 -0.12688
04 5.79207742  0.190169092  0.189823704  2699.24  2697.67 1.08874 1.07372 36.8881 —-0.12496 —0.12466
10 6.29445075  0.207163242  0.206857700 110.461 110385  1.17358  1.16972  5.58956  —-0.13474  —-0.13447
11 6.15359977  0.202426557  0.202114213 464.653  464.362  1.14963  1.14238 153506 -0.13200 -0.13172
12 6.02250376  0.198001983  0.197680957 1065.26 1064.62  1.12743  1.11720 23.7778 -0.12944  -0.12916
13 5.90064189  0.193872418  0.193540480 1841.03 1839.95  1.10692  1.09407 309713 -0.12707 -0.12678
14 5.78755367  0.190022692  0.189677140  2729.80  2728.21 1.08803  1.07291 37.0184 -0.12486  —0.12457
20 6.28301636  0.206795445  0.206489902 123.876 123.790  1.17177  1.16763  6.05510 —-0.13450  —-0.13423
21 6.14281577  0.202079231  0.201766822 495.678 495.368  1.14792  1.14042  15.7580 -0.13177 -0.13150
22 6.01234104  0.197674189  0.197353027 1109.94 1109.27  1.12583  1.11536  24.1315 -0.12923  -0.12895
23 5.89107470  0.193563325  0.193231163 1895.86 1894.75  1.10542  1.09236  31.2752 -0.12687 -0.12658
24 5.77855952  0.189731566  0.189385688 2791.68  2790.06 1.08663 1.07131 37.2756 -0.12467 -0.12438
30 6.26602281  0.206248697  0.205943148 147.360 147.259  1.16908  1.16452  6.74278 -0.13415 -0.13388
31 6.12679095  0.201562974  0.201250465 545.124 544785  1.14539 1.13751 16.3592 -0.13144 -0.13116
32 5.99724165  0.197187028  0.196865656 1179.45 117875  1.12346  1.11263  24.6528 -0.12891 —-0.12863
33 5.87686248  0.193104023  0.192771520 1980.25 1979.08  1.10319  1.08981  31.7222 -0.12657 -0.12628
34 5.76520094  0.189299034  0.188952656  2886.33 2884.65 1.08454 1.06893  37.6533 -0.12439  -0.12410
40 6.24365467  0.205528778  0.205223214 184.718 184.592  1.16553  1.16043 7.64024 -0.13368 —0.13341
41 6.10570175  0.200883313  0.200570663 616262  615.880 1.14206  1.13367 17.1427 -0.13100 -0.13072
42 5.97737434  0.196545786  0.196224126 1276.61 1275.85  1.12032  1.10904  25.3308 -0.12850 -0.12822
43 5.85816669  0.192499571  0.192166604  2096.56  2095.34  1.10026  1.08645 32.3023 -0.12617 —-0.12589
4 4 5.74763241  0.188729937  0.188382879 3015.73 301398 1.08180 1.06580  38.1419 -0.12402  -0.12373

V. RESULTS £ 277[( > (197 LA 4"(3))}
Results of numerical calculation of the mean values of anom = m? 144 12 2
various operators encountered in formulas of the preceding X(Z,8(r)) + Z,8(r>)),

sections are presented in Tables IV and V. The notation is as

follows:
P P
R.=— <pe n rn(rnlge) >
r r,

PP, R(RP)P
R, =—{ 24 ( 31) 2 ).
R R

0,. 1s the O-term expectation value as it is defined in Eq.
(13), n stands for one of the nuclei, p or d. From these data
one can easily get rovibrational transition intervals with ac-
count of the relativistic and radiative corrections of orders
R..&?, R.o?(m/M), R, and R..o’(m/M). That allows to
determine the reference transition in H," with relative preci-
sion of about 3 X 1078 or 30 ppb (parts per billion).

Some higher order corrections (radiative corrections) in
the external field approximation are known in an analytic
form [19,26] and can be included into consideration,

(15)

139 1
E§‘;>=a (128 Sn 2)(225(r1)+225(r2))

407 [ 57a
EQ = 3m2( ><Z26(r1) +Z58(r)),

4 6131 4947
-2 (— - 272 1n2-3(03
2o =2\ = 1296 ~ q0g 27 27 30O)
X(Z,8(xy) + Z,8(r,)). (16)

The last equation includes both Dirac form factor and polar-
ization operator contributions. Recoil corrections of order
R..a*(m/M) are small and may be neglected. The only con-
tribution in the R,«* order, which has not been yet included
into Eq. (16) is the relativistic correction for the bound elec-
tron. It can be obtained from expansion of the Dirac
two-center problem energy for the bound electron. However,
a rough estimate can be obtained using the following
speculations.

The electron ground state wave function to a good extent
may be approximated by ,(r,)=C[,,(r,)+ i;,(r;)], where
i, is the hydrogen ground state wave function and C is a
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normalization coefficient. The R..a* order contribution to the
Dirac energy for the hydrogenlike atom ground state is Eii)
=—(1/16)m,Z%a*, thus one can approximate the relativistic
correction for the electron bound by the two-center electro-
static field as

AL

16m5

EY ~- (8(r,) + 8(ry)). (17)

For the reference transition in H," this correction amounts to
about 40 kHz. This is an order of magnitude estimate. The
more rigorous calculation of this correction in the framework
of the adiabatic approximation is in progress.

The most important R.a’ order contributions can be
evaluated in a similar way as was done for the relativistic
correction,

E)=a 2 Z?( I’ —— 4 Ag In —
L = —S|{-In"—0—+ n-——
S Za)? " (Zi)?

><<5(ri)>},

5
ES ooy = ——5 (BsHZ28(e) + Z30(ry)),  (18)
mm,
where the constants Ag, Agyp, and Bsy are taken equal
to the constants of the 1s state of the hydrogen
atom A61 =5419... [27], A60:_30'924 . [28], and B5Q
=-21.556... [29] (see Ref. [19] and references therein).
Inclusion of the higher order contributions allows to re-
duce the relative accuracy of the reference transition fre-

PHYSICAL REVIEW A 74, 052506 (2006)

TABLE VI. Summary of contributions to the (L=0,v=0)
—(0,1) transition frequency (in MHz).

H,* HD*

AE,, 65 687 511.0686 57 349 439.9717

AE, 1091.041(03) 958.152(03)
AE,3 ~276.544(02) ~242.118(02)
AE; ~1.942(40) ~1.700(35)
AE s 0.121(80) 0.106(70)
AE,, 65 688 323.745(80) 57 350 154.412(70)

quency in H," to about 10™ or 1 ppb. Various contributions
to the frequency interval of the reference transition are sum-
marized in Table VI. The uncertainty in the E 4 contribution
is determined by the yet uncalculated relativistic correction
and uncertainty in E s is set equal to the absolute value of the
R..c’ In « contribution.

In conclusion, we present the first systematic calculation
of the leading-order relativistic and radiative corrections for
the rovibrational states of the hydrogen molecular ions H,"
and HD*. The wave functions used in calculations are accu-
rate enough, which allows to claim that all the quoted digits
for the mean values presented in the tables are significant and
numerical errors do not affect them.
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