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The high harmonic spectra of helium atoms which are exposed to external monochromatic linearly polarized
laser fields are calculated by solving the time-dependent non-Hermitian Schrödinger equation. The entire
electronic correlation effects with and without the presence of the field are included in our calculations. The
full high-harmonic generation spectra �HGS� were calculated �and not only the intensities of the integer
harmonics frequencies as calculated before by non-Hermitian quantum mechanics�. The HGS were calculated
when the helium atoms are initially in their ground state, or in the 1s2p excited state or in a superposition of
the two field free states. In the first two cases only odd-order harmonics are obtained. However, in the latter, in
addition to the odd-order harmonics also pronounced even-order harmonics are obtained. The even order peaks
are much broader than the peaks of the odd-order high harmonics. The association of the widths of the peaks
in the HGS with the lifetime of the photoinduced resonances which control the dynamics is discussed.
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I. INTRODUCTION

In the past decades numerous experimental works as well
as theoretical studies have shown that rare gas atoms ex-
posed to high intensity lasers emit odd multiples of the inci-
dent radiation frequency �1�. This phenomenon termed high
harmonic generation �HHG� has been tagged as a possible
future source of coherent x-ray radiation �2� as well as a
method to facilitate the generation of short attosecond laser
pulses �3�. The selection rules allowing the generation of
only odd multiples of the incident radiation have been ex-
plained theoretically �4� as well as the anticipated selection
rules for molecular systems with different symmetries �5�. As
we will elaborate later these selection rules are due to the
dynamical symmetry properties of the Floquet Hamiltonian.
It has been demonstrated that these selection rules can be
altered by breaking or changing the dynamical symmetry of
the system, for example, by radiating with two different laser
frequencies �6� or by using very short laser pulses for which
the Floquet picture is not applicable �7�.

The selection rules for harmonic generation spectra
�HGS� were derived under the assumption that the duration
of the laser pulse is sufficiently long and supports many op-
tical cycles. Only then the Floquet theory is applicable.
Moreover the dynamical symmetry analysis for the HGS is
based on the assumption that a single Floquet quasienergy
state controls the photoinduced dynamical process. Within
Hermitian quantum mechanics �QM� this can never happen
in strong laser fields where photoinduced ionization occurs
and competes with the process of generation of high order
harmonics. In Hermitian QM a single eigenstate is a station-
ary solution which by definition cannot describe the ioniza-
tion phenomenon. Therefore, the photoinduced dynamics is
described by a wave packet consisting of linear combination
of many eigenstates of the Hermitian Floquet operator. This,
however, is not the case in non-Hermitian �NH� QM, where

the photoinduced dynamics �even in the presence of strong
laser fields� can be described by a single resonance Floquet
state.

A long time ago Reinhardt and Chu �8� were the first to
calculate the field induced rate of decay by calculating the
resonance complex quasienergies of the complex scaled Flo-
quet operator. The problem they solved represented a driven
one particle model Hamiltonian. Years later Moiseyev and
Cederbaum �9� calculated the resonance quasienergies for a
driven helium atom where the dynamical electronic correla-
tion in the presence of the strong laser fields was taken into
consideration. They showed that there is a similarity in the
functional dependence of the decay rate of the doubly ex-
cited helium on the field intensity and the functional depen-
dence of the resonance decay rate of doubly excited hydro-
gen molecule on the intranuclear distance. Moiseyev and
Weinhold used the resonance Floquet eigenstate of helium in
strong laser field �which has more than 90% overlap with the
field free helium ground state� to calculate the HGS �10�.
Their results showed remarkable agreement with the experi-
mental HGS. However two open questions remain: �1� how
can one calculate, using the NHQM formalism the entire
HGS and not only a “stick diagram” �i.e., only the values at
even and odd harmonics� and �2� how can the HGS be cal-
culated by the time-dependent �TD� NHQM formalism when
the field free initial state populates several quasienergy �QE�
eigenstates of the complex scaled �CS� Floquet operator?

The answer to the second question requires the solution of
a key open problem in NHQM which is known as the time
asymmetry problem �11�. The time asymmetry problem is
associated with the fact that the propagation of a given wave
packet �WP� in NHQM from time t=0 to t=−� diverges
exponentially. Without solving this problem one cannot cal-
culate the time-dependent expectation values within the
framework of NHQM. Most recently Moiseyev and Lein
suggested to calculate the propagation of a given WP back in
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time not by solving the time-dependent Schrödinger equation
�TDSE� but from the eigenstates of the CS Floquet type
Hamiltonian �12�. The time asymmetry problem in NHQM
can be resolved by redefining the inner product which has
been termed by Moiseyev and Lein as the F product �finite
range�. The analysis of the analytical expression they derived
for the HGS on the basis of their formalism explains the
appearance of only odd-order harmonics even when short
laser pulses are used �see a detailed explanation of this phe-
nomenon in Ref. �13��. Based on that analysis it is expected
that the population of two resonance QE states which have
about the same lifetime and are non degenerate eigenfunc-
tions of the dynamical symmetry operator will result in the
generation of even as well as odd order high harmonics. The
HGS calculated from propagation calculations using the con-
ventional �Hermitian� QM formalism supports the conclu-
sions obtained from the analysis of these expressions �12�. A
more direct support for the TD-NHQM formalism �using the
F product� was given most recently by comparing the sur-
vival probabilities which were obtained for the same situa-
tion by carrying out Hermitian time-dependent propagation
calculations for a one-dimensional time independent poten-
tial and by carrying out NHQM WP propagation calculations
�14�. The agreement between the Hermitian and non-
Hermitian results is remarkable.

The purpose of this work is to use the TD-NHQM formal-
ism for calculating the full HGS �and not only the stick dia-
gram spectra as obtained before� for helium and its depen-
dence on different initially prepared WP. Since Gaussian
basis sets have proven to be most efficient and commonly
used in ab initio calculations of many atomic and molecular
properties �15� we use this basis set in accurate calculations
of the resonance QE eigenstates of the CS Floquet operator.
Using the resonance QE states, the time-dependent WP
propagation calculations in TD-NHQM were carried out and
provided the HGS of helium for different initially prepared
WP’s.

The paper is structured as follows. First we provide a
brief review of the formalism that enables the WP propaga-
tion in TD-NHQM and its application for calculating the
HGS. Then, we describe the numerical application of the
TD-NHQM formalism to helium in strong laser fields and
the calculations of the HGS of helium for different types of
initial states. In the last section we conclude.

II. A BRIEF REVIEW OF THE HGS WITHIN
THE TIME-DEPENDENT NON-HERMITIAN

QUANTUM MECHANICAL FORMALISM

For the sake of clarity and coherence of the representation
of the numerical approach and the results of our calculations
we give here a brief review of the TD-NHQM formalism and
its use for deriving the expressions for the HGS. When an
atom or molecule interacts with a laser field all of its bound
states become metastable due to the coupling to the con-
tinuum through the electromagnetic radiation. When the laser
pulse supports a sufficient number of oscillations the inter-
action can be described by the Floquet formalism �16�. That
is, the time period of the time-dependent Hamiltonian is

given by T=2� /�, where � is the fundamental frequency of
the laser. Within the Floquet theory it is possible to define
quasistationary solutions �k�r� , t� of the TDSE given by

�k�r�,t� = exp�− ıEkt

�
��k�r�,t� ,

�k�r�,t� = �k�r�,t + T� . �1�

The time periodic part of the Floquet solution �k�r� , t� satis-
fies the following eigenvalue problem for the Floquet Hamil-
tonian HF:

ĤF�k�r�,t� = Ek�k�r�,t� ,

ĤF = Ĥ − ı�
�

�t
. �2�

The eigenvalues Ek are usually referred to as quasienergies
�QE’s�, and are defined up to modulo ��, such that Ek
+n�� is also a solution of Eq. �2�. The Floquet solutions
form a complete set and therefore a general wavefunction,
�, can be represented as a linear combination of these Flo-
quet states

��r�,t� = �
k

ck�k�r�,t� . �3�

In conventional QM, a system which was in its ground state
prior to the application of the laser pulse, populates many QE
states densely distributed around the corresponding reso-
nance energy, making it very difficult to perform ab-initio
calculations. In principle, infinite number of Floquet states is
populated by the initial WP. Due to the truncation of the size
of the basis set, only a finite number of Floquet QE states is
populated, but as the basis set is increased, the number of
such populated states is increased as well. The numerical
effort increases when dealing with many electron atoms es-
pecially when electronic correlation effects are taken into
account. Yet, it is possible to overcome these numerical dif-
ficulties and carry out WP propagation for atoms in strong
laser fields which include the electronic correlation within
the framework of the conventional �Hermitian� QM formal-
ism in various methods �see, for example, Ref. �17��.

However, it is not possible to use conventional QM meth-
ods for calculations of time-dependent expectation values
within the framework of TD-NHQM, without resolving the
time asymmetry problem. Therefore below, we present a for-
malism which overcomes the time asymmetry problem in
TD-NHQM and allows us to calculate the HGS by using the
numerical approaches which were originally developed for
bound states.

The Hamiltonian can become NH due to the use of dif-
ferent types of analytical continuation transformations. One

such method is complex scaling �CS� where Ĥ�r�→ Ĥ�reı��
�18–21�. Another common method is the introduction of
complex absorbing local energy independent potentials
�CAPs�, also known as optical potentials, into the Hamil-

tonian �22� such that Ĥ→ Ĥ+ V̂CAP. The QE’s in the NH-QM
formalism obtain complex values given by

GILARY, KAPRÁLOVÁ-ŽD’ÁNSKÁ, AND MOISEYEV PHYSICAL REVIEW A 74, 052505 �2006�

052505-2



Ek = 	k − ı
k/2, �4�

where the real part 	k=Re�Ek� is associated with the energy
while the complex part is related to the decay rate 
k /� of
the resonance state by 
k=−2 Im�Ek� such that the lifetime
of the resonance state is given by � /
k. The NH property of
the transformed Hamiltonian requires a modification of the
inner product used in conventional QM. Since the Hamil-
tonian is NH, it yields different functions when operating
from the right or from the left, therefore the eigenvectors are
not mutually orthogonal via the conventional inner product
���k 	�k�

=�k,k� �here the integration is over all space and
over one period of the field� but a different relation which is
commonly termed the c product �21,23�

��k	�k�� =
1

T
�

0

T

dt�
all space

dr��k�
L �r�,t��k

R�r�,t� = �k�,k, �5�

where �k�
R,L are the right and left quasienergy �QE� eigen-

functions of the NH Floquet operator HF, respectively. The
right QE eigenfunction is given by Eq. �2�, where we add the
superscript “R.” The corresponding left QE eigenfunction
represents the �right� eigenfunction of the transposed Floquet
Hamiltonian HF

†*. Consequently,

�k
R�r�,t� = �

n=−�

+�

exp�i�nt��n,k
R �r�� �6�

and

�k�
L �r�,t� = �

n�=−�

+�

exp�− i�n�t��n�,k�
L �r�� . �7�

The functions �n,k
R �r�� ;n=−� , . . . ,0 , . . . , +� define compo-

nents of a vector �� k
R, where �� k

R is an eigenvector of the Flo-
quet matrix HF given by

�HF�n�,n =
1

T
�

0

T

dt exp�− i�n�t�ĤF exp�+ i�nt� . �8�

That is,

HF�� k
R = �	k − ı
k/2��� k

R. �9�

Similarly, the functions �n,k
L �r�� ;n=−� , . . . ,0 , . . . , +� define

components of an eigenvector of the transposed matrix HF
t.

That is,

HF
t�� k

L = �	k − ı
k/2��� k
L. �10�

When HF is a complex and symmetric matrix �note that any
matrix which supports a complete spectrum can be trans-
formed to a symmetric form �24�� then

�� k
L = �� k

R �11�

and we can omit the “L /R” labels.
The HGS can be obtained from the spectral decomposi-

tion of the dipole acceleration

��� = �
0

�

dt exp�− ı�t�
d2

dt2��L�t�	D̂	�R�t�� , �12�

where D̂ is the dipole operator,

D̂ = E0�̂ , �13�

where E0 is the maximum field amplitude. For linearly po-
larized light where z is an axis perpendicular to the light
propagation axis, �̂ is defined as �in atomic units�

�̂ = r� · e�z = z , �14�

where z stands here for the sum over all z components of the
electronic vector positions. How should the time-dependent
expectation values be calculated by overcoming the pitfall of
the time asymmetry problem in NHQM? Let us denote the
�R�t� and �L�t� as the general right and left WP’s describing
the evolution of the atom in time which can be expanded in
the basis of the QE solutions

�R�t� = �
k

Ck
R exp�− ıEkt/���k

R�r�,t� , �15�

where

Ck
R = ��k

L�t = 0�	�R�t = 0�� . �16�

However, the left time-dependent WP will be defined accord-
ing to the F-product formalism as

�L�t� = �
k

Ck
L exp�+ ı�Ek�*t/���k

L�r�,t� , �17�

where

Ck
L = ��k

R�t = 0�	�L�t = 0�� . �18�

Equation �17� plays a key role in the solution of the time
asymmetry problem in TD-NHQM. See the detailed discus-
sions in Refs. �12,14�. Now the HGS of a superposition of
QE states as given in Eqs. �15� and �17� will be

��� = ��
k,k�

Ck�
L Ck

R �
n,n�=−�

� ��n − n��� + Ek�
* − Ek�2

� − ��n − n��� + Ek�
* − Ek�

���k�,n�	�̂	�k,n��2

. �19�

In the case where only one resonance �k dominates the dy-
namics this expression is reduced to

k��� = � �
n,n�=−�

�
��ı
k/�� + �n − n����2

� − �ı
k/� + �n − n����
��n�,k	�̂	�n,k��2

.

�20�

We note that using the c-product formalism only the har-
monic frequency peaks are attainable whereas using the
F-product formalism �see Eqs. �19� and �20�� we obtain the
full spectrum. The intensities of harmonic peaks for the case
where many QE states are populated are given by
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�� = N�� = ��
k

Ck
LCk

R �N� + ı
k/��2


k/�
�

n=−�

�

��n−N,k	�̂	�n,k��2

�21�

while for the one resonance case the following expression is
obtained:

k�� = N�� = � �N� + ı
k/��2


k/�
�

n=−�

�

��n−N,k	�̂	�n,k��2

.

�22�

The selection rules allowing only odd harmonics when a
single QE states controls the dynamics are readily derived
from Eq. �22� �25�, since when the electromagnetic field is
linearly polarized the Floquet Hamiltonian is symmetrical
under the transformation: r�→−r�, t→ t+T /2. In other words
the eigenfunctions of the Floquet Hamiltonian are also eigen-
functions of a second order dynamical symmetry �DS� op-

erator P̂2 such that P̂2�k= ±�k. This means that �k�−r� , t
+T /2�= ±�k�r� , t� and therefore the Fourier components �n,k

have a distinct parity �n,k�r��= ± �−1�n�n,k�−r��. Now the inte-
grals ��n−N,k	�̂	�n,k� will vanish when �n−N,k and �n,k have
the same parity which will be the case when N is even. Thus
only odd harmonics are obtained.

An important feature of the HGS of a superposition of QE
states is the appearance of sidebands �often called hyper-
Raman lines�. These peaks occur at frequencies correspond-
ing to the energy difference between QE’s plus integer mul-
tiples of the incident laser frequency:

�� =
	k − 	k�

�
+ N��

= �Ck�
L Ck

R
�� + ı�
k + 
k��/�2���2

�
k + 
k��/�2�� �
n=−�

�

��n−N,k�	�̂	�n,k��2

.

�23�

Note that it is now possible to obtain even multiples of the
incident radiation shifted by the corresponding QE energy
difference due to the interference between two QE states
k ,k� belonging to different symmetries of the DS operator

P̂2. Now the integrals ��n−N,k�	�̂	�n,k� will not vanish for an
even integer N due to the different parity of �n−N,k� and �n,k.

III. APPLICATION OF THE TD-NHQM FORMALISM
TO HELIUM IN STRONG LASER FIELDS

In order to apply Eq. �19� to helium we first calculate the
bound, resonance, and continuum states of the complex
scaled field free hamiltonian and use them as a basis set.
Since to the best of our knowledge the ability of calculating
the complex rotated continuum by using Gaussian basis set
has not been studied before we carry out CI calculations to
check this point.

A. Spectra of the complex scaled field free helium
Hamiltonian by a Gaussian basis set

Complex scaled NH spectrum of the field free helium
atom is calculated for a later use as a basis set for the driven
helium atom, where a limited number of the field free states
of helium, which include the bound states, resonances, and
non-Hermitian continuum, is used. Two quantities are needed
in order to construct the complex scaled Floquet Hamil-
tonian: the complex field free eigenenergies and the corre-
sponding transition moments. These quantities are calculated
here for a set of values of the CS parameter �.

The NH complex scaled spectrum of helium is obtained in
two steps: First, one-electron orbitals for the complex scaled
Hartree-Fock operator are found �26,27�. The primitive basis
set consists of even tempered Gaussians �30s15p10d�, where
the Gaussian exponents range from 10−7 to 100 for the
s-type, from 2.66�10−4 to 30 for the p-type, and from
2.66�10−4 to 15.85 for the d-type Gaussians. Second, the
complex scaled full CI calculations based on the complex
atomic orbitals are performed �26�. The prior Hartree-Fock
calculations allow us to easily determine occupations of
atomic orbitals in the full correlated NH states. The helium
states are further classified according to their symmetry
which includes the rotational quantum numbers L�M�, the
parity P, and the spin quantum numbers S�MS�. The symme-
try puts restrictions to the coupling of states via transition
moments, which are non-zero only for cases given by
�S ,MS ,L ,M , P	�̂	S ,MS ,L±1,M ,−P
.

A large Gaussian basis set allows us to obtain a well con-
verged NH spectrum of field free helium: The complex
scaled energies of bound states and resonances are very
stable with respect to the CS parameter varied in the interval
0���0.4, where the positions and widths are varied only
by about 1�10−4 a.u. �Table I�. The rotated NH continuum
is clearly displayed in the complex scaled spectrum for this
range of the CS parameter �Fig. 1�: Up to four ionization
thresholds are obtained, given by the ground and excited
states of He+ �En= �−2 a.u.� /n2, where n=1,2 , . . .�. These
factors indicate a good convergence with respect to the num-
ber of primitive Gaussians per each included symmetry
�s , p ,d�. However, a comparison with exact energies of
bound states and resonances shows that the present values
most often include an error about 1�10−3 a.u. �28,29�.
These errors would improve by including a larger rotational
basis set �in exact calculations, rotational expansion up to l
=10 and l=11 have been used �28��.

B. Calculations of the photoinduced resonance quasienergy
states for helium in a strong laser field

The field induced resonance QE states of helium are
solved by the �t , t�� method �30� using the field free CS
eigenstates as basis functions. The Floquet Hamiltonian is
given in the length gauge by

ĤF = Ĥ0 + eE0�z1 + z2�cos��t� − ı�
�

�t
, �24�

where Ĥ0 is the field free Hamiltonian of the helium atom
and the oscillating field is linearly polarized along the z axis.
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The Floquet matrix constructed in this basis consists of
blocks of the different Floquet channels which are given by
Eq. �8�. The diagonal block �HF�n,n is composed of diagonal
matrices of the field free eigenvalues plus or minus a given
number photons energy n�� corresponding to each channel.
The off diagonal blocks �HF�n�,n, which are nonzero for
	n−n�	=1 are given by the transition dipole matrix. In order
to get the field induced QE states, the full Floquet matrix
needs to be diagonalized in principle. This is a rather difficult
numerical task since when high intensity fields are involved,
many Floquet channels are coupled and huge matrices are
required in order to achieve converged results. However

using the �t , t�� approach, one does not need to diagonalize
the full Floquet matrix. Instead, only a one period time
evolution operator is diagonalized, yielding the eigenvalues
�k=exp�−ıEkT /�� which are directly associated with the
QE’s, Ek �30�. While the size of the Floquet matrix is as large
as �NM�� �NM�, where N represents the number of the field
free states and M is the number of Floquet channels, the one
period evolution operator is given by only N�N matrix.
Therefore, the diagonalization of the one period evolution
operator is a much less demanding task.

C. The HGS of helium by the TD-NHQM formalism

Different HGSs of helium are calculated using Eq. �19�,
where the QE resonance widths and positions as well as the
Fourier components of their eigenfunctions �n,k are obtained
by the �t , t�� formalism as described in Sec. III B. The field
parameters are chosen in correspondence with customary
laboratory setup such that the laser frequency is 5 eV with
intensity of 2.8�1016 W/cm2. Under these conditions, only
one QE state has a significant overlap �99.9%� with the
ground state of the field free helium atom �1Se� which is
mostly 1s1s. Another QE state overlaps the 1Po helium field
free state which is mostly 1s2p with a 97% overlap. There-
fore we consider only contributions from these two QE states
when regarding the generation of high harmonics from either
the 1s1s �1Se� ground state or the 1s2p �1Po� excited state of
helium.

The HGS for helium in its ground state interacting with a
cw laser with intensity of 0.08 a.u. and frequency �=5 eV
�0.057 a.u.� is presented in Fig. 2. The selection rule allow-
ing only odd harmonics in the spectrum is evident. The peaks
are very narrow due to the small width �about 1�10−6 a.u.�
of the QE resonance state. Similarly, if we choose the QE

TABLE I. Mean energies Ē and widths 
̄ and standard errors E, 
 �in brackets� for field free helium
states for the complex scaling parameter varied in the interval 0���0.4. The present results are compared
with highly accurate results.

Present for 0���0.4 Exact

Ē �E� �a.u.� 
̄ �
� �a.u.� E �a.u.� 
 �a.u.�

low lying bound states

1 1Se 1s2 −2.9021�2�10−4� −2.90372a

2 3Se 1s2s −2.1748�1�10−4� −2.17523a

2 1Se 1s2s −2.1455�1�10−4� −2.14597a

2 3Po 1s2p −2.1320�1�10−4� −2.13316a

2 1Po 1s2p −2.1222�1�10−4� −2.12384a

doubly excited states ���0.1 for resonances�
1Se 2s2 −0.7779�2�10−4� 0.00439�8�10−5� −0.777868 0.004541b

3Po 2s2p −0.75541�1�10−5� 0.00028�7�10−5� −0.760492 0.000299b

1Pe 2p2 −0.71015�5�10−5� −0.710500b

1Po 2s2p −0.66317�1�10−5� 0.001424 −0.693135 0.001373b

1Se 2p2 −0.6199�5�10−4� 0.00003�2�10−4� −0.621926 0.000216b

aAccad et al., Ref. �28�.
bLindroth, Ref. �27�.

−0.75 −0.5 −0.25 0
Re E / a.u.

−2 −1.75

−0.2

−0.1

0

Im
 E

 / 
(a

.u
.)

FIG. 1. �Color online� Complex scaled spectrum of field free
helium obtained via electronic structure calculations �full CI
method�. He states fall in six symmetry groups, denoted by different
markers as follows: �: 1Se, �: 1Pe, �: 1Po, �: 3Se, �: 3Pe, �: 3Po.
The value of the complex scaling parameter is given by �=0.32; the
full lines show an ideal rotated non-Hermitian continuum for the
four lowest ionization thresholds.
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resonance with the highest overlap to the excited 1s2p state
as an initial state, we obtain the spectrum in Fig. 3. Here the
same selection rules apply and only odd harmonics are pro-
duced but the peaks are much wider due to the larger width
of the excited resonance state �about 1.5�10−2 a.u.�. The
intensity of the emitted high harmonics is much smaller for
the same reason.

It is clear that in order to observe also the even harmonics,
one needs to break the dynamical symmetry of the system.
This can be done by populating more than one QE state.
When two QE states with different symmetry are populated,
the interference term between them accounts for the genera-
tion of even high harmonics. The even harmonics are shifted
by the energy difference between the respective QE states,
according to Eq. �23�. It has been shown in Ref. �12� that the

lifetimes of the two involved QE states must be of similar
orders of magnitude in order to observe the hyper-Raman
lines. This, however, was found here to be a requirement
which is too strong. As can be seen in Fig. 4, where the
initial state is an equal weight superposition of the two QE
states overlapping the field free 1s1s and 1s2p states, the
even harmonics can be as intense as the odd ones even due to
interference between a narrow and a wide resonance states.
Since these two states belong to different dynamical symme-
tries of the Floquet operator, their Fourier components have
different parity and their interference term in Eq. �19� gives
rise to shifted even harmonics. As can be seen in Fig. 4, the
intensity of these side bands can be estimated very accurately
using Eq. �23� as depicted by the circles in Fig. 4.

It is also evident in Fig. 4 that the peaks of the even
harmonics are much broader than those of the odd harmon-
ics. This can be easily understood by examining the different
contribution to the odd harmonic peaks in Eq. �21� and to the
sidebands in Eq. �23�. The odd harmonic peaks are narrow
since the contribution of the narrow 1s1s resonance to the
sum in Eq. �21� which goes as 1/
k dominates over that of
the much wider 1s2p resonance. In contrast, the wider 1s2p
resonance determines the shape of the sidebands peaks. This
is due to the fact that the sidebands are created by the inter-
ference of two resonances and, according to Eq. �23�, the
width of the peak is determined by the sum of the widths of
the interfering resonances.

From these results we can infer that if the helium atom �or
any other noble gas� is prepared in the lab in a suitable su-
perposition of ground and excited states also the even har-
monics will be observed in experiment. An important point
though is that the laser pulse interacting with the gas must
support enough oscillations validating the Floquet treatment
of the system.
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FIG. 2. �Color online� HGS of helium in the ground state �1s1s�
configuration. �=5 eV, E0=0.08 a.u. The full line is a result of full
calculation using the F product formalism as given in Eq. �20�, the
stars are the estimations for the harmonic frequencies peaks as
given in Eq. �22�.
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FIG. 3. �Color online� HGS of helium in the first excited P
configuration �1s2p�. �=5 eV, E0=0.08 a.u. The full line is a result
of full calculation using the F-product formalism as given in Eq.
�20�, the stars are the estimations for the harmonic frequencies
peaks as given in Eq. �22�.
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FIG. 4. �Color online� HGS of helium in a linear combination of
the ground state �1s1s� configuration and the first excited P con-
figuration �1s2p�. �=5 eV, E0=0.08 a.u. The full line is a result of
full calculation using the F-product formalism as given in Eq. �19�,
the red stars are the estimations for the harmonic frequencies peaks
as given in Eq. �21� and the blue circles are the estimations for the
sidebands as given in Eq. �23�.
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IV. CONCLUDING REMARKS

The F-product formalism allows us to calculate the time-
dependent expectation value of the dipole moment within the
framework of NHQM, when the helium atom is exposed to
external monochromatic linearly polarized laser field. The
Fourier transform of the complex time-dependent expecta-
tion value of the acceleration �second time derivative of the
dipole� provides the HGS. The electronic correlation is fully
accounted for in our calculations. Unlike the previous
NHQM calculations of the HGS where only the intensities of
the integer harmonics frequencies were attainable, here for
the first time the full HGS are calculated by the NHQM
formalism. Our calculations show that when helium atoms
are initially in their ground state the HGS is characterized by
sharp narrow peaks at the odd harmonic frequencies. Simi-
larly when helium atoms are initially prepared in their 1s2p
excited state only the odd harmonics peaks are obtained.
However, the peaks in the HGS are much broader, as long as
the resonance state associated with the excited state has a
much shorter lifetime than the resonance state associated
with the field free ground electronic state of helium. The fact
that the peaks in the HGS have about the same widths re-
flects the contribution of a single QE resonance state to the
HGS. A most interesting result is obtained where the initial
state is given by a superposition of the ground �11Se� and

excited �21Po� states of the field free helium. Theoretical
analysis of the expression for the HGS derived in the NHQM
formalism suggests the appearance of even harmonic peaks
due to the contribution to the photoinduced dynamics of two
resonances of similar lifetimes �but with different symmetry�
�12�. Our results clearly show that even though the lifetimes
of the two resonances which are associated with the ground
and the excited electronic states of helium are different by
several order of magnitudes �this fact is reflected by the dif-
ferences in the widths of the peaks in the HGS, see Figs. 1
and 2�, pronounced peaks of even high harmonics appear in
HGS when the initial state is given by a superposition of the
ground and electronic states of helium �see Fig. 3�. We hope
that our theoretical results will encourage experimentalists to
carry out HGS measurements of rare gas atoms in initially
prepared superposition of ground and excited electronic
states.
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