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The properties of the quasirelativistic Hartree-Fock equations are investigated. Different ways of forming the
equations are discussed. The relativistic corrections employed in the traditional quasirelativistic Hartree-Fock
equations are compared with the ones used within the Breit-Pauli approach. The two-electron contact interac-
tions are revised and the new versions of the quasirelativistic Hartree-Fock equations are considered. The
solutions of these equations are compared among themselves and also with those obtained within the Dirac-
Fock and nonrelativistic Hartree-Fock approaches. Solution data are provided for some heliumlike, neonlike,
and mercurylike ions.
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I. INTRODUCTION

Taking account of relativistic effects is important when
investigating the highly charged ions, spectra of heavy at-
oms, x-ray spectra, and many other atomic objects. This can
be done in different ways. The Breit-Pauli �BP� approxima-
tion �1,2� is among the simplest ones. Nonrelativistic radial
orbitals obtained by solving Hartree-Fock �HF� �3,4� or
analogous equations are used while applying this method.
Relativistic effects are taken into account by calculating the
energy corrections calculated with accuracy up to their sec-
ond order in the fine structure constant. This approach allows
one to obtain the energy spectra and wavelengths of electron
transitions with high accuracy even for the ions with the
ionization degree exceeding twenty, at the same time taking
into account the correlation effects. However, this approach
cannot provide results of high accuracy when calculating the
probabilistic characteristics of transitions in heavy atoms.
This is due to the fact that the inner shells of heavy atoms
fall inside a very strong nuclear field and, as a consequence,
the influence of relativistic effects on the wave functions of
these electrons is great. Taking account of this influence
while solving the corresponding equations leads to essential
changes of the radial orbitals �ROs� of the inner shells. This
affects the behavior of the electrons in the outer shells, al-
though there the electron velocities are not high and conse-
quently the direct relativistic corrections are small. Unfortu-
nately, the described indirect relativistic effects can be
accounted for neither within the BP approximation nor by the
calculation of correlation effects. As a result, the obtained
probabilistic characteristics are not reliable enough even for
the neutral heavy atoms when one is applying BP approach
with an extensive inclusion of correlation effects.

The employment of solutions of Dirac-Fock �DF� equa-
tions �5–7� when obtaining ROs is the most obvious choice
for taking into account the relativistic effects. However, the
application of this method leads to a considerable complica-
tion in calculations, such as the appearance of the large and
the small components of ROs, the splitting of some shells
into two subshells, the use of jj-coupling even in the cases

when it is not physically justified etc. A fortunate compro-
mise is the creation of quasirelativistic HF equations �8� that
do not depend on the total momentum of an electron �9�.
When obtaining RO these equations allow us to take into
account the main relativistic effects staying at the same time
within the framework of the usual LS-coupling and tradi-
tional methods of calculations corresponding to the BP ap-
proach when computing spectral characteristics. These ben-
efits explain the wide popularity of the program for the
solution of the quasirelativistic HF equations based on the
methods described in monograph �10�. The mentioned pro-
gram is quite successfully used for the semiempirical adjust-
ment of the energy spectra and calculations of energy spectra
using the empirical factors of Slater integrals. However our
attempt to use the resulting ROs in ab initio calculations
based on the configuration interaction approach within our
methods �11,12� was not successful. The reason is the behav-
ior of ROs in the vicinity of the nucleus, insufficient assur-
ance of orthogonality of ROs while solving the equations,
the complexity of computation of the integrals of energy op-
erator matrix elements outside the initial program etc.

In this context we started the development of our own
methods for solving the quasirelativistic HF equations
�QRHF� in purely theoretical calculations within the BP ap-
proach with extensive inclusion of correlation effects. First
we abandoned the pointlike nucleus model �13,14�. Taking
into account the finite size of the nucleus provides us with
the exact analytical expansion of quasirelativistic radial or-
bitals in the powers of radial variable at the origin. Exami-
nation of suitability of this approach in the case of hydrogen-
like ions revealed that the accuracy of the obtained results
increased especially for s electrons �14,15�. The analysis of
quasirelativistic equations shows that it is possible to aban-
don the effective potential described by the statistical meth-
ods �16,10�, and to use instead the conventional direct and
exchange HF potentials in the equations. This allowed us to
describe correctly the electron electrostatic interaction and to
get a more specific description of the interelectron contact
interactions in the equations. The present work is devoted to
the investigation of these problems. As it is known �8�, the
presence of relativistic terms in the potential leads to a small
nonorthogonality of ROs in the case of the closed shells
unlike in the case of the usual HF equations. The problem of
insuring the orthogonality of the resulting ROs while solving*Email address: pavlas@itpa.lt
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the quasirelativistic equations is not addressed here. In the
open shell case the nonorthogonality problem is even more
outstanding. Therefore all the examples investigated further
include only the closed shell configurations.

In Sec. II the technique of forming the quasirelativistic
equations from the DF equations is examined together with
the main assumptions used for their derivation. In Sec. III the
results of solution of the equations in the case of heliumlike
ions are discussed along with the complications in taking
account of two-electron contact interactions in the equations.
In Sec IV the expressions enabling us to improve and sim-
plify the description of electron contact and spin-contact in-
teractions are obtained. In Sec. V the results of solving the
obtained equations are presented. The main inferences are
drawn in the conclusion.

II. DERIVATION OF QUASIRELATIVISTIC EQUATIONS
FROM DIRAC-FOCK EQUATIONS

The quasirelativistic HF equations described in �10� were
formed by simply adding the mass velocity and Darwin
terms of the Pauli equations for one-electron atoms �1� to the
usual nonrelativistic one-electron differential equations. The
resulting equation is numbered �7.60� in the monograph �10�
�all signs in the equation are reversed�

� d2

dr2 −
l�l + 1�

r2 − Uef f�r� − �nl +
�2

4
��nl + Uef f�r��2

+ ��l,0�
�2

4
�1 −

�2

4
��nl + Uef f�r���−1dUef f�r�

dr

�� d

dr
−

1

r
��P�nl	r� = 0. �2.1�

Hereinafter, P�nl 	r� is the desired radial orbital; �nl denotes
the absolute value of the single-electron energy in Rydbergs;
� is the fine structure constant; Uef f�r� is the central field
potential incorporating the nuclear contribution −2Z /r and
the electron interaction. The exchange part of electron inter-
action is taken into account in Uef f�r� effectively by statisti-
cal methods �16�. In Eq. �2.1� the term containing the
squared sum of �nl and Uef f�r� describes the relativistic cor-
rection to the potential arising from the dependence of elec-
tron mass on velocity. The term containing the � symbol
��l ,0� describes a correction for the electron contact interac-
tions with nucleus and among themselves.

As it is noticed in �10�, one can derive the same equations
out of the exact relativistic DF equations �in order to use the
same definitions of �nl and potentials as in Eq. �2.1� and the
usual HF equations, the additional multipliers 1

2 are included�

dP�nlj	r�
dr

= −
�

r
P�nlj	r� + �
� 2

�2 −
1

2
�nlj

−
1

2
VDF�nlj	r��Q�nl̄j	r� −

1

2
�DF�nl̄j	r�� ,

�2.2�

dQ�nl̄j	r�
dr

=
�

r
Q�nl̄j	r� + �
�1

2
�nlj +

1

2
VDF�nlj	r��P�nlj	r�

+
1

2
�DF�nlj	r�� . �2.3�

Here P�nlj 	r� and Q�nl̄j 	r� are the large and small com-
ponents of a radial wave function, respectively, �nlj denotes
the relativistic single-electron energy, VDF�nlj 	r� is a direct
part of the potential including both the interaction with

nucleus and the electron interaction, �DF�nl̄j 	r� and
�DF�nlj 	r� are the exchange parts of the potential, �= �2j

+1��l− j�, l̄=2j− l.
Within the relativistic Dirac-Fock approach the direct po-

tential, being the same for the large and the small compo-
nents, is �for simplicity let us consider the equations aver-
aged over all the states of the investigated relativistic
configurations�

VDF�nlj	r� = −
2Z

r
+

2

r
 �
n�l�j�

�Nn�l�j�

− ��nlj,n�l�j���Y0�n�l�j�,n�l�j�	r�

+ �
k�0

2

Nnlj
fk�jNnlj�Yk�nlj,nlj	r�� . �2.4�

The exchange potential for the large component can be writ-
ten as follows:

�DF�nl̄j	r� =
2

r
�

nlj�n�l�j�

�

k

gk�jN, j�N��
Nnlj

Yk�nlj,n�l�j�	r��
�Q�n�l̄�j�	r� �2.5�

and for the small component as

�DF�nlj	r� =
2

r
�

n�l�j��nlj

�

k

gk�jN, j�N��
Nnlj

Yk�nlj,n�l�j�	r��
�P�n�l�j�	r� . �2.6�

Nn�l�j� denotes the number of electrons in the subshell, fk and
gk are the averaged angular coefficients. Here Yk are poten-
tial functions appearing by variation of the radial integrals of
electrostatic interaction of electrons

Yk�nlj,n�l�j�	r� = r−k

0

r

xk�P�nlj	x�P�n�l�j�	x�

+ Q�nl̄j	x�Q�n�l̄�j�	x��dx

+ rk+1

r

� 1

xk+1 �P�nlj	x�P�n�l�j�	x�

+ Q�nl̄j	x�Q�n�l̄�j�	x��dx . �2.7�

Since the small component Q�nl̄j 	r� contains a factor �, the
potential function Yk and all the potentials in conformity in-
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clude the terms proportional to the square of the fine struc-
ture constant.

In order to proceed to the quasirelativistic approximation
it is necessary to get rid of the small component of the radial
wave function and to interpret the large component in terms
of the usual radial orbital. Here in order to get the equations
of the form �2.1� one must abandon the exchange interac-
tions already in the Dirac-Fock equations and introduce in-
stead the effective potentials �it is implied that the disconti-
nuity at the nodes of radial orbitals is smoothed out�

UP�nlj	r� = VDF�nlj	r� +
�DF�nl̄j	r�

Q�nl̄j	r�
, �2.8�

UQ�nlj	r� = VDF�nlj	r� +
�DF�nlj	r�
P�nlj	r�

. �2.9�

Then it is necessary to substitute these potentials into Eqs.
�2.3� and �2.4�, respectively. For further transformations the
following assumption is made:

UP�nlj	r� = UQ�nlj	r� � Uef f DF�nlj	r� . �2.10�

Now one can obtain the following equation by expressing
the small component from Eq. �2.2� through the large one
and substituting it into Eq. �2.3�

� d2

dr2 −
l�l + 1�

r2 − Uef f DF�nlj	r� − �nlj +
�2

4
��nlj

+ Uef f DF�nlj	r��2 +
�2

4
�1 −

�2

4
��nlj

+ Uef f DF�nlj	r���−1dUef f DF�nlj	r�

dr
� d

dr

−
Xlj + 1

r
��P�nlj	r� = 0. �2.11�

Here Xlj � j�j+1�− l�l+1�−s�s+1��−�−1. As it has
been mentioned before, Yk can be represented in the form of
two terms, one of which is proportional to �2 and is calcu-
lated by the integration of the small components. Then one
can write down

Uef f DF�nlj	r� = Uef f�nlj	r� + �2Uef f,rel�nlj	r� . �2.12�

After substitution of �2.12� into �2.11� and truncation of the
terms containing the fourth power of � the resulting equation
becomes

� d2

dr2 −
l�l + 1�

r2 − Uef f�nlj	r� −
�2

4
Uef f,rel�nlj	r� − �nlj

+
�2

4
��nlj + Uef f�nlj	r��2 +

�2

4
�1 −

�2

4
��nlj

+ Uef f�nlj	r���−1dUef f�nlj	r�
dr

� d

dr
−

Xlj + 1

r
��P�nlj	r�

= 0. �2.13�

In a strict sense this equation implicitly contains high powers

of the fine structure constant because of the denominator of
the contact term. However, the neglect of the denominator
leads to the absurd results when solving the equations �10�.
The equation still depends on the electron total momentum j.
In order to abandon this dependence it is necessary to per-
form averaging using the conventional expression

xnl =
1

4l + 2 �
j=l−1/2

l+1/2

�2j + 1�xnlj �
2lxnlj−

+ �2l + 2�xnlj+

4l + 2
,

�2.14�

where xnl denotes any physical characteristic. After such av-
eraging, Eq. �2.13� becomes

� d2

dr2 −
l�l + 1�

r2 − Uef f�nl	r� −
�2

4
Uef f,rel�nl	r� − �nl

+
�2

4
��nl + Uef f�nl	r��2 +

�2

4
�1 −

�2

4
��nl

+ Uef f�nl	r���−1dUef f�nl	r�
dr

� d

dr
−

1

r
��P�nl	r� = 0.

�2.15�

Now none of the characteristics in �2.15� do depend on j, and
the parameter Xlj sums to zero and meets the well-known
property of the spin-orbit interaction.

It is necessary to compare Eq. �2.15� with the quasirela-
tivistic equation �2.1� in order to understand what other sim-
plifications are needed. First, it is necessary to omit the rela-
tivistic term in the potential

Uef f,rel�nl	r� = 0, �2.16�

which is defined through the small component of the wave
function, therefore it is impossible to evaluate it. Second, one
must include the delta symbol ��l ,0� into the term describing
the contact interactions that correspond with the BP approxi-
mation for the electron interaction with the nucleus.

Thus in order to obtain the quasirelativistic equations
�2.1� from relativistic DF equations it is necessary to assume
the following:

�1� possibility of describing the interactions using the ef-
fective potentials �2.8� and �2.9�;

�2� equality of the effective potentials of the large and the
small components �2.10�;

�3� possibility of rejecting the account of some parts of
relativistic effects �2.16�;

�4� possibility of attributing the delta symbol ��l ,0� to all
contact interactions taken into account.

Statistical methods are used to describe the electron ex-
change interaction potential rather often while solving equa-
tions �10�. However, the possibility of existence of the equal-
ity

�DF�nl̄j	r�

Q�nl̄j	r�
=

�DF�nlj	r�
P�nlj	r�

, �2.17�

following from �2.10�, seems to be not quite justified. It be-
comes especially obvious when taking into consideration that
large and small components contain different numbers of
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nodes and their locations do not coincide. At the same time
there is no necessity of introducing effective potentials �17�.
It is possible to get rid of the direct presence of the small
component in the equation for the large component by sub-

stituting the expression for Q�nl̄j 	r� from �2.2� into Eq. �2.3�
without employing �2.8�–�2.10�. As a result one obtains


 d2

dr2 −
l�l + 1�

r2 − VDF�nlj	r� − �nlj�P�nlj	r� − �DF�nlj	r�

+
�2

4
��nlj + VDF�nlj	r��2P�nlj	r� +

�2

4
��nlj

+ VDF�nlj	r���DF�nlj	r� +
�2

4
�1 −

�2

4
��nlj

+ VDF�nlj	r���−1dVDF�nlj	r�
dr

� d

dr
−

Xlj + 1

r
�P�nlj	r�

+
�

2
� d

dr
+

Xlj + 1

r
��DF�nl̄j	r�

−
�2

4
�1 −

�2

4
��nlj + VDF�nlj	r���−1

�
dVDF�nlj	r�

dr

�

2
�DF�nl̄j	r� = 0. �2.18�

Furthermore, the same as in deriving of Eq. �2.15�, it is nec-
essary to explicitly express the dependence of relativistic po-
tentials on �

VDF�nlj	r� = V�nlj	r� + �2Vrel�nlj	r� , �2.19�

�DF�nlj	r� = ��nlj	r� + �2�rel�nlj	r� , �2.20�

and to keep only the terms containing � in the power not
higher than the second one. Then it is necessary to perform
the averaging over the possible values of the electron total
momentum �2.14�. The resulting equation appears as fol-
lows:


 d2

dr2 −
l�l + 1�

r2 − V�nl	r� − �nl�P�nl	r� − ��nl	r� +
�2

4
��nl

+ V�nl	r��2P�nl	r� +
�2

4
��nl + V�nl	r����nl	r� +

�2

4
�1

−
�2

4
��nl + V�nl	r���−1dV�nl	r�

dr
� d

dr
−

1

r
�P�nl	r�

− �2Vrel�nl	r�P�nl	r� − �2�rel�nl	r� +
�

2
� d

dr
+

1

r
���nl̄	r�

= 0. �2.21�

The last three terms of Eq, �2.21� can be calculated using
only the small component of the radial orbital therefore one
must exclude them from the equation. The abandonment of
the first two terms of these fully agrees with �2.16�. Exclu-
sion of the last term of the equation, which is also propor-
tional to �2 due to presence of the small component in de-

scription of ��nl̄ 	r� �2.5�, leads to elimination of the

exchange contact interaction accounted for in �2.1� for s
electrons through the effective potential. The direct V�nl 	r�
and exchange ��nl 	r� potentials obtained in the equation co-
incide with corresponding potentials of the usual HF equa-
tions. Finally the sought equation appears as


 d2

dr2 −
l�l + 1�

r2 − V�nl	r� − �nl�P�nl	r� − ��nl	r� +
�2

4
��nl

+ V�nl	r��2P�nl	r� +
�2

4
��nl + V�nl	r����nl	r� +

�2

4
�1

−
�2

4
��nl + V�nl	r���−1dV�nl	r�

dr
� d

dr
−

1

r
�P�nl	r� = 0.

�2.22�

A comparison of the derived equation with the quasirelativ-
istic equation �2.1� reveals, that here a nonrelativistic poten-
tial appears. It is also possible to get the same potential in
Eq. �2.1� by rejecting the use of effective potential in the
nonrelativistic term of the equation. An interesting fact is
that in the relativistic part of the equation the potential de-
scribing dependence of mass on velocity splits into the direct
and exchange parts and the contact term contains the ex-
change potential neither within the derivative nor in the de-
nominator.

While solving the equation, as in previous papers
�14,15,17�, the following nucleus charge density distribution
was used �13�

	�x� =
3Z

4
rnuc
3 �21

8
−

63

8
� r

rnuc
�4

+
21

4
� r

rnuc
�6�, r � rnuc.

�2.23�

The radius rnuc of a boundary of nucleus is defined so that at
the center of nucleus the charge density is approximately
equal to the density obtained by using the Fermi distribution.
This is the distribution usually used for solving DF equations
�18,19�. In our case rnuc exceeds the radius of nucleus being
used in the model of a uniformly charged ball by approxi-
mately 20%.

The charge density distribution �2.23� leads to the follow-
ing expression for the potential:

V�x� =
1

16

Z

rnuc
�− 63 + 42� r

rnuc
�2

− 18� r

rnuc
�6

+ 7� r

rnuc
�8�, r � rnuc. �2.24�

This potential is used both for description of the electrostatic
interaction with the nucleus and for description of all the
relativistic effects inside the nucleus. The expression �2.24�
is also used to calculate the integrals inside the nucleus. The
use of the potential �2.24� provides for simple expansion of
ROs in powers of the radial variable in the nucleus region
�14� and ensures a correct behavior of ROs when solving the
equations in the outer region. For solving Eq. �2.22� and the
equations below the same method as in the case of hydro-
genlike ions described in �14,15� is used. This method is
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similar to the one used for solving conventional HF equa-
tions �4�.

III. CALCULATIONS FOR HELIUMLIKE IONS

As it is seen by comparing Eqs. �2.1� and �2.22�, the main
differences appear while taking into account the exchange
interaction between electrons. In order to neutralize the dif-
ferences the calculation of the ground state of heliumlike
ions is discussed in this section. Since the exchange poten-
tials do not appear and ��l ,0� is equal to 1 for the configu-
ration 1s2, the differences between the results of solutions of
Eq. �2.1� obtained using the code �10� �hereinafter these re-
sults are denoted by CW� and the solutions of Eq. �2.22�
provided by our own code can arise only from the account of
the finite size of the nucleus in our program. The obtained
results are also compared with the results of solving the DF
equations by using the code �20�, where the finite size of
nucleus is taken into account as well, and with the results of
solving the conventional HF equations �21� �these results are
named HF after the type of the used Ros: if the energies are
calculated in the Breit-Pauli approximation they are marked
BP�.

In the code based on �10� the energy of an atomic con-
figuration in quasirelativistic approximation is determined
through the sum of the generalized one-electron integrals and
the usual Slater integrals. In the case of heliumlike ions un-
der consideration the energy is written down as follows

E�1s2� = 2IQR�1s� + F0�1s,1s� . �3.1�

Here F0�1s ,1s� is Slater integral. IQR�1s� represents a gener-
alized integral which contains both all the one-electron inter-
actions and all the relativistic corrections, as it follows from
description of the method �10� and the obtained results. The
integral can be expressed as

IQR�nl� = I�nl� +
�2

4
Imv�nl� +

�2

4
Ic�nl� , �3.2�

where I�nl� is a usual integral of the electron kinetic energy
and the interaction energy with nucleus; Imv�nl� denotes the
relativistic energy correction due to dependence of electron
mass on velocity. When solving Eq. �2.22� this integral is
determined as

Imv�nl� = −
1

2



0

�

P�nl	r����nl + V�nl	r��2P�nl	r�

+ ��nl + V�nl	r����nl	r��dr . �3.3�

Ic�nl� is assigned to the contact interaction correction and is
expressed from �2.22� as follows:

Ic�nl� = −
1

2



0

�

P�nl	r��1 −
�2

4
��nl + V�nl	r���−1dV�nl	r�

dr

�� d

dr
−

1

r
�P�nl	r�dr . �3.4�

The energy definition �3.1� is used to calculate the data pre-

sented in Table I. In this table the energy values are com-
pared with the energies obtained within the DF approach. For
completeness of comparison this table also contains the en-
ergy values calculated within the conventional nonrelativistic
HF approximation and in BP approach using the same HF
functions. The comparison of the last two values allows us to
evaluate the influence of relativistic corrections on the total
energy of configuration.

As it is seen in Table I, both ECW and E�2.22� are in very
good agreement with the DF results, essentially exceeding
the accuracy obtained in BP approach for high ionization
degrees. At the same time, for a small nuclear charge CW
gives energies slightly lower than DF and for large values of
Z it is somewhat inferior in the accuracy than our results.
Most likely this is related to the features of calculations of
ns-radial orbitals in the vicinity of the origin that are imple-
mented in �10�. As it is shown in �14�, while solving Eq.
�2.1� for hydrogenlike ions, in the case of the small charge
nuclei the usage of program �10� for the s electrons yields the
values of one-electron energies that fall below both the cor-
responding values given by the solutions of Dirac equations
�1� and the solutions of DF equations that take into account
the finite size of nucleus �20�. In the case of s electrons in
hydrogenlike ions �14� the differences between the solutions
of �2.22� and the solutions of DF equations are rather small
and most likely they are related to the different models of the
nucleus used. In the case of heliumlike ions under consider-
ation the difference between DF results and our ones is
slightly larger. At the same time the obtained energy values
are little lower than the EDF over the entire range of Z. Most
likely the discussed differences depend on the insufficiently
correct account of the two-electron contact interaction.

Within the BP approach three types of contact interactions
are considered. These imply the one-electron contact interac-
tion with nucleus and two electron interactions: electron-
contact and spin-contact ones. One can obtain the integral of
contact interaction with the nucleus from �3.4� substituting
the derivative of the full direct potential with a derivative of
the potential created only by a nucleus:

IZc�nl� = 

0

�

P�nl	r��1 −
�2

4
��nl + V�nl	r���−1d�Z/r�

dr

�� d

dr
−

1

r
�P�nl	r�dr . �3.5�

It is necessary to mention, that the denominator is usually
omitted while calculating the integral using the conventional

TABLE I. Total energies of heliumlike ions �a.u.�.

Z EDF E�2.22� ECW EBP EHF

4 −13.61400 −13.61400 −13.61404 −13.61333 −13.61130

10 −93.98276 −93.98277 −93.98346 −93.97039 −93.86111

30 −892.0663 −892.0671 −891.8018 −891.4699 −881.3610

50 −2556.309 −2556.316 −2552.701 −2548.914 −2468.861

QUASIRELATIVISTIC HARTREE-FOCK EQUATIONS… PHYSICAL REVIEW A 74, 052501 �2006�

052501-5



HF functions, and this results in the possibility of integrating
�3.5� by parts

IZc
HF�nl� = ��l,0�

1

2
Za0

2�nl� . �3.6�

Here a0�nl� determines the slope of the HF radial orbital at
the origin. Within our approach the absence of denominator
in �3.5� leads to obviously incorrect results. Furthermore,
even by neglecting the denominator it is impossible to obtain
a simple expression, since in the region of nucleus the po-
tential is not of a Coulomb type but is estimated by formula
�2.24� both while calculating the integral �3.5� and solving
the equation.

As is known, within the conventional BP approximation
�2� there is a relation between the diagonal matrix elements
of the spin-contact �sc� and the electron-contact �ec� terms

�K�LS�Hsc�K�LS� = − 2�K�LS�Hec�K�LS� . �3.7�

Here K and � denote the configuration and additional quan-
tum numbers. It means that the spin-contact interaction is
twice as large as the electron-contact one and is of opposite
sign. Within the conventional BP approximation these two
interactions are taken into account simultaneously through
the correction of Slater integrals expressed as follows:

Rc�nl,n�l�� = 

0

� 1

r2 P2�nl	r�P2�n�l�	r�dr . �3.8�

Thus the energy of the ions under consideration within the
BP approximation should be written in the form

EBP�1s2� = 2�I�1s� +
�2

4
Imv�1s� +

�2

4
IZc�1s�� + F0�1s,1s�

+
�2

4
Rc�1s,1s� . �3.9�

In order to evaluate the influence of conversion of the energy
definition �3.1� into �3.9� on the energy value, the values of
integrals Rc and the doubled values of differences of inte-
grals Ic and IZc


Ic�1s� = 2�Ic�1s� − IZc�1s�� �3.10�

are given in Table II. If the energy definition �3.1�, derived
from Eqs. �2.22�, is in good agreement with the BP approach,
the values of quantities presented in the table must be suffi-
ciently close. Indeed, their absolute values coincide to a high
degree, especially keeping in mind that the denominator,
which exists in the definitions of integrals �3.4� and �3.5�, is

absent in �3.8�. However, Rc and 
Ic have opposite signs.
Consequently, the energy values must be increased by a
quantity approximately equal to two Rc integrals while
changing the definition of energy from �3.1� to �3.9� in agree-
ment with the BP approximation. Since the relation �3.7�
holds, therefore the spin-contact interaction, which raises the
configuration energy value, is not taken into account in ex-
pression �3.1�.

From the statement above it follows that the good coinci-
dence of the energy values ECW and E�2.22� in Table I is
caused not by a high accuracy of Eq. �2.22� but rather by a
quite random compensation of the unaccounted relativistic
corrections both of the order of �2 and of higher orders. It is
clearly seen from Table II that the spin-contact electron in-
teraction correction raises the configuration energy by almost
two atomic units when Z=50.

It is necessary to mention that the values of integrals
F0�1s ,1s� calculated using the solutions of Eq. �2.22� are in
good agreement with the corresponding integrals obtained
when solving �2.1� for all the nuclear charge values. Thus it
comes out that both Eqs. �2.1� and �2.22� do not take into
account the spin-contact electron interaction, while the twice
smaller electron-contact interaction is taken into account cor-
rectly. It becomes clear that the spin-contact interaction po-
tentials have been lost when rejecting the term Uef f,rel�nl 	r�
at developing �2.1� and the terms Vrel�nl 	r� and �rel�nl 	r� at
constructing of �2.22� due to impossibility of evaluating
them within the quasirelativistic approach. In �2.22� the term
describing the exchange part of an electron-contact interac-
tion has also disappeared when omitting �

2
� d

dr + 1
r
���nl 	r�. It

seems illogical to take into account the weaker electron-
contact relativistic interactions in Eqs. �2.1� and �2.22� at the
same time reject the twice-stronger spin-contact ones. The
presence of the � symbol ��l ,0� in the contact term of Eq.
�2.1� reveals that even the electron-contact interactions are
taken into account only for s electrons in the equation.

The simplest way out of this situation is the rejection of
all relativistic two-electron interactions in the quasirelativis-
tic equation �2.22�. This results in the following equation:


 d2

dr2 −
l�l + 1�

r2 − V�nl	r� − �nl�P�nl	r� − ��nl	r� +
�2

4
��nl

+ V�nl	r��2P�nl	r� +
�2

4
��nl + V�nl	r����nl	r� + ��l,0�

�2

4

��1 −
�2

4
��nl + V�nl	r���−1d�− 2Z/r�

dr
� d

dr
−

1

r
�P�nl	r�

= 0, �3.11�

where only the nuclear potential is accounted in the contact
term. In this context the inclusion of ��l ,0� into the equation
becomes more valid. However there is a possibility of taking
into account all two-electron contact interactions in the equa-
tion.

IV. TAKING INTO ACCOUNT THE TWO-ELECTRON
PART OF CONTACT INTERACTION

As it is well known, within the BP approach the summary
electron-contact and spin-contact interaction are taken into

TABLE II. Integrals Rc and differences of contact integrals 
Ic

of heliumlike ions �a.u.�.

Z Rc 
Ic

4 0.000333 −0.000333

10 0.006088 −0.006079

30 0.186187 −0.183506

50 0.994034 −0.965157
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account through the relativistic corrections of Slater integrals
�2�

Fk
rel�nl,n�l�� = Fk�nl,n�l�� +

�2

4
�2k + 1�Rc�nl,n�l�� , �4.1�

Gk
rel�nl,n�l�� = Gk�nl,n�l�� +

�2

4
�2k + 1�Rc�nl,n�l�� . �4.2�

The variation of integral Rc�nl ,n�l�� with regard to radial
orbital P�nl 	r� results in the formation of the function

Yc�nl,n�l�� =
1

r2 P�nl	r�P2�n�l�	r� . �4.3�

The additional factor 2 appears when considering the inter-
action of non-equivalent electrons, and the factor 4 when the
interactions inside a shell are investigated. In order to take
into account the two-electron contact interaction it is suffi-
cient to add up a function Yc with a multiplier �2

4 �2k+1� to
all the usual potential functions Yk included into the direct
and exchange potentials of Eq. �3.11�. However, this implies
a certain complication of the calculation and the necessity of
obtaining two types of potentials, since the potentials de-
scribing the dependence of mass on velocity and the contact
interaction with nucleus should not contain relativistic cor-
rections to avoid the appearance of terms of a higher order of
the fine structure constant.

There is another option. As it is clear from �4.1� and �4.2�
the integrals Rc do not depend on the range k and coincide
for the direct and exchange interactions. In this case the en-
ergy of the equivalent electron contact interaction can be
expressed as


Ec�nlN� =
�2

4
Rc�nl,nl��

k=0

2l

�2k + 1�fk�lN,lN� . �4.4�

The energy of the inter-shell contact interaction is


Ec�nlN,n�l�N��

=
�2

4
Rc�nl,n�l��
 �

k=0

2 min�l,l��

�2k + 1�fk�lN,l�N��

+ �
k=	l−l�	

l+l�

�2k + 1�gk�lN,l�N��� . �4.5�

Here fk and gk denote the angular coefficients of the matrix
elements of the electron electrostatic interaction energy op-
erator. In the general case, they depend on the orbit and spin
momenta of the considered term. However, the coefficients
averaged over all the terms of the considered configuration
are usually used while solving HF and analogous equations.
This is particularly suitable for the two-electron contact in-
teraction correction. The coefficients averaged over all terms
of a configuration and, consequently, correctly describing the
interaction of the closed shells have simple analytical expres-
sions:

f0�lN,lN� =
N�N − 1�

2
, �4.6�

fk�lN,lN� = −
N�N − 1�

2�2l + 1��4l + 1�
�l�C�k��l�2, k � 0, �4.7�

fk�lN,l�N�� = ��k,0�NN�, �4.8�

gk�lN,l�N�� = −
NN�

2�2l + 1��2l� + 1�
�l�C�k��l��2. �4.9�

Hereinafter �l�C�k��l�� denotes a submatrix element of the
spherical function. Substituting �4.6� and �4.7� into the sum
of the expression �4.4� and using the relation

�
k=0

2l

�2k + 1��l�C�k��l�2 = �2l + 1�2 �4.10�

one obtains the simple expression


Ec�nlN� =
�2

4

N�N − 1��2l + 1�
2�4l + 1�

Rc�nl,nl� , �4.11�

which describes the averaged contact interaction inside a
shell. Substituting �4.8� and �4.9� into �4.5� and using the
relation

�
k=	l−l�	

l+l�

�2k + 1��l�C�k��l��2 = �2l + 1��2l� + 1� �4.12�

one obtains an expression for the averaged contact interac-
tion between shells


Ec�nlN,n�l�N�� =
�2

4

NN�

2
Rc�nl,n�l�� . �4.13�

An interesting fact becomes clear when forming �4.13�:
the averaged exchange part of the contact interactions is ex-
actly half as small as the direct part and has an opposite sign.
As a consequence, the total interaction �4.13� is twice
smaller than the corresponding direct one.

The expressions �4.11� and �4.13� allow us to take into
account the two-electron contact interactions by adding just
one term to the direct potential of the quasirelativistic equa-
tion �3.11�


 d2

dr2 −
l�l + 1�

r2 − V�nl	r� −
�2

4
Vc�nl	r� − �nl�P�nl	r�

− ��nl	r� +
�2

4
��nl + V�nl	r��2P�nl	r� +

�2

4
��nl

+ V�nl	r����nl	r� + ��l,0�
�2

4
�1 −

�2

4
��nl

+ V�nl	r���−1d�− 2Z/r�
dr

� d

dr
−

1

r
�P�nl	r� = 0.

�4.14�

This additional term is expressed as follows
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Vc�nl	r� =
2

r2
N�N − 1��2l + 1�
�4l + 1�

P2�nl	r�

+ �
n�l�

NN�

2

1

r2 P2�n�l�	r�� �4.15�

and allows us to take into account all contact interactions
between electrons.

As it is known, besides the considered two-electron con-
tact interactions there are a whole series of other interactions
�“spin-orbit,” “orbit-orbit,” “spin-spin”� within the BP ap-
proach. These interactions appear only within and between
the open shells. Because of this reason the averaging of them
over all the states of the configuration results in the disap-
pearance of such interactions in the averaged energy. Corre-
spondingly, these interactions need not be included when
solving QRHF equations.

V. COMPARISON OF THE RESULTS OBTAINED USING
DIFFERENT APPROXIMATIONS

In this section the results of solving Eqs. �3.11�, where the
contact interaction between electrons is not taken into ac-
count at all, and Eqs. �4.14� with a complete account of these
interactions are examined. The output from the solutions of
DF equations �20� is considered as the precise data. In the
tables, for simplicity of comparison, only these values are
presented in full whereas others are shown in the form of
deviations from DF values computed as


x = x − xDF. �5.1�

The one-electron values dependent on the total momen-
tum j within DF approach are averaged according to the
formula �2.14�. In order to ascertain the role of relativistic
corrections the results obtained using the solutions of HF
equations are also presented. These results allow us to evalu-
ate the influence of transition from the nonrelativistic ROs to
the quasirelativistic ones on the characteristics under consid-
eration. The deviations obtained with the CW results are pre-
sented only for one-electron values. It is done so because in
this case the authors do not have the possibility of calculat-
ing the configuration energies within BP approach with tak-
ing the contact interactions correctly into account, in the
same way as it has been done in all other cases. As it is
known and as it follows from expressions �4.11� and �4.13�,
the complete inclusion of the contact interactions between
electrons raises the total energy, whereas the inclusion of the
spin-contact interaction only lowers it. The same as before,
the configurations with closed shells are considered as an
example that avoids the necessity of performing energy av-
eraging over all configuration states.

As it is mentioned in the introduction, the nonorthogonal-
ity of ROs appearing because of the presence of relativistic
terms in the potential is disregarded while solving the equa-
tions, the same as in �10�. However, after the completion of
self-consistency the ROs with higher values of the principal
quantum number n are orthogonalized to the ROs with the
lower values of n through the Schmidt procedure. Then the

overlap integrals were of the orders from 10−3 for inner
shells to 10−5 for outer shells practically in all cases. Only for
Z=90 the overlap integral is �1s 	2s��0.05 and other overlap
integrals of deepest inner shells are a little smaller. It is nec-
essary to emphasize, that in all cases the orthogonalization
procedure improved the coincidence with the DF results of
both the total energies and the averaged values of the orders
of the radial variable.

As a first example, the data for the same heliumlike ions
as in Sec. III are presented in Table III. This table contains
only the deviations themselves, since the values EDF are pre-
sented in Table I. In the last column of the table the devia-
tions obtained using the solutions of Eqs. �2.22� and the en-
ergy expression �3.9� are presented. As it is seen from the
table, all the approaches under consideration provide good
coincidence with EDF and practically coincide among them-
selves when the ionization degree is small. At the same time,
the advantage of the solutions of Eqs. �4.14� becomes more
clear after comparing these to the solutions of �3.11� and
especially to the �2.22� as the charge of nucleus grows. In
this case the obtained energy values are higher than those
obtained using the solutions of Eqs. �2.22� with the energy
expression �3.1�.

The simplest configuration containing a close shell of
electrons with l�0 is the neon one. The results of energy
calculation of this configuration for different Z values are
presented in Table IV. The results of the calculations for the
ions with a high number of shells, mercurylike �Z
=80,85,90�, are presented in Table V. It is seen from these
tables, that in all cases the use of the solutions of Eqs. �4.14�
within the BP approach allows one to obtain the energy val-
ues in the best agreement with EDF. It is pretty natural, since
the relativistic corrections consistent with BP approach are
taken into account most completely in Eqs. �4.14�.

As it is seen from Tables III–V, the BP approach allows
one to obtain the energy values in a relatively good agree-
ment with the solutions of DF equations even in the cases of
highly charged ions. This explains the wide popularity of the

TABLE III. Deviations of the total energies of heliumlike ions
�a.u.�.

Z 
E�3.11� 
E�4.14� 
EBP 
E�2.22�

4 0.00067 0.00067 0.00067 0.00067

10 0.01214 0.01208 0.01237 0.01216

30 0.36413 0.34678 0.59641 0.36891

50 1.86882 1.61823 7.39523 1.95219

TABLE IV. Deviations of the total energies of neonlike ions
�a.u.�.

Z EDF 
E�3.11� 
E�4.14� 
EBP

20 −643.255 0.168 0.166 0.167

30 −1568.582 0.645 0.623 0.870

40 −2918.745 1.679 1.580 3.445

50 −4715.832 3.573 3.243 11.405
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BP approach for calculations of the energy spectra of ions,
including the highly charged ones. However, the initial HF
orbitals themselves do not possess this property. Let us con-
sider the one-electron energies �nl obtained by solving dif-
ferent equations in order to compare the properties of ROs.
Such data are presented in Table VI for Hg I �Z=80�. As it is
seen from the table, the solutions of the three types of qua-
sirelativistic equations give the results with comparatively
small deviations. The ratio errors amount to a tenth or even
hundredth fractions of a percent for all electrons when using
Eqs. �3.11� and �4.14�. This is a very good result especially
in comparison to the HF functions. It is interesting that in
some cases Eq. �3.11� gives better results, but in other cases
Eq. �4.14� provides better agreement with the purely relativ-
istic results. The same picture is observed when comparing
the results obtained using the methods investigated in this
work with the ones obtained while solving the equations with
the help of the program �10�. Here and in all trial calcula-
tions the values �1s obtained by our methods are noticeably
closer to the DF results than the CW output. Most likely this
is due to the correct behavior of the RO in the vicinity of the
origin, ensured by the account of the finite size of nucleus in
the methods we develop. A comparison of deviations with
those from the last column of the table shows that the use of
the quasirelativistic ROs instead of the conventional HF ones
enables us to obtain the tenth or even the hundredth times
more accurate one-electron energies.

Other important one-electron characteristics are the aver-
aged electron distances from the origin of coordinates

r̄ = 

0

�

P�nl	r�rP�nl	r�dr . �5.2�

These data for neutral mercury are presented in Table VII. As
is seen from the table all three quasirelativistic equations
under consideration give quite similar deviations from the
DF results in this case, too. Unfortunately, it seems that the
correct taking into account of the two-electron contact inter-

actions in �4.14� slightly worsens the value of the considered
integral compared to the output of �3.11�. Nevertheless, this
deterioration is insignificant. The equations considered in
this work provide better agreement with the DF compared to
CW equations practically in all cases. It is very important
that the compliance with the solutions of DF equations rises
by a factor of ten compared to the data for HF functions
especially in the case of the outer shells electrons. The major
differences between HF and DF results appear in the cases of
s electrons. The differences increase with the growth of the
orbital quantum number l while the principal quantum num-
ber remains the same. In the cases of 4f and 5d shells the
differences even change their sign. The quasirelativistic
functions are in much better agreement with the relativistic
ones and do not exhibit such simple tendency. This fact is
very significant. The non-diagonal integral of the �5.2� type
is used for calculations of the electric dipole transitions. The
improvement of the integral caused by the switch from the
usual HF equations to the quasirelativistic ones is very im-
portant since it is impossible to achieve the same response by
taking into account the correlation effects.

In the last two tables only one ion is investigated. How-
ever, the same results are observed for different ionization
degrees as well as a large number of other investigated con-
figurations. In all cases the use of solutions of Eq. �4.14�
enables us to obtain not only the total energy, but also the
other RO characteristics with higher precision of the results.

TABLE V. Deviations of the total energies of mercurylike ions
�a.u.�.

Z EDF 
E�3.11� 
E�4.14� 
EBP

80 −19648.87 22.23 16.66 215.67

85 −22904.64 25.73 17.37 320.37

90 −26488.16 27.65 15.16 468.22

TABLE VI. Deviations of the one-electron energies of the neutral mercury �a.u.�.

nl �DF 
��3.11� 
��4.14� 
�CW 
�HF

1s 3074.23228 3.48081 −1.34899 −8.32168 −295.55216

2s 550.25180 0.86044 0.23576 −0.09153 −79.51684

2p 479.05588 −1.20471 −1.54803 −1.00026 −26.87567

3s 133.11323 0.18411 0.05359 −0.09659 −19.97671

3p 111.90965 −0.26558 −0.33060 −0.18636 −7.56897

3d 87.38675 0.34171 0.31841 0.36116 0.75851

4s 30.64829 0.02356 −0.00653 −0.02901 −5.07496

4p 23.50038 −0.09205 −0.10484 −0.07198 −1.80149

4d 14.35022 0.04412 0.04215 0.04904 0.25936

4f 4.38080 0.01219 0.01516 0.00800 0.63156

5s 5.10305 −0.00224 −0.00731 −0.01258 −0.92104

5p 3.07396 −0.02435 −0.02568 −0.02095 −0.22309

5d 0.60482 0.00035 0.00080 0.00099 0.10938

6s 0.32803 −0.00179 −0.00217 −0.00270 −0.06699
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VI. CONCLUSION

It is possible to form the quasirelativistic HF equations
from the Dirac-Fock equations without employing the effec-
tive potential. In order to improve the equations it is neces-
sary to introduce an additional potential describing the con-
tact and the spin-contact electron interactions at the same
time. After that the equations appear in the closest fit for the
Breit-Pauli approach, within which the radial orbitals ob-

tained using these equations should be used. Taking into ac-
count the finite size of nucleus is necessary for solving the
equations. This enables us to obtain the correct expansions of
radial orbitals at the origin and increases the accuracy of
calculations. Both the total energies and the characteristics of
radial integrals calculated using the obtained equations are in
the best agreement with the solutions of the Dirac-Fock
equations.
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3s 0.17979 0.00013 0.00023 0.00101 0.02062
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