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We propose an inductive procedure to classify N-partite entanglement under stochastic local operations and
classical communication provided such a classification is known for N−1 qubits. The method is based upon the
analysis of the coefficient matrix of the state in an arbitrary product basis. We illustrate this approach in detail
with the well-known bipartite and tripartite systems, obtaining as a by-product a systematic criterion to estab-
lish the entanglement class of a given pure state without resourcing to any entanglement measure. The general
case is proved by induction, allowing us to find an upper bound for the number of N-partite entanglement
classes in terms of the number of entanglement classes for N−1 qubits.
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I. INTRODUCTION

Entanglement resides in the root of the most surprising
quantum phenomena �see, e.g., Ref. �1��. Furthermore, it is
the main resource in the usage of quantum systems to pro-
cess information �2� in tasks such as cryptographic key dis-
tribution �3�, quantum computation �4,5�, quantum state tele-
portation �6�, quantum communication �7�, and dense coding
�8�. However, a comprehensive understanding of entangle-
ment is still lacking, mainly because it is a highly counterin-
tuitive feature of quantum systems �nonseparability �9�� and
because its analysis can be undertaken under different, al-
though complementary, standpoints �10�. As prominent ex-
amples the subjects of deciding in full generality whether a
given state carries entanglement or not and how much en-
tanglement the system should be attributed to are vivid open
questions �see, e.g., Ref. �11� and references therein�. This
state of affairs is critical in multipartite systems, where most
applications find their desired utility.

Among others, part of the efforts are being dedicated to
classify under diversely motivated criteria the types of en-
tanglement which a multipartite system can show. It is in this
sense desirable, independently of these criteria, to have clas-
sification methods valid for any number N of entangled sys-
tems. One of these most celebrated criteria to carry out such
a classification was provided in Ref. �12�. In physical terms
Dür et al. defined an entanglement class as the set of pure
states which can be interrelated through stochastic local op-
erations and classical communications �SLOCC� or equiva-
lently, as those pure states which can carry out the same
quantum-informational tasks with non-null possibly different

probabilities. They also proved the mathematical counterpart
of this characterization: two states � and �̄ of a given sys-
tem belong to the same entanglement class if, and only if,
there exist invertible local operators �ILO’s� �that is, nonsin-
gular matrices�, which we agree on denoting as F�i� such that
�̄=F�1� � ¯ � F�N����. Moreover, they provided the first
classification under this criterion of tripartite multiqubit en-
tanglement, giving birth to the two well-known genuine en-
tanglement triqubit classes named as GHZ and W classes.
Later on, exploiting some accidental facts in group theory,
Verstraete et al. �13� gave rise to the classification of four-
qubit states.

Regretfully none of the previous works allowed one to
succeed in obtaining a generalizable method. In the second
case, the exploitation of a singular fact such as the isomor-
phism SU�2� � SU�2��SO�4� is clearly useless in a general
setting; in the first case, the use of quantitative entanglement
measures specifically designed for three qubits, as the
3-tangle �14�, to discern among different entanglement
classes discourages one to follow up the same trend, since
we would have to be able to build more generic entangle-
ment measures, per se a formidable task. However, Verstra-
ete et al. �15� succeeded in this approach by introducing the
so-called normal forms, namely those pure states such that
all reduced local operators are proportional to the identity
matrix. These authors also provided a systematic, mostly nu-
merical, constructive procedure to find the ILO’s bringing an
arbitrary pure state to a normal form. Furthermore, the use of
these normal forms allowed them to introduce entanglement
measures �entanglement monotones �16�, indeed�, which of-
fered the possibility to quantify the amount of entanglement
in the original state. In this same trend, other alternatives can
also be found in the literature �17–19�. For completeness’
sake let us recall that classification under SLOCC is coarser
than that using only local unitaries, that is in which every
F�k� is unitary. Nevertheless relevant results in this realm can
also be found in the literature �20–23�.

Here we offer an alternative and complementary approach
to the classification under SLOCC based on an analysis of

*lamata@imaff.cfmac.csic.es
†leon@imaff.cfmac.csic.es
‡david.salgado@uam.es
§Present address: Physics Department, ASC, and CeNS, Ludwig-

Maximilians-Universität, Theresienstrasse 37, 80333 Munich, Ger-
many. Electronic address: enrique.solano@physik.lmu.de

PHYSICAL REVIEW A 74, 052336 �2006�

1050-2947/2006/74�5�/052336�10� ©2006 The American Physical Society052336-1

http://dx.doi.org/10.1103/PhysRevA.74.052336


the singular value decomposition �SVD� of the coefficient
matrix of the pure state in an arbitrary product basis. The
coefficient matrix is chosen according to the partition
1 �2¯N with the subsequent goal of establishing a recursive
procedure allowing one to elucidate the entanglement classes
under SLOCC provided such a classification is known with
one less qubit. The key feature in this scheme is the structure
of the right singular subspace, i.e., of the subspace generated
by the right singular vectors of the coefficient matrix, set up
according to the entanglement classes which its generators
belong to. As a secondary long-term goal, the approach seeks
possible connections to the matrix product state �MPS� for-
malism �see, e.g., Ref. �24� and multiple references therein�,
which is becoming increasingly ubiquitous in different fields
such as spin chains �25�, classical simulations of quantum
entangled systems �26�, density-matrix renormalization
group techniques �27�, and sequential generation of en-
tangled multiqubit states �28�.

We have preferred the mathematical conventions. The ca-
nonical orthonormal basis in CN will be denoted by
�ej� j=1,. . .,N �correspondingly in physics the kets �j−1	�. Nor-
malization is not relevant in elucidating the entanglement
class which a state belongs to. Thus we will deal with un-
normalized vectors and non-unit-determinant ILO’s. In the
SVD of an arbitrary matrix �see the Appendix�, V and W will
denote the left and right unitary matrix, whereas � will stand
for the diagonal possibly rectangular matrix with the singular
values as entries. In the multiqubit cases, we will agree on
denoting by small Greek letters � ,� , . . ., vectors belonging
to C2, whereas capital Greek letters � ,� , . . ., will denote a
generic entangled state in C2 � C2.

The paper is organized as follows. In Sec. II the entangle-
ment of two qubits is revisited with a reformulation of the
Schmidt decomposition criterion in terms of the singular
subspaces. In Sec. III the extension to the three-qubit case is
developed in detail and the principles of the generalization to
multipartite and arbitrary-dimension systems are discussed in
Sec. IV. We close with some concluding remarks in Sec. V.
An Appendix with the relevant facts about the SVD is also
included.

II. BIPARTITE ENTANGLEMENT

A. The Schmidt decomposition criterion revisited

The determination of entanglement of pure states of bi-
partite systems in any dimensions, in general, and in two
dimensions �qubits�, in particular, was solved long ago with
the aid of the well-known Schmidt decomposition �29,30�,
by which any bipartite state can be written as a biorthogonal
combination

� = 

n=1

min�N1,N2�

�n�n
�1�

� �n
�2�, �1�

where �1��2� . . . �0 for all n and Ni denotes the dimen-
sion of subsystem i. If �n=0 except for only one index �1
�0, then the state is a product state; on the contrary, if �n
�0 for two or more indices, then the state is an entangled
state. Furthermore, �n

2 coincides with the common eigenval-

ues of both reduced density operators. Thus, to practically
determine the entangled or separable character of a given
pure state all we must do is to compute the spectrum of 	1 or
	2 or equivalently to analyze the dimensionality of their
ranges. This is the backbone in the study of three-partite
entanglement carried out in Ref. �12�.

In order to pave the way for a generalization to multipar-
tite systems, we will reformulate the Schmidt decomposition
criterion for bipartite systems focusing upon the subspace
generated by the singular vectors. We need the following.

Definition II.1. We will denote by V �W� the subspace
generated by the left �right� singular vectors, i.e., V

=span�v1 , . . . ,vk� �W=span�w1 , . . . ,wk��. We can now state
the following.

Theorem II.1. Let ��Cm � Cn and C��� denote the ma-
trix of coefficients of � in an arbitrary common product
basis. Then � is a product state if and only if dim W=1 �or
alternatively dim V=1�.

Proof. Let �ei�i=1,. . .,m and �f j� j=1,. . .,n denote bases in Cm

and Cn, respectively. Then any vector ��Cm � Cn can be
written as

� = 

i=1

m



j=1

n

cijei � f j , �2�

where cij are the complex coefficients of �, which we ar-
range as

C��� � � c11 . . . c1n

] � ]

cm1 . . . cmn

 . �3�

The matrix C����C always admits a SVD, given by C
=V�W†, where V and W are unitary matrices and � is a
diagonal matrix with entries 
k �the singular values, indeed�.
Thus

cij = 

k=1

min�m,n�

vik
kwjk
* . �4�

Inserting Eq. �4� into Eq. �2� and identifying new bases

�ēi�i=1,2 and � f̄ j� j=1,2 we arrive at the well-known Schmidt
decomposition

� = 

k=1

min�m,n�


kēk � f̄ k. �5�

The number of non-null singular values coincides with the
rank of �, which in turn coincides with the dimensions of V

and W �see the Appendix�. �
From the proof we can deduce a practical method to rec-

ognize where a bipartite system is entangled or not.
Corollary II.1. Let ��Cm � Cn denote the state of a bi-

partite quantum system and C��� its coefficient matrix in an
arbitrary product basis. Then � is a product state if and only
if r(C���)=1.
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B. Classification of two-qubit entanglement under SLOCC

We only need one further tool to find the classification of
bipartite entanglement under SLOCC, which is established
as follows.

Proposition II.1. Let � ,�̄�C2 � C2 denote two two-qubit
states related by SLOCC, i.e.,

�̄ = F�1�
� F�2���� , �6�

where F�1� and F�2� are nonsingular operators upon C2. Then

their corresponding coefficient matrices C , C̄ in an arbitrary
product basis are related through

C̄ = �F�1�T
V���F�2�†W�†. �7�

Proof. Just substitute �=
i,j=1,2cijei � f j in Eq. �6� and
identify indices. �

The key idea in our analysis is to recognize the effect of
the ILO’s F�i� upon the singular vectors. If v j �wj� is a left
�right� singular vector for the matrix coefficient C, then
F�1�T�v j� �F�2�†�wj�� is a left �right� “singular vector” �31� for

the new matrix coefficient C̄. In order to ease the notation,

we will agree hereafter on relating � and �̄ through �̄
=F�1�T � F�2�†���, which allows us to drop the transpose and
Hermitian conjugation �32� in future considerations.

The case of two qubits is elementary, since there is no
much space to discuss. The bases in which the coefficient
matrix will be expressed are the canonical orthonormal basis
�e1 ,e2� in C2. Only two options are present: either dim W

=1 or dim W=2. In the first case, after choosing F�1� such
that

F�1��v1� =
1


1
e1, �8a�

F�2��w1� = e1, �8b�

the new coefficient matrix will turn into C̄= � 1 0
0 0

�, which cor-

responds to the product state �̄=e1 � e1. We will agree on
stating that � belongs to the entanglement class denoted by
00.

In the second case, where 
1�
2�0, after choosing F�1�

and F�2� such that

F�1��v1� =
1


1
e1, F�1��v2� =

1


2
e2, �9a�

F�2��w1� = e1, F�2��w2� = e2, �9b�

the new coefficient matrix will be C̄= � 1 0
0 1

�, which corre-

sponds to the entangled state �̄=e1 � e1+e2 � e2. Now we
say that � belongs to the class �+.

The reader can readily check by simple inspection how in

the first case the canonical matrix C̄ has rank one, whereas in
the second it has rank 2, as expected. In summary, only two
classes are possible, namely, 00 and �+.

III. TRIPARTITE ENTANGLEMENT

The classification of tripartite pure states is performed
along the same lines, namely, choosing the ILO’s F�i� so that
the final coefficient matrix reduces to a canonical one. In
order to find such canonical matrices, we must be exhaustive
in the considerations of all possibilities when discussing
about V and W.

The analysis of tripartite entanglement can be undertaken
upon three possible coefficient matrices, arising from the
three different ways to group the indices, that is, since �
=
i1,i2,i3=1,2ci1i2i3

ei1
� ei2

� ei3
, where as before �ek� denotes

the canonical orthonormal basis in C2, we have

C�1� � C1�23 = �c111 c112 c121 c122

c211 c212 c221 c222
� , �10a�

C�2� � C2�13 = �c111 c112 c211 c212

c121 c122 c221 c222
� , �10b�

C�3� � C3�12 = �c111 c121 c211 c221

c112 c122 c212 c222
� . �10c�

There is no loss of generality in choosing one of them,
since the analysis will be exhaustive. Hereafter we will
choose C=C�1�. Notice that now the left singular vectors of C
belong to C2 whereas the right singular vectors are in C2

� C2. Also, we immediately realize that only two possible
options arise, namely, dim W=1 or dim W=2, since there
are at most two positive singular values. The recursivity ap-
pears when classifying the different structures which the sub-
space W can show. The classification of these subspaces is
performed according to the entanglement classes which their
generators belong to. In order to do that we need the follow-
ing result, which was firstly proved in the context of en-
tanglement theory in Ref. �33� We offer an alternative proof
in order to illustrate our methods.

Proposition III.1. Any two-dimensional subspace in C2

� C2 contains at least one product vector.
Proof. Let V be a two-dimensional subspace of C2 � C2.

With no loss of generality two entangled vectors can be cho-
sen as generators of V with coefficient matrices given by
C1= I and C2 being an arbitrary rank-2 matrix in the product
canonical basis. Then it is always possible to find non-null
complex numbers � and 
 such that �I+
C2 has rank one
�34�. �

In other words, this proposition shows that span��1 ,�2�
always equals either span��1 � �1 ,�2 � �2� or span��
� � ,��, where implicit are the assumptions that different
indices denote linear independence and in the last case only
one product unit vector can be found. Thus, with the same
convention, the right singular subspace W can show six dif-
ferent structures, namely, span�� � ��, span���, span��
� �1 ,� � �2�, span��1 � � ,�2 � ��, span��1 � �1 ,�2 � �2�,
and span�� � � ,��. We pursue proposition III.1 a step fur-
ther.

Proposition III.2. Let W be a two-dimensional sub-
space in C2 � C2. Then W=span�� � � ,�� if and only if
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W=span�� � � ,� � �̄+ �̄ � ��, where the overbar denotes
linear independence.

Proof. Suppose � � � is the only product vector in W �up
to normalization factors�. Its orthogonal vector in W will be
an entangled vector with coordinates in a product basis
�� , �̄� � �� , �̄� given by �0,�12,�21,�22�, i.e. it will be of the

form � � �̄+ �̄ � �+a�̄ � �̄, with a�C. Since � � � must be
the only product vector in W, it necessarily has to be a=0;
otherwise could it always be possible to find � ,
�C such
that �� � �+
��̄ � �+� � �̄+a�̄ � �̄� is another product

vector �
=a��. Suppose now that W= �� � � ,� � �̄+ �̄

� ��, then �� � �+
�� � �̄+ �̄ � �� is a product vector if,
and only if, 
=0, i.e., if it is the original � � �. �

We can now state our result, already contained in Ref.
�12� with different criteria.

Theorem III.1. Let ��C2 � C2 � C2 be the pure state of a
tripartite system. Then � can be reduced through SLOCC to
one of the following six states, which corresponds to the six
possible entanglement classes, according to Table I.

Proof. We discuss the following depending on W.
�1� W=span�� � ��. In this case, w1=� � �. Choose the

ILO’s F�k�, k=1,2 ,3 so that

F�1��v1� =
1


1
e1, �11a�

F�2���� = e1, �11b�

F�3���� = e1. �11c�

Then the new coefficient matrix will be

C̄ = � 1


1
·

0 ·

�
1 0 0 0

0 0 0 0
��

1 0 0 0

· · · ·

· · · ·

· · · ·



= �1 0 0 0

0 0 0 0
� , �12�

which corresponds to the state e1 � e1 � e1, and where the
dots · indicates the irrelevant character of that entry.

�2� W=span���. In this case w1=�1 � �1+�2 � �2.
Choose the ILO’s so that

F�1��v1� =
1


1
e1, �13a�

F�2���1� = e1, F�2���2� = e2, �13b�

F�3���1� = e1, F�3���2� = e2. �13c�

Then the new coefficient matrix will be

C̄ = � 1


1
·

0 ·

�
1 0 0 0

0 0 0 0
��

1 0 0 1

· · · ·

· · · ·

· · · ·



= �1 0 0 1

0 0 0 0
� , �14�

which corresponds to the state e1 � e1 � e1+e1 � e2 � e2.

TABLE I. Entanglement classification under SLOCC for three-qubit systems.

Class Canonical vector Canonical matrix W

000 e1 � e1 � e1 �1 0 0 0

0 0 0 0
� span�� � ��

01�23
+ e1 � e1 � e1+e1 � e2 � e2 �1 0 0 1

0 0 0 0
� span���

02�13
+ e1 � e1 � e1+e2 � e1 � e2 �1 0 0 0

0 1 0 0
� � � C2

03�12
+ e1 � e1 � e1+e2 � e2 � e1 �1 0 0 0

0 0 1 0
� C2 � �

GHZ e1 � e1 � e1+e2 � e2 � e2 �1 0 0 0

0 0 0 1
� span��1 � �1 ,�2 � �2�

W e1 � e1 � e2+e1 � e2 � e1+e2 � e1 � e1 �0 1 1 0

1 0 0 0
� span��1 � �1 ,��
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�3� W=� � C2=span�� � �1 ,� � �2�. In this case w1

=�11� � �1+�12� � �2 and w2=�21� � �1+�22� � �2,
where the matrix ��ij� has rank 2, since w1 and w2 are linear
independent �orthonormal, indeed�. Choose the ILO’s so that

F1
�1��v1� =

1


1
e1, F1

�1��v2� =
1


2
e2, �15a�

F2
�1� = �F2

�1��e1�F2
�1��e2�� = ��ij

* �−1, �15b�

F�1� = F2
�1�F1

�1�, �15c�

F�2���� = e1, �15d�

F�3���1� = e1, F�3���2� = e2. �15e�

Then the new coefficient matrix will be

C̄ = ��11
* �12

*

�21
* �22

* �−1�
1


1
0

0
1


2


�
1 0 0 0

0 
2 0 0
�

��
�11

* �12
* 0 0

�21
* �22

* 0 0

· · · ·

· · · ·

 = �1 0 0 0

0 1 0 0
� , �16�

which corresponds to the state e1 � e1 � e1+e2 � e1 � e2.
�4� W=C2 � �=span��1 � � ,�2 � ��. In this case w1

=�11�1 � �+�12�2 � � and w2=�21�1 � �+�22�2 � �,
where the matrix ��ij� has rank 2, since w1 and w2 are linear
independent �orthonormal, indeed�. Choose the ILO’s so that

F1
�1��v1� =

1


1
e1, F1

�1��v2� =
1


2
e2, �17a�

F2
�1� = �F2

�1��e1�F2
�1��e2�� = ��ij

* �−1, �17b�

F�1� = F2
�1�F1

�1�, �17c�

F�2���1� = e1, F�2���2� = e2, �17d�

F�3���� = e1. �17e�

Then the new coefficient matrix will be

C̄ = ��11
* �12

*

�21
* �22

* �−1�
1


1
0

0
1


2


�
1 0 0 0

0 
2 0 0
�

��
�11

* 0 �12
* 0

�21
* 0 �22

* 0

· · · ·

· · · ·

 = �1 0 0 0

0 0 1 0
� , �18�

which corresponds to the state e1 � e1 � e1+e2 � e2 � e1.

�5� W=span��1 � �1 ,�2 � �2�. In this case w1=�11�1

� �1+�12�2 � �2 and w2=�21�1 � �1+�22�2 � �2, where
the matrix ��ij� has rank 2, since w1 and w2 are linear inde-
pendent �orthonormal, indeed�. Choose the ILO’s so that

F1
�1��v1� =

1


1
e1, F1

�1��v2� =
1


2
e2, �19a�

F2
�1� = �F2

�1��e1�F2
�1��e2�� = ��ij

* �−1, �19b�

F�1� = F2
�1�F1

�1�, �19c�

F�2���1� = e1, F�2���2� = e2, �19d�

F�3���1� = e1, F�3���2� = e2. �19e�

Then the new coefficient matrix will be

C̄ = ��11
* �12

*

�21
* �22

* �−1�
1


1
0

0
1


2


�
1 0 0 0

0 
2 0 0
�

��
�11

* 0 0 �12
*

�21
* 0 0 �21

*

· · · ·

· · · ·

 = �1 0 0 0

0 0 0 1
� , �20�

which corresponds to the state e1 � e1 � e1+e2 � e2 � e2.
�6� W=span��1 � �1 ,��. In this notation, remember that

implicit is the assumption that only one product unit vector
can be found in W. In this case � can be chosen so that
�=�1 � �2+�2 � �1 �this is the statement in Proposition
III.2�. Thus the singular vectors can always be expressed
as w1=�11��1 � �2+�2 � �1�+�12�1 � �1 and w2=�21��1

� �2+�2 � �1�+�22�1 � �1, where the matrix ��ij� has rank
2, since w1 and w2 are linear independent �orthonormal, in-
deed�. Choose the ILO’s so that

F1
�1��v1� =

1


1
e1, F1

�1��v2� =
1


2
e2, �21a�

F2
�1� = �F2

�1��e1�F2
�1��e2�� = ��ij

* �−1, �21b�

F�1� = F2
�1�F1

�1�, �21c�

F�2���1� = e1, F�2���2� = e2, �21d�

F�3���1� = e1, F�3���2� = e2. �21e�

Then the new coefficient matrix will be
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C̄ = ��11
* �12

*

�21
* �22

* �−1�
1


1
0

0
1


2


�
1 0 0 0

0 
2 0 0
�

��
�12

* �11
* �11

* 0

�22
* �21

* �21
* 0

· · · ·

· · · ·

 = �0 1 1 0

1 0 0 0
� , �22�

which corresponds to the state e1 � e1 � e2+e1 � e2 � e1+e2
� e1 � e1.

Since there is no more options for the subspace W we
have already considered all possible alternatives.

�
In conclusion, we have found that there are six classes of

entanglement, named after Ref. �12� as 000, 0i1
�i2i3

+ , GHZ,
and W. The theorem also indicates how to practically classify
a given state �: compute the SVD of its coefficient matrix
and elucidate the structure of span�w1 ,w2�. We include a
further proposition comprising the practical implementation
of this result. We need to introduce the following definition.

Definition III.1. Let wj =e1 � wj1+e2 � wj2�C2 � C2 be an
arbitrary vector. We associate a two-dimensional matrix Wj
to wj by defining

Wj = �wj1wj2� . �23�

This definition will be mainly applied to the right singular
vectors of the coefficient matrix C. As usual, the singular
values of C will be denoted by 
k, in nonincreasing order,
and 
�A� denotes the spectrum of a matrix A. Our proposal
to implement the preceding result follows.

Theorem III.2. Let � denote the pure state of a tripartite
system and C�i� its coefficient matrix according to the parti-
tions i � jk �see Eqs. �10a�–�10c��. Then

�1� � belongs to the 000 class if and only if r�C�i��=1 for
all i=1,2 ,3.

�2� � belongs to the 01�23
+ class if and only if r�C�1��

=1 and r�C�k��=2 for k=2,3.
�3� � belongs to the 02�13

+ class if and only if r�C�2��
=1 and r�C�k��=2 for k=1,3.

�4� � belongs to the 03�12
+ class if and only if r�C�3��

=1 and r�C�k��=2 for k=1,2.
�5� � belongs to the GHZ class if and only if one of the

following situations occurs:
�i� r�C�i��=2 for all i=1,2 ,3 and r�W1�=r�W2�=1.
�ii� r�C�i��=2 for all i=1,2 ,3, r�W1�=2, r�W2�=1 and


�W1
−1W2� is non-degenerate.

�iii� r�C�i��=2 for all i=1,2 ,3, r�W2�=2, r�W1�=1 and

�W2

−1W1� is non-degenerate.
�iv� r�C�i��=2 for all i=1,2 ,3, r�W1�=2, r�W2�=2 and


�W1
−1W2� is non-degenerate.

�6� � belongs to the W class if and only if one of the
following situations occurs:

�i� r�C�i��=2 for all i=1,2 ,3, r�W1�=2, r�W2�=1, and

�W1

−1W2� is degenerate.

�ii� r�C�i��=2 for all i=1,2 ,3, r�W1�=1, r�W2�=2, and

�W2

−1W1� is degenerate.
�iii� r�C�i��=2 for all i=1,2 ,3, r�W1�=2, r�W2�=2,

and 
�W1
−1W2� is degenerate.

Proof. We will exclusively concentrate upon the suffi-
ciency, since the necessity directly follows from the canoni-
cal form of each class. The first four cases are elementary,
since it is a matter of detection of the vector which factor-
izes. The final two cases correspond to true tripartite en-
tangled states. If r�Wk�=1 for k=1,2, it is clear that there
exist two product vectors belonging to W, thus � belongs to
the GHZ class. If r�W1�=2 and r�W2�=1 we need to check
whether an ILO applied upon the first qubit can reduce the

rank of the transformed W̄1. As it can be deduced from the
preceding proofs, an ILO upon the first qubit amounts to
constructing a linear combination between the two right sin-

gular vectors, which is equivalent to find new matrices W̄j

=F1j
�1�W1+F2j

�1�W2, with j=1,2. If r�W1�=2, then by multiply-
ing this expression to the left by W1

−1, we have

F1j
�1�I + F2j

�1�W1
−1W2. �24�

It is immediate to realize that it is possible to reduce the
rank of W1 to 1 and to choose Fij

�1� such that F�1� is nonsin-
gular provided the spectrum of W1

−1W2 is nondegenerate, in
which case � belongs to the GHZ class. If the spectrum is
degenerate, thus both eigenvalues being null, no further re-
duction is possible and � belongs to the W class. The sym-
metric case runs along parallel lines.

Finally if r�W1�=r�W2�=2, reasoning along similar lines
if both eigenvalues of W1

−1W2 are equal, only one rank can be
reduced keeping the nonsingularity of F�1� and � belongs
again to the W class, whereas if the eigenvalues are different,
both ranks can be reduced to 1 keeping the nonsingularity of
F�1� and � belongs to the GHZ class.

�
As a final remark let us indicate how close, despite the

apparent differences in the approach, our analysis runs par-
allel to that performed in Ref. �12�: the ranges of the reduced
density operators are indeed generated by the corresponding
singular vectors, and the study of these ranges drove them
and has driven us to the same final result. The change of
method is motivated by the attempt to find a generalizable
criterion not using entanglement measures specifically built
upon the number of qubits of the system, such as the 3-tangle
�14�. With this approach it is not necessary to consider at any
stage the reduced density matrices and entanglement mea-
sures upon them. A strongly related approach can be found in
Refs. �35,36�.

IV. GENERALIZATIONS „NÐ4…

The generalization of the preceding approach to pure
states of arbitrary multipartite systems is twofolded. On one
hand, the generalization to multiqubit states can be imple-
mented inductively.

Theorem IV.1. If the entanglement classes under SLOCC
are known for N qubits, the corresponding entanglement
classes for N+1 qubits are also known.
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Proof. We proceed by induction. We have proved in pre-
ceding sections that this statement is true for N=2 and have
explicitly found the entanglement classes for N=3. For a
given �N+1�-qubit system, write the coefficient matrix
C1�2¯N+1�C. Because of the induction hypothesis one
knows in advance the classification of the right singular sub-
spaces of C according to W=span��i� if dim W=1 and
W=span��i ,� j� if dim W=2, where each �i and � j belong
to one �possibly the same� of the entanglement classes of N
qubits. Choose the ILO’s F�2� � ¯ � F�N+1� so that the two

first columns of W̄ �the transformed right singular vectors�
are expressed as linear combinations of the canonical vectors
of the entanglement classes corresponding to the structure of

W and choose the ILO F�1� so that V̄�W̄† drops out as many
non-null entries as possible �typically F�1� will be the inverse
of a rank-two submatrix of W†�. The result is the canonical
matrix for an entanglement class of N+1 qubits.

�
There is an important remark in the preceding inductive

construction, already stated in Ref. �12� and explicitly shown
in Ref. �13�: there will be a continuous range of states with a
similar right singular subspace but with no ILO’s connecting
them. Let us illustrate this peculiar fact with an explicit ex-
ample. When considering four-partite entanglement, there
will exist 45 a priori structures of the right singular subspace
of the coefficient matrix, arising from six possible one-
dimensional right singular subspaces W=span���, where �
belongs to one of the six entanglement classes of N=3, times
four possible sites for the fourth added qubit, plus 21 pos-
sible bidimensional right singular subspaces W

=span��1 ,�2�, corresponding to the � 6+2−1
2

� ways to choose
the classes for N=3 which �1 and �2 belong to. An example
will be W=span�000,GHZ�, with the already convention
that only one product vector and no 0i� jk belongs to W, i.e.,

W=span��1 � �1 � �1 ,�2 � �2 � �2+ �̄2 � �̄2 � �̄2�, where

the vectors with¯ are pairwise linearly independent. In order
to only have one product vector and the rest being GHZ
vectors, we must have �37� �up to permutations� W

=span�� � �̄ � �� ,� � � � �+ �̄ � �̄ � �̄�, with ���� , �̄.
Recalling that

w1 = �11� � �̄ � �� + �12�� � � � � + �̄ � �̄ � �̄� ,

�25a�

w2 = �21� � �̄ � �� + �22�� � � � � + �̄ � �̄ � �̄� ,

�25b�

where the matrix ��ij��� �11 �12

�21 �22
� will be non-singular, it is

immediate to find ILO’s F�2� ,F�3� ,F�4� such that

F�2�
� F�3�

� F�4��w1� = �11e1 � e2 � � + �12�e1 � e1 � e1

+ e2 � e2 � e2� , �26a�

F�2�
� F�3�

� F�4��w2� = �21e1 � e2 � � + �22�e1 � e1 � e1

+ e2 � e2 � e2� �26b�

which corresponds to a coefficient matrix given by

C̄ = V̄��
�12

* 0 �11
* �1

* �11
* �2

* 0 0 0 �12
*

�22
* 0 �21

* �1
* �21

* �2
* 0 0 0 �22

*

· · · · · · · ·

] ] ] ] ] ] ] ]

· · · · · · · ·



8�8

,

�27�

where the coefficients �i corresponds to the coordinates of
the transformed �� in the canonical basis. Choosing F�1� so
that

V̄� = ��ij
* �−1, �28�

we arrive at

C̄ = �0 0 �1
* �2

* 0 0 0 0

1 0 0 0 0 0 0 1
� , �29�

which corresponds to the canonical vector

e1 � e1 � e2 � �* + e2 � e1 � e1 � e1

+ e2 � e2 � e2 � e2 ��* � e1,e2�

= �001�*	 + �1000	 + �1111	 ���*	 � �0	, �1	� . �30�

Thus, different � will yield different entanglement classes
under nonsingular local operators F�1� � ¯ � F�N�. Notice
that this vector belongs neither to the GHZ4 class nor to the
W4 class nor to the �4 class �containing the cluster state of
four qubits—see below�. It is a peculiar feature that two
infinitesimally close states could belong to distinct entangle-
ment classes, so a deeper elucidation of this point is on due
and will be carried out also elsewhere. For the time being,
we will agree on attributing all states reducible to Eq. �30� by
ILO’s F�1� � ¯ � F�4�, independently of the particular vector
�, the same entanglement properties under SLOCC and
analogously for arbitrary N-partite multiqubit systems.

This allows us to find an upper bound for the number of
genuine �N+1�-partite entanglement classes. First, notice
that, e.g., the right singular subspace W=span�000,000� in
the four-partite case actually contains structures with differ-
ent properties, namely �38�, W=� � � � C2 �and permuta-
tions�, W=span�� � �1 � �1 ,� � �2 � �2� �and permuta-
tions�, and W=span��1 � �1 � �1 ,�2 � �2 � �2�. All of them
drives us to at least one factor qubit in the final canonical
state, except one, that is, there will correspond one right
singular subspace structure span��1 ,�2� to each genuine
�N+1�-entanglement class. This is rigorously proved in the
following.

Proposition IV.1. Let WN be the right singular subspace of
the coefficient matrix in an arbitrary product basis of an
N-qubit pure state. If WN is supported in a product space
WN=� � WN−1, then the state belongs to a product class
02�, where � denotes a class of �N−1�-partite entangle-
ment.

Proof. Under the above assumption, wj =� � w̄j, j=1,2,
with ��C2 and w̄j �C2�N−2�. We can always find an ILO F�2�

such that

w̄j → e1 � ŵj , �31�
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where also ŵj �C2�N−2�, hence W̄N=E11 � W̄N−1, where E11
denotes the Weyl matrix E11= �e1	�e1�. Since we can always
write �N=E11 � �N−1, the coefficient matrix can always be
written as

C̄N = V̄�NW̄† = V̄�E11 � aN−1��E11 � W̄N−1�†

= E11 � �V̄�N−1W̄N−1
† � . �32�

The remaining ILO’s F�1� and F�j�, j�2, can always be
chosen so that

C̄N = E11 � C̄N−1, �33�

where C̄N−1 denotes a canonical matrix of an �N−1�-partite
entanglement class. This proves that the second qubit factor-
izes, as the reader may check. �

With appropriate permutations, this result applies to any
qubit. If we denote by M�N� the number of N-partite en-
tanglement classes, there will be at most

�M�N� + 2 − 1

2
� =

1

2
�M�N� + 1�M�N� �34�

genuine entanglement classes for N+1 qubits. In addition,
the number of degenerate �N+1�-entanglement classes will
be at most �N+1��M�N� �corresponding to the N+1 pos-
sible factor positions which the �N+1�th qubit can occupy�,
thus the following.

Corollary IV.1. Let M�N� denote the number of N-partite
entanglement classes under SLOCC. Then

M�N + 1� �
1

2
M�N��M�N� + 2N + 3� . �35�

The equality will be in general unattainable, since, as in the
case of tripartite entanglement, only a few distinct true en-
tanglement classes exist, coming out from the only actually
different structures which the right singular subspace can
adopt �only two in the case of tripartite systems; see propo-
sition III.1�.

Let us call the reader’s attention to the fact that these
results allow us to view all state space of N qubits divided
into blocks, each one parametrized by a right singular sub-
space structure and corresponding to our broad-sense en-
tanglement classes, and within which the difference between
states stems from a �possibly several� continuous parameter.
The number of these blocks for N+1 qubits is upperly
bounded by the recursive relation �35�.

Another benefit of the present approach arises when de-
ciding whether two states belong to the same entanglement
class or not. This is stated as a corollary.

Corollary IV.2. Let � ,�� �C2��N. Let W� and W� be
their respective right singular subspaces. Then a necessary
and sufficient condition for � ,� to belong to the same
broad-sense entanglement class under SLOCC is that W�

and W� have the same structure, i.e., that they are generated
by entanglement-equivalent vectors.

Proof. The result follows immediately both from con-
struction and from the convention on the definition of the
broad-sense entanglement classes. �

As an example, let us include a one-line proof that the
four-qubit GHZ state �GHZ4	� 1

�2
��0000	+ �1111	� and the

cluster state ��4	� 1
2 ��0000	+ �0011	+ �1100	− �1111	� �39�

do not belong to the same class �40�. Their respective right
singular subspaces are WGHZ4

=span�e1 � e1 � e1 ,e2 � e2

� e2� and W�4
=span�e1 � �+ ,e2 � �−�, where �± denote

two-qubit Bell states. It is immediate to conclude that they
are different, since none ej � ej � ej belong to W�4

�write the
coefficient matrix of a generic vector in W�4

in terms of two
coordinates � and 
 and check that it is impossible to choose
the latter so that the matrix corresponds to ej � ej � ej�. These
states belong to the respective so-called �41� GHZ4 and �4
classes, characterized by the above right singular subspaces.

On the other hand, to find a wider generalization one can
focus upon arbitrary dimensional entangled systems. The
general theme is still the same, with the important exception
that the dimension of the right singular subspace can grow
up to the dimension of the Hilbert space of the first sub-
system. Thus the analysis of the possible structures which W

may adopt is now much more complex.
We include as an illustrative immediate example the

analysis of all entanglement classes under SLOCC of any
bipartite �N1�N2�-dimensional system: there exist
min�N1 ,N2� entanglement classes, which can be denoted as
00��1

+, �2
+, �3

+, . . ., �min�N1,N2�
+ , whose canonical states will

elementarily be 
i=1
k ei � ei, for each class �k

+. They corre-
spond to canonical matrices given by 
i=1

k �ei
�N1�	�ei

�N2��, so
that we can state the following

Theorem IV.2. Let ��CN1 � CN2 be the pure state of a
bipartite quantum system with coefficient matrix in an arbi-
trary product basis denoted by C���. Then � belongs to the
�k

+ class, k=1,2 , . . . ,min�N1 ,N2�, if and only if r(C���)
=k=dimV=dimW.

Proof. Let V=span��k�k=1,¯,n�min�N1,N2� and W

=span��k�k=1,¯,n�min�N1,N2�. Choose F�1� and F�2� so that

F�1���k� =
1


k
ek, �36�

F�2���k� = ek. �37�

Then the coefficient matrix �in blocks� will turn out to be

C̄ = � In 0N2−n

0N1−n 0N1−n,N2−n
� . �38�

�
For more general cases, the difference stems solely in the

higher computational complexity.

V. CONCLUSIONS

We have developed a recursive inductive criterion to clas-
sify entanglement under SLOCC in multipartite systems in
pure states which allows one to find the entanglement classes
for N+1 qubits provided this classification is known for N
qubits. The method rests on the analysis of the right singular
subspace of their coefficient matrix, which is chosen accord-
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ing to the partition 1 �2, . . . ,N, hence a 2�2N−1 rectangular
matrix. Then one must elucidate the classification of the one-
and two-dimensional right singular subspaces according to
the entanglement classes which their generators belong to.
As a consequence, this construction reveals a systematic way
to detect the entanglement class of a given state without re-
sorting to quantitative measures of entanglement. In
arbitrary-dimensional generalizations, the same scheme must
be followed with the exception that the dimension of the
right singular subspaces is higher and their structure now
depends on several generators.

For N�4 it has been showed that within each right sin-
gular subspace structure, there could exist a continuous in-
finity of states not connected through invertible local opera-
tors. Additionally, up to this continuous degree of freedom
within each right singular subspace structure, we have found
an upper bound for the number of classes on N+1 qubits in
terms of the number of classes of N qubits.

As a final remark, let us conjecture that a possible con-
nection with the MPS formalism is probable to exist. In this
formalism �see �24� and multiple references therein� any pure
state is written as

� = 

i1¯iN

tr�A1
�i1�

¯ AN
�iN��ei1

� . . . � eiN
,

so that adjoining a further �N+1�-th qubit amounts to adjoin-
ing a further AN+1

�iN+1� matrix in the trace giving the coefficients.
In the analysis carried out above, this last added qubit is
equivalent to increase the dimension of the right singular
subspace dimWN→dimWN+1=2�dimWN. Our conjecture
is that the structure of WN should be read from the properties
of the N matrices Ak

�ik�, so that the succession of structures of
WN should run parallel to that of the matrices A1

�i1� , . . . ,AN
�iN�.
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APPENDIX: THE SINGULAR VALUE DECOMPOSITION

We include the relevant properties of the SVD of an arbi-
trary matrix and suggest the interested reader to consult, e.g.,
�Ref. �42�� for a comprehensive analysis of this decomposi-
tion with the corresponding proofs. The set of m�n complex
matrices will be denoted as usual by Mm,n�C��Mm,n and
the group of unitary matrices of dimension k will be denoted
by U�k�. The main result can be stated as follows.

Theorem A.1. (singular value decomposition). Let Q
�Mm,n. Then Q can always be decomposed as

Q = V�W†, �A1�

where V�U�m�, W�U�n� and ��Mm,n is a diagonal ma-
trix with non-negative entries, i.e., �ij =
i�ij, with i
=1, . . . ,m, j=1, . . . ,n, and 
k�0 for all k.

The columns of V and W and the positive entries of �
receive a special name.

Definition A.1. The columns of V= �v1 ,v2 , . . . ,vm� �re-
spectively, W= �w1 ,w2 , . . . ,wn�� are the left �right� singular
vectors of Q. The positive entries of � are the singular values
of Q.

Notice that with this definition any m�n dimensional ma-
trix will have m left singular vectors and n right singular
vectors; since the relevant singular vectors will be those as-
sociated to non-null singular values, we agree, as usual, on
referring as singular vectors only to the latter, i.e., to those vk
and wk for which 
k�0. Another common convention is the
decreasing order of the singular values in the diagonal of �:

1�
2� . . . �0.

The singular vectors are highly nonunique or equivalently

there always exist another unitary matrices V̂ and Ŵ such

that Q= V̂�Ŵ†, where these unitary matrices depend of the
former V and W and the multiplicities of each singular value
�42�. However, this fact has not been exploited in the text.

One of the main consequences of the SVD is that the rank
of a given matrix Q coincides with the rank of �, i.e., with
the number of positive singular values, which, in turn, coin-
cides with the dimension of the subspace generated by the
left �or right� singular vectors. This is the basis to the analy-
sis of entanglement of a pure state upon its coefficient matrix
in a product basis performed in the text.
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