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We consider the effects of decoherence on Landau-Zener crossings encountered in a large-scale adiabatic-
quantum-computing setup. We analyze the dependence of the success probability—i.e., the probability for the
system to end up in its new ground state—on the noise amplitude and correlation time. We determine the
optimal sweep rate that is required to maximize the success probability. We then discuss the scaling of
decoherence effects with increasing system size. We find that those effects can be important for large systems,
even if they are small for each of the small building blocks.
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I. INTRODUCTION

The promise of enormous levels of speed up over classi-
cal computing algorithms has stimulated research in the field
of quantum information processing, especially after the dis-
covery of a variety of concrete algorithms, including the fac-
toring and search algorithms �1�. In the commonly studied
approach, to which we shall refer as sequential quantum
computing �SQC�, the calculation is performed using a se-
quence of predesigned unitary operations on the quantum
state of the system. An alternative to SQC was proposed a
few years ago: namely, adiabatic quantum computing �AQC�
�2,3�. The main motivation for pursuing AQC is the idea that
certain calculations could be performed with speeds compa-
rable to those obtainable with SQC using a drastically differ-
ent approach that avoids some of the difficulties associated
with SQC.

Calculations in AQC are performed as follows: one takes
a given quantum system and sets the external parameters
such that the system is guaranteed to relax to its ground state.
One then slowly varies those external parameters until the
desired final set of parameters is reached. The result of the
calculation is then encoded in the final quantum state, which
should be the ground state of the Hamiltonian at the end of
the process. During this adiabatic variation of parameters, a
large number of avoided level crossings are encountered and
the physics of Landau-Zener �LZ� transitions applies �4,5�.
The LZ formula, which will be given below, states that if the
time taken to sweep across an avoided crossing is long com-
pared to the inverse of the gap in that crossing �we take �
=1�, the system remains in its ground state with a high de-
gree of certainty.

The fact that in AQC the system remains in its ground
state suggests, at least at first sight, that AQC is robust
against decoherence �6,7�. In fact, that robustness is gener-
ally thought of as being the single major advantage over
SQC. Recently it has been argued, however, that decoher-
ence does set limitations on AQC �7–9�. In particular, if the
passage from the initial to the final state is done too slowly,
the success probability of the algorithm will be reduced from
the maximum obtainable value. In this paper we analyze the
optimal implementation of an AQC algorithm in the presence
of a noise source. We also discuss how decoherence effects

increase in importance with increasing system size. We show
that decoherence considerations can play a major role in de-
termining the optimal operation conditions of a scalable
AQC setup.

This paper is organized as follows: In Sec. II we present
the basic LZ problem. In Sec. III we briefly comment on the
question of the scaling of the minimum gap with system size.
In Sec. IV we identify the different regimes of robustness of
AQC against decoherence and we analyze the optimal opera-
tion conditions for a prototypical AQC algorithm in the pres-
ence of decoherence. In Sec. V we discuss the scaling of
decoherence effects with system size. Section VI presents
some concluding remarks.

II. LANDAU-ZENER PROBLEM WITHOUT
DECOHERENCE

We start our discussion by introducing a prototypical ex-
ample of an AQC algorithm: namely, the basic LZ problem.
We therefore consider a two-state system, and we use spin-
1 /2 language, where the two states are called �↑� and �↓�. In
the absence of coupling to the environment, we take the
time-dependent Hamiltonian

Ĥ�t� = −
�

2
�̂x −

vt

2
�̂z, �1�

where � /2 is the tunneling matrix element between the states
�↑� and �↓�, v is the sweep rate of the energy bias between the
two states, and �̂� are the Pauli spin matrices. The instanta-
neous �i.e., adiabatic� two-level energy spectrum as a func-
tion of vt is schematically shown in the inset of Fig. 1. Note
that the ground state and the excited state at the degeneracy
point �given by vt=0� are, with the proper phase definitions,
the symmetric and antisymmetric superpositions of the
eigenstates evaluated very far from the degeneracy point. If
the system is initially in its ground state at t→−�, the prob-
ability for the system to end up in its new ground state at t
→� is given by �4�

PLZ = 1 − exp�−
��2

2v
� . �2�

In particular, if the system crosses the degeneracy region
extremely slowly �v→0�, the system is guaranteed to end up
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in the new ground state. From now on, we shall refer to the
probability that the system ends up in the new ground state
as the success probability, since that situation represents a
successful run of this prototypical AQC algorithm.

III. SCALING OF THE MINIMUM GAP
WITH SYSTEM SIZE

Before going into any details regarding decoherence, it is
worth mentioning here one of the most relevant open ques-
tions in the study of AQC: namely, the dependence of the
minimum gap between the ground state and first-excited
state on the system size �10�. Since the size of that gap sets
an upper bound on the allowed sweep rate, an increasingly
small gap could deem an AQC algorithm ineffective to solve
a given problem, especially in the case of an exponentially
decreasing gap. Although that scenario would also make the
algorithm more susceptible to decoherence, the scaling of the
gap is not directly related to the present discussion. We shall
therefore not dwell upon that question in this paper, and we
shall leave any dependence of the minimum gap on system
size implicit. Incorporating a given dependence into our re-
sults can be done straightforwardly.

IV. LANDAU-ZENER PROBLEM WITH DECOHERENCE
Let us start by presenting an argument that is sometimes

used to suggest robustness of AQC against decoherence. We
divide the noise effects into high-frequency and low-
frequency contributions. High-frequency noise is responsible
for relaxation processes �i.e., transitions between different

energy levels�, whereas low-frequency noise is responsible
for dephasing processes. If we assume that the temperature is
lower than the minimum gap encountered while running the
algorithm �12�, the excitation rate will always be small in
comparison to the deexcitation rate and the system will relax
to the new ground state at the end of every LZ crossing if
necessary. High-frequency noise can therefore be neglected.
Now, since the system is always in an eigenstate of the
Hamiltonian—namely, the ground state—dephasing is irrel-
evant. Low-frequency noise, which describes dephasing pro-
cesses, can therefore be neglected as well. One would there-
fore conclude that AQC is robust against decoherence.

Given that the above argument gives strong support to
AQC over SQC, we now discuss in some detail its applica-
bility in different possible situations. An important point to
note here is that the argument implicitly uses perturbation-
theory results regarding relaxation and dephasing processes.
That approach is valid only when the noise amplitude is
small compared to the qubit energy scales. In particular, if
the assumption of small amplitudes in the noise signal is
abandoned, the argument breaks down. As we shall discuss
in Sec. V, this breakdown seems to be the case for a scalable
AQC system. Furthermore, relaxation between macroscopi-
cally distinct quantum states after the LZ crossing should be
negligible.

A number of different approaches have been used to study
the effects of decoherence on the LZ transition probability
�9,14–17�. Although those approaches are based on different
underlying assumptions, they all produce similar qualitative
results �note that they have different predictions regarding
certain details�. In particular, all of them predict the possibil-
ity of having a maximum in the success probability as a
function of sweep rate �see Fig. 1�.

Since we shall treat a number of qualitatively different
cases, it would be difficult to use a single model to describe
the effects of the environment on the success probability. We
shall therefore use two different models: one with a classical
noise signal and one with an environment of quantum
modes. In addition, we shall use thermodynamics principles
when necessary.

Before analyzing the effects of the environment on the
system dynamics, we must specify the system operator in-
volved in the system-environment coupling. In the simple
two-level problem that we are considering, that operator
must be one, or a combination, of the Pauli matrices, assum-
ing the coupling is described by a product of a system op-
erator and an environment operator. We note that away from
the crossing region coupling through the operator �̂z only
causes dephasing, whereas coupling through the operators �̂x
and �̂y causes relaxation. In a macroscopic system, relax-
ation processes between macroscopic states are generally ex-
ponentially small. We therefore approach the problem at
hand by taking the system introduced in Sec. II and adding a
decoherence term that couples to the system through the op-
erator �̂z. Although in general more complex models �i.e.,
many-level models� must be used to obtain a more detailed
description of the effects of noise on a large AQC system, the
arguments given below provide an initial understanding of
some of the main mechanisms involved in the problem.
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FIG. 1. Success probability P—i.e., the probability to end up in
the new ground state after a Landau-Zener crossing—as a function
of �2 /v, where � is twice the tunneling matrix element and v is the
energy-bias sweep rate. The solid line corresponds to the case of
no decoherence. The dashed lines correspond to the case of inter-
mediate levels of decoherence �essentially using the classical-noise
model�; the curves were obtained following Ref. �14� with dephas-
ing rate �2�t→ ±��=� /200, � /20, and � /5. The dotted line cor-
responds to the limit of infinitely strong decoherence. Inset: sche-
matic view of the instantaneous two-level energy spectrum as a
function of the energy bias vt.
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Classifying the noise according to amplitude and correla-
tion time. We divide our discussion into four cases, deter-
mined by the following procedure: we take a noise signal
with characteristic amplitude A �in energy units� and corre-
lation time �. We note that the power spectrum of the noise
signal would be characterized by a �maximum� frequency
	max that is related to the correlation time � by 	max	1/�.
The noise spectrum is then of order A2 /	max up to frequency
	max and decreases to zero at higher frequencies. Note also
that if the noise signal has a non-zero average value, we
define A as the deviation from that average value. Depending
on whether A is smaller or larger than the gap �, the noise is
characterized as low- or high-amplitude noise. Similarly, de-
pending on the relation between 	max and �, the noise is
characterized as having short or long correlation time.

1. Low-amplitude noise with short correlation time

We start with this case because it allows the use of the
simple perturbation-theory results mentioned above. We fo-
cus on relaxation processes, because pure dephasing pro-
cesses cannot have a larger effect than relaxation processes
�note that relaxation dynamics automatically contains
dephasing�, and therefore including those cannot change the
qualitative results we shall give below. We also neglect de-
excitation processes for a moment. Away from the degen-
eracy region, the transition rate from the ground state to the
excited state is negligible because the noise couples to the
system through the operator �̂z, which is almost parallel to
the system Hamiltonian. We therefore focus on the dynamics
when the system is close to the degeneracy point. Since the
noise power spectrum extends to frequencies higher than �,
one finds the excitation rate from the ground state to the
excited state around the degeneracy point to be

�0→1 

A2

	max
, �3�

which is essentially the noise power spectrum at the transi-
tion frequency. One therefore straightforwardly finds that the
time spent traversing the LZ crossing must be shorter than
1/�0→1
	max/A2 if the noise effects are to be minimized.
Combined with the condition that the traversal time must be
larger than 1/�, one can determine the ideal range of sweep
rates for optimal AQC operation. If we take the noise-
induced excitation probability to be

Pexcited by noise 

A2�

	maxv
�4�

and the LZ transition probability to be

Pexcited by LZ 
 exp�−
��2

2v
� , �5�

and we minimize the sum of those two terms, we find that
the optimal value of v is roughly given by

voptimal 

�2

ln�	max�/A2�
. �6�

Similarly, one can estimate that the maximum achievable
success probability will be 1− Pfailure, with

Pfailure 

A2

	max�
. �7�

Note that the optimal sweep rate voptimal depends logarithmi-
cally on the noise amplitude. That result implies that voptimal
can be only a few times smaller than �2 even if the noise
power spectrum is orders of magnitude smaller than �.

We note here that if one is considering the case where the
temperature kBT is smaller than the gap �, the excitation rate
will be smaller than the deexcitation rate by a factor of
exp�−� /kBT� and the thermal-equilibrium occupation prob-
ability of the excited state is given by 1/ �1+exp�� /kBT��.
Therefore the above results apply only if the expression in
Eq. �7� is smaller than the thermal-equilibrium occupation
probability. Otherwise, one must take the deexcitation rate
into account. One then finds that the maximum obtainable
success probability is given by the thermal-equilibrium value
1/ �1+exp�−� /kBT��, and it is achieved using a slow sweep
such that thermal equilibrium is reached.

2. Low-amplitude noise with long correlation time

Since the noise amplitude is small, one can still think of
the noise effects in terms of the transition rate from the
ground state to the excited state. The transition rate in this
case can be thought of as a high-order process �13�. Thinking
of the noise as a harmonic-oscillator bath, we find that an
nth-order process is required to excite the two-level system,
with n=Int�� /	max�+1, and the function Int�x� gives the
highest integer smaller than x. For a more concrete visual-
ization, one can think of a photon bath, such that the sum of
n photon energies is required to excite the system from the
ground state to the excited state. The transition rate is there-
fore

�0→1 

A2

	max

A

�
�2n−1

. �8�

The above expression for the excitation rate suggests that for
the noise-driven excitation probability to be negligible the
time taken to traverse the LZ crossing must be smaller than
1/�0→1
�	max/A2��A /��1−2n. Given that A is smaller than
�, the upper bound on crossing time above is much larger
than 1/�. This case is therefore the ideal case for performing
AQC, allowing a high success probability when a small
sweep rate is used. An estimate of the optimal sweep rate and
the maximum achievable success probability can be obtained
similarly to what was done in Sec. IV 1. In this case one
finds

voptimal 

�2

ln�	max�
2n/A2n+1�

, �9�

Pfailure 

A2

	max�

A

�
�2n−1

. �10�

Note that the characteristic noise frequency 	max cannot
be larger than the temperature kBT, so that the lowest pos-
sible value of n is roughly
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nmin 
 Int
 �

kBT
� . �11�

Note also that if the expression for Pfailure above is larger
than 1/�1
exp�−� /kBT��, the optimal approach would be a
slow sweep such that thermal equilibrium is reached during
the crossing.

3. High-amplitude noise with long correlation time

We now take a slowly varying classical noise signal with
an amplitude larger than � �note that the slowness is deter-
mined by comparison to the inverse of the gap�. We also take
the system to be biased close to or at the degeneracy point.
Since the amplitude of the noise signal is larger than the gap,
one cannot use perturbation-theory results to describe transi-
tions between the different eigenstates. Instead, one can now
think of the noise signal as repeatedly driving LZ crossings,
with noise-driven sweep rate

venv 

A

�

 A	max. �12�

The LZ transition probability �1− PLZ, with PLZ given by Eq.
�2�� with sweep rate venv is therefore not necessarily small,
even if 	max is much smaller than the gap. In particular, the
transition probability in an environment-induced LZ crossing
is �very roughly� given by

Pexcited by env-ind LZ 
 exp�−
��2�

2A
� . �13�

Given enough time, the system will therefore reach a state
where both eigenstates have equal occupation probabilities.
However, because of the exponential dependence of the tran-
sition probability on the noise parameter, one can say that if
the condition ��2� /2A�1 is satisfied, the environment-
induced LZ transition probability will be small enough that a
high success rate is always achievable with a properly cho-
sen value of v. The above criterion therefore provides the
condition for high-amplitude noise to have a negligible effect
on the success probability.

One might now raise the following possibility: taking a
LZ situation where the parameters are swept across the de-
generacy region, one can estimate that the number of noise-
driven crossings is of the order of A /v�. Therefore, if the
sweep rate v is substantially larger than A /�, no
environment-driven crossings will occur, suggesting that it
might be possible to avoid environment-driven LZ transi-
tions even if the condition ��2� /2A�1 is not satisfied. It is
straightforward to verify, however, that in order to do so one
would require a value of v larger than �2. That situation
would result in a high bias-driven LZ transition probability
and, therefore, a low success probability.

4. High-amplitude noise with short correlation time

In this case one can follow the above arguments for the
high-amplitude, low-frequency noise. Using the expressions
of Sec. IV 3, one immediately finds the intuitively obvious
result that the success probability is 50% for low sweep rates

and is smaller than that value for fast sweep rates �see the
dotted line in Fig. 1�. Note that the value 50% describes the
case where the two eigenstates have equal occupation prob-
abilities at the end of the process. Note also that since we
have in mind macroscopic states, we neglect the possibility
that the system could relax to the ground state long after the
LZ crossing.

V. SCALABLE SYSTEM

We now turn to the question of how decoherence effects
scale with system size in an AQC setting with a large number
N of qubits �we use the typical picture of two-state qubits�.

We have discussed in Sec. IV that for large-amplitude
noise one must think of different decoherence mechanisms
than the usual perturbation-theory relaxation and dephasing
mechanisms. We therefore consider the question of how the
noise amplitude scales with system size �12�. In relation to
that discussion, it is useful to classify LZ crossings according
to the number of qubits that change their state during the
transition. That criterion is related to, but clearly distinct
from, the question of quantifying how macroscopic a quan-
tum state is. There has not been any unambiguous and uni-
versally accepted formulation of such a quantity. Following
Ref. �18� we use a commonsense definition rather than trying
to formulate an operational one, which seems to be a formi-
dable task. The definition is then relatively simple: a given
LZ crossing can be referred to as an M-qubit crossing if M
qubits change their state with the other qubits in the system
experiencing negligible changes. We can then speak of few-
qubit and many-qubit crossings. The former refers to LZ
crossings of the N-qubit system where only a few �say, up to
4� qubits change their state, even if the total number of qu-
bits in the system is macroscopic. The other type of LZ
crossings that can occur during the operation of an algorithm
are many-qubit crossings. In those crossings the number of
qubits that change their state is of order N.

In order to demonstrate the above-mentioned distinction
between classifying quantum states and classifying LZ cross-
ings, take the plausible scenario of AQC where one starts
with a quantum state that contains negligible multiqubit en-
tanglement and reaches a quantum superposition of macro-
scopically distinct states during the calculation. Although the
quantum state becomes a macroscopic one, it is not neces-
sarily the case that any many-qubit crossings must have been
encountered �think for example of a macroscopic quantum
state generated by repeatedly performing two-qubit CNOT
gates�. One should also note that even if the system is in a
superposition of macroscopically distinct states, it can still
undergo few-qubit LZ transitions. Those transitions would
most likely occur in one or some of the branches correspond-
ing to the different macroscopic states.

We now take an M-qubit LZ crossing. The size of the
degeneracy region is of the order of the gap �. In a system
with a large number of degrees of freedom, one can still say
that the crossing region is defined by being within distance
�in units of bias parameters� � in the relevant M directions
from the degeneracy point—i.e., the point where the gap
takes its smallest value along the path of the AQC algorithm.
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If the noise signal on a single qubit moves the system
away from the bias point by a distance of order �, the sum of
the noise signals acting on the M qubits moves the system
away from the bias point by a distance of order �M�. We
now take a system at or near the degeneracy point. If the
total deviation caused by the noise is smaller than the width
of the crossing region, which is of the order of �, we can use
the arguments of Sec. IV to say that low-frequency noise can
be neglected in the sense that it cannot excite the system
from its ground state.

In the opposite case—i.e., when the amplitude of the total
noise signal is larger than �—one has to worry about
environment-driven LZ transitions. Using the results of Sec.
IV, we find that a rough estimate of the probability for the
system to be excited from its ground state during a single
typical �environment-driven� crossing is given by

Pexcited by env-ind LZ 
 exp�−
��2�

2�M�
� . �14�

Note that the exponential dependence of the excitation prob-
ability on the noise signal means that the above expression
should be thought of as an optimistic estimate; the true ex-
citation probability will probably be higher, depending on the
temporal behavior of the noise signal. Using the results of
Sec. IV, the criterion on the tolerable single-qubit noise can
now be given by

� 

�2�

�M
. �15�

The probability that the noise signal will excite the system
out of its ground state therefore depends on the typical value
of M characterizing the LZ crossings that are encountered
during the algorithm. Given the scaling of the excitation
probability with M, it is highly desirable to follow a path in
the many-dimensional parameter space such that many-qubit
LZ crossings are avoided. This principle can therefore re-
main as a major consideration in designing AQC algorithms,
even if the minimum-gap problem discussed in Sec. III is
solved.

It is not clear whether in a general AQC problem a path
that avoids all many-qubit LZ crossings exists. The
3-satisfiability �3-SAT� problem, which is a commonly stud-
ied potential application of AQC �19�, provides an example
where it seems impossible to find such a path. In that prob-
lem one looks for a classical state of the qubits such that a
large number of 3-qubit logical conditions are satisfied—e.g.,
the Boolean condition “�qubit 5 and qubit 24� or qubit 57.”
In the plausible scenario where one configuration satisfies all
the logical conditions but a large number of other, macro-
scopically distinct configurations violate only a few condi-
tions, a quantum superposition involving a large number of
macroscopically distinct configurations must be retained un-
til near the end of the calculation, as they are eliminated
slowly with the testing of more and more conditions. At that
point it would require a many-qubit LZ crossing to eliminate

those last surviving near-solutions in favor of the unique so-
lution of the problem. The 3-SAT problem therefore appears
to be one where decoherence can be a major obstacle. The
fact that the path of an AQC algorithm is designed without
knowing the quantum state that will exist at each point in the
algorithm raises similar doubts about the possibility of a pri-
ori guessing the best path to follow in a general problem.

The above arguments therefore raise questions that must
be answered in designing an AQC approach in a macroscopic
setup. Until those questions are answered, it is not clear to
what extent AQC is less susceptible to noise than SQC, es-
pecially given the condition that we found above requiring
the noise signal to decrease with increasing system size �12�.

Even if achieving the ground state is not possible—e.g.,
because of decoherence or a small minimum gap—a recent
promising proposal notes that finding a near-solution can,
under certain conditions, be considered a success of the al-
gorithm �20�. Because a high success probability �in the
sense of Sec. II� is not required, that approach could be more
robust against decoherence.

It is also worth noting here that we have used the simple
model of a two-state LZ problem, which represents a proto-
typical AQC algorithm. The number of degrees of freedom in
a large AQC setup increases with system size. More complex
models will be required in order to both analyze the effects
of noise and determine the optimal path in those many-
dimensional problems. Reaching a better understanding of
the structure of the energy manifolds in these many-
dimensional systems is therefore highly desirable.

VI. CONCLUSION

We have analyzed the effects of noise on a prototypical
AQC algorithm: namely, the LZ problem. We have found
general principles that determine the robustness of the algo-
rithm against noise sources with a variety of properties ac-
cording to their amplitude and correlation times. We have
also determined the ideal operation conditions that are re-
quired to maximize the success probability, and we have ana-
lyzed the scaling of noise effects with system size. Our re-
sults provide guidelines for the optimal implementation of an
AQC algorithm and raise questions that must be answered
before determining the suitability of AQC to tackle a given
problem. Given the promise of AQC as an alternative ap-
proach to achieve extremely high-speed computation, we be-
lieve that our results will contribute to a better understanding
of that approach, towards which initial experimental steps
have already been taken �21,22�.
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