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We present a theoretical analysis of spin-entanglement between a photoelectron and an Auger electron
sequentially ejected from an atom �say, A� following the absorption of a single photon. Entanglement, both
without and with spin-orbit interaction has been analyzed. In the former case, entanglement in a photo-Auger
electron pair is generated only by the electrostatic Coulomb forces inside an atom and completely characterized
merely by the multiplicities of the electronic states of A, A+*

, A2+ participating in the process, without using
any protocols already suggested in the literature for this purpose. The presence of both the Coulomb and
spin-orbit interactions, on the other hand, couples the entanglement of this bipartite state with the dynamics and
kinematics of the whole process, as well as with the properties of the absorbed photon. In such cases, therefore,
it is not possible to predict, a priori, the photo-Auger electron entanglement. These discussions have quanti-
tatively been illustrated by several examples.
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I. INTRODUCTION

The present studies of entanglement, albeit in a different
context, started with the presentation of a paper by Einstein,
Podolsky, and Rosen �1� almost 70 years ago on bipartite
states. Later, Ref. �1� was interpreted by Bohm �2� for dis-
crete variables of two spin-half particles. Although, an innu-
merable number of papers have discussed entanglement
since then in one context or the other; however, the realiza-
tion that entanglement is a resource �3� which should be
available in order to successfully put to technological use
several protocols developed in recent years in quantum in-
formation �QI� science came only a few years ago. More-
over, further investigations �4,5� have shown that entangle-
ment can even affect macroscopic thermodynamical
properties �e.g., magnetic susceptibility or heat capacity of
solids�. Consequently, there has been an upsurge in both the-
oretical and experimental activities for developing methods
for the generation and detection of nonseparable �i.e., en-
tangled� states of two or more particles. Each particle in an
entangled �or EPR �1�� pair must have at least two indepen-
dent states simultaneously accessible to it. Such particles,
each with two states, have come to be known as qubits in QI.

It has already been proposed �6� that electron spin as a
qubit can be used in quantum computation �7�. Consequently,
creation of a solid-state quantum computer, based on spin
qubits, has already been suggested �7,8� in spintronics �i.e.,
active manipulation of the spin degree of freedom of elec-
trons in a solid state environment� �9�. For use of electrons in
quantum communication �7,10� one requires, on the other
hand, two entangled, but mobile, electrons which are sepa-
rately addressable because of their spatial separation. In or-
der to have on-chip quantum communication, a number of
theoretical proposals �10–13� for electron entanglers have
hitherto been made in spintronics. For example, extraction of
a Cooper pair from a superconductor �12� or of the singlet
ground state of a quantum dot with an even number of elec-
trons �13� are some of the methods which have already been
investigated in spintronics.

There are several simple, well known processes in atomic
and molecular physics which are capable of producing two
or more spatially separated electrons moving freely in space.
These processes can equally take place in solid, liquid, and
gaseous phases of matter. For example, in one-step double
photoionization �1-DPI� �14�, two electrons are simulta-
neously ejected following the absorption of a single photon
in a target. It is analogous to the parametric down conversion
�15� in quantum optics. “Shake-off” �16� and “knockout”
�17� are the two main mechanisms �18� which have primarily
been suggested for 1-DPI. In both of these mechanisms, the
incident photon is absorbed by only one of the electrons
bound in the atom or molecule, resulting in its departure with
a high speed from the target. On the other hand, the ejection
of the second electron in 1-DPI is a consequence �18� of the
soft �16� or hard binary �17� collision with the first one. The
two electrons, coming out from a target in 1-DPI �14�, may
or may not be equivalent �i.e., with the same values of the
principal quantum number n and orbital angular quantum
number � in an atom� �19�, but they are from the same many-
body electron state of the atom and share between them-
selves energy of the absorbed photon in excess to that needed
to eject both of them. The spin-entanglement properties of
two such photoelectrons emitted together from an atom �20�
or a rotating linear molecule �21� have already been analyzed
in detail.

Another, more commonly used and well-known process
which can give us two electrons in the continuum is the
two-step double photoionization �2-DPI� �22�. In the first
step of this process, absorption of a single photon ejects an
electron �say, e1� from an inner shell of the target, forming an
excited photoion. The subsequent, nonradiative decay of this
excited photoion leads to the ejection of one more �say, e2�
electron. The two sequentially emitted particles are called
�22� photoelectron and Auger electron, respectively. Thus,
unlike in 1-DPI, e1 and e2 in 2-DPI come out from the many-
body states of the initial target and of its excited photoion,
respectively �22�. Second, in 2-DPI, it is only the energy of
the e1 which varies with that of the ionizing radiation. But
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the energy of the Auger electron changes with that of the
excited photoion and/or of the residual dication formed after
the departure of e1 and e2. The photoelectron and Auger elec-
tron in 2-DPI are, in general, nonequivalent �19,22�. In this
paper, we analyze the spin-entanglement properties of a
photo-Auger-electron pair, sequentially departed from an
atom in 2-DPI.

On the basis of the interactions one takes into account,
studies of both 1-DPI and 2-DPI in atomic targets can con-
veniently be divided in two broad classes: One possibility is
to consider only the electrostatic Coulomb forces experi-
enced by the atomic constituents. In the second possibility,
the spin-dependent force which, in the case of atoms, is pri-
marily spin-orbit interaction �SOI�, is also included in a
study of the proposed process. This paper presents investiga-
tions of spin-entanglement between two electrons ejected
from an atom in 2-DPI both without and with SOI.

In Sec. II, we introduce relevant notations, conventions,
and the density operator �DO� to be employed in this paper
for the study of 2-DPI of an atom following the absorption of
a single photon. A successful technological application of QI
crucially depends upon the availability of at least one simple,
but stringent, criterion for deciding, theoretically as well as
experimentally, whether a given state is separable or not and
also to quantify the amount of its entanglement. Therefore,
Sec. II also contains a brief description of the criteria and of
different measures of entanglement currently in vogue. In
Sec. III, this DO is used first to derive an expression for a
density matrix �DM� when SOI is not taken into account in
any parts of the two-step process �1�. An analysis of this DM
pertaining to the spin-entanglement properties of photo-
Auger-electron pair is also presented therein. �A brief ac-
count of some of the results discussed in the Sec. III herein
was given in Ref. �23�.� On the other hand, derivation of a
DM needed to study the desired entanglement when SOI is
included in each part of 2-DPI process �1� is contained in
Sec. IV. In addition to other things, therein we discuss the
relevant properties of this DM. A quantitative application of
this DM with SOI to 2-DPI in Xe is also presented in Sec. IV
and the results are compared with those obtained without
SOI. Finally, Sec. V contains Conclusions of the present
study.

II. PRELIMINARIES

A. Density operator

Let us assume that �A� represents the antisymmetrized ini-
tial electronic state, with energy E0, of our atomic target A. If
�A+*

� and �A2+� are taken to be the antisymmetrized electronic
states of the respective excited photoion A+*

�possessing en-
ergy Ee� and of the dication A2+ �with energy Ef� of this
target, then the two well-known consecutive steps in Auger
emission are �22�

����� r� = 1,mr� + �A� → �A+*
� + e1��1û1k�1� �1a�

and

�A+*
� → �A2+� + e2��2û2k�2� . �1b�

Here, in the first step �1a�, � represents the incident photon
of frequency �r and, hence, energy Er=h�r, with the sub-
script r standing for radiation. This photon is absorbed by
one of the inner-shell electrons of the target atom A leading
to its �i.e., atom’s� ionization. For photons possessing such
required energies, it is usually sufficient �19� to treat the
ionization step �1a� in the electric dipole �E1� approximation.

Then, ���r � =1 represents the angular momentum of the pho-
ton in the E1 approximation. The parameter mr in �1a� speci-
fies the polarization of �: mr=0 for linear polarization �LP�,
mr= +1 and −1 for a photon possessing circular polarization
�CP� with positive helicity �PH� and negative helicity �NH�,
respectively; unpolarized �UP� electromagnetic radiation, on
the other hand, is taken to be an even mixture of the waves
with mr= ±1. Further, e1 and e2 in �1a� and �1b� are the
photoelectron and the Auger electron, respectively. The
propagation vector of the i�=1,2�th electron �ei� is repre-

sented herein by ki
� = �ki ,ki

ˆ ��i ,�i�� such that its kinetic energy
is given by �i=�2ki

2 /2m. Also in �1�, �i�=± 1
2

� is the projec-
tion of the spin angular momentum of the ejected electron ei

along the direction of quantization ui
ˆ = ��i ,	i�.

Energy should obviously be conserved in each of the two
steps of the process �1� separately. This means, while kinetic
energy �1=h�r− �Ee−E0� of the photoelectron e1 varies with
the frequency of the ionizing radiation in �1a�; energy �2
= �Ee−Ef� of the Auger electron e2 in �1b� is completely
independent of the energy of the absorbed photon and is
totally determined from that of A+*

and A2+. Unless stated
otherwise, the polar axis of our right-handed coordinate sys-
tem �see Fig. 1� is along the direction of the electric field
vector if absorbed photon is LP; however, for CP or UP
ionizing radiation, its direction of incidence defines the OZ
axis of our frame of reference.

The incident photon and the target atom are completely
uncorrelated before the interaction between the two takes
place. This, in other words, means that the DO for the com-
bined �photon+atom� system in Eq. �1a� is separable before
the absorption of the photon and is simply a direct product

i=
0 � 
r of the two DOs, 
0= �A��A� of the target atom A
and 
r= �1,mr��1,mr� of the ionizing radiation. Here, �1,mr�
denotes the state of a photon in the E1 approximation with
its polarization specified by the parameter mr. Now the DO
for the photoionization of the atom A, taking place in the first
of the two-step process �1�, is given by �see, for example,
Refs. �24,25��


1 = KpFp
iFp
†. �2a�

The photoionization operator Fp and the quantity Kp, both in
the E1 approximation, are obtained, for example, from Ref.
�26�. The DO for the complete two-step process �1� can now
readily be written to be


 f = KaFa
1Fa
† = KFaFp�
0 � 
r�Fp

†Fa
†. �2b�

The Auger emission operator Fa and the quantity Ka, occur-
ring in �2b�, are given elsewhere �27�. Although, the explicit
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forms of neither Kp nor Ka are required for the following
discussions, it should, nevertheless, be mentioned that they
depend, among other things, on the respective energies �1
and �2, but do not involve any of the angle or spin related
quantities of the species participating in the processes �1�. In
the second equation on the right-hand side of �2b�, we have
defined, for brevity, K�KaKp. The form �2� of the DO is
equivalent to those given elsewhere �see, e.g., Refs. �22,28��
for other two-step processes like two-stage cascade of � rays,
etc.

To perform the desired investigations, we need to calcu-
late a matrix for the DO 
 f defined in �2�. Electrons �e1 ,e2�
emitted in 2-DPI may have the same ��1=�2 �i.e., k1=k2�� or
different ��1��2 �i.e., k1�k2�� energies �subject to satisfying
two different conservation conditions, one for each step in

�1�� and move in any two directions k1̂ and k2̂. Our study
requires a density matrix �DM� which is diagonal in energies

as well as in the directions of propagation �i.e., diagonal in k1
�

and k2
� �. But this DM must necessarily be nondiagonal with

respect to the components �i.e., �1 ,�2� of the spin angular
momenta of the photoelectron and Auger electron �e1 ,e2�,
respectively. The appendixes to this paper describe calcula-
tions of such DMs without and with SOI, respectively.

B. Criteria and measures for entanglement

A successful technological application of the QI science
crucially depends upon the availability of simple, but strin-
gent, criteria for deciding, theoretically as well as experimen-
tally, whether a given state is separable or entangled and also
for quantifying the amount of its entanglement. One of the
several conditions �29� for the separability of a bipartite state
of qubits is that the partial transpose �PT�, with respect to
either of the two particles, of its DM must remain positive
�30,31�. �Here, positivity of a DM means that none of its
eigenvalues should be less than zero �30,31�.� This condition
was initially found �30� to be necessary but later shown �31�
to be sufficient as well. It, consequently, is a very stringent
criteria which, nevertheless, is extremely easy to use. Also, it

FIG. 1. Coordinate system
showing the photon-fixed frame of
reference OXYZ and the propaga-

tion directions �k̂1 , k̂2� as well as
the spin quantization directions
�û1 , û2� of the photoelectron e1

and of the Auger electron e2.
These two electrons are sequen-
tially ejected from the atom A, fol-
lowing the absorption of a single
photon, situated at the origin O of
our coordinate system. The OZ
axis is the quantization direction
for the electronic states of the
atomic species A ,A+*

,A2+ partici-
pating in the two-step process �1�.
Each electron enters its own Mott
detector �61�, oriented along
û1��1 ,	1� for e1 and û2��2 ,	2�
for e2. These detectors record
whether an ejected electron’s spin
is up or down with respect to its
own quantization direction.
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is equally applicable to both pure and mixed states of two
particles each defined in a two-dimensional Hilbert space. In
our present theoretical study we have, therefore, tested the
nonseparability �i.e., entanglement� or otherwise of the spin-
bipartite states of two electrons by using the necessary as
well as sufficient, stringent Peres-Horodecki �30,31� condi-
tion.

Various methods �32� have hitherto been suggested for
theoretically quantifying the entanglement of a pair of qubits.
In the present study, we have quantified the degree of en-
tanglement of �e1 ,e2� emitted in the process �1� by calculat-
ing each of those three measures which are most commonly
being used in the current theoretical discussions of the prop-
erties of entangled states. Namely, the negativity �33–35�
N�
 f�, and �36–38� concurrence C�
 f� as well as entangle-
ment of formation EF�
 f� of a given density matrix 
 f.

�i� The negativity of a bipartite state 
 f of qubits is defined
as �33–35�

N�
 f� = max�0,− 2�minimum eigenvalue of the PT of 
 f�� .

�3�

Thus, negativity is the degree to which a given state violates
the Peres-Horodecki condition �30,31� for it to be separable.
Vidal and Werner �35� have shown that N�
 f� is a good
entanglement measure. The PT of a DM can have at most
one negative eigenvalue �33�. Consequently, negativity �3�
can vary from zero to unity for a separable to a maximally
entangled bipartite state, respectively.

�ii� The concurrence

C�
 f� = max�0,	�1 − 	�2 − 	�3 − 	�4� �4a�

for a DM 
 f was first introduced in Refs. �36–38�. Here, �i’s
are the successively decreasing eigenvalues of the matrix

R = 
 f
 f
˜ , �4b�

with the spin-flipped state of 
 f given by


 f
˜ = ��y � �y��
 f�*��y � �y� and �y = 
0 − i

i 0
� , �4c�

and �
 f�* represents complex conjugate of the DM 
 f. Al-
though, negativity and concurrence can differ for a mixed
entangled state; for a pure bipartite state of qubits, however,
these two have equal values �32�. Concurrence too has been
used �32,39� as a measure of entanglement. The pure state of
two qubits is separable if its concurrence is zero, it is maxi-
mally entangled if its concurrence is one; concurrence has a
value between zero and one, otherwise.

�iii� The third quantity currently in use for calculating the
degree of nonseparability of a bipartite state of qubits is the
entanglement of formation. The concept was originally intro-
duced by Bennett et al. �40�. Hill and Wootters �37� conjec-
tured an explicit formula for it for a special class of DMs.
The following expression

EF�
 f� = −
1 + 	1 − C�
 f�2

2
log2
1 + 	1 − C�
 f�2

2
�

−
1 − 	1 − C�
 f�2

2
log2
1 − 	1 − C�
 f�2

2
� �5�

for the entanglement of formation was proved �41� for an
arbitrary state of two qubits. It is obvious that EF�
 f� is an
increasing function of the concurrence C�
 f�.

Entanglement witness �31,42–45�, on the other hand, is
probably the only protocol among those presently available
in QI science which has hitherto been very successfully
implemented for experimental characterization of the en-
tangled states of two �46,47� or more photons �48�. Origi-
nally, it was theoretically suggested by Horodecki et al. �31�
and subsequently studied in Refs. �42–45�.

III. EINSTEIN-PODOLSKY-ROSEN-BOHM
CORRELATION IN A PHOTO-AUGER-ELECTRON PAIR

IN THE ABSENCE OF SPIN-ORBIT INTERACTION

A. Density matrix

Let us first investigate the spin-entanglement properties of
the bipartite state formed by sequentially emitted photoelec-
tron e1 and Auger electron e2, disregarding all forces which
may arise due to spins of the electrons �in A, in A+*

, in A2+,
and of �e1 ,e2�� participating in one or both of the steps of the
process �1�. The entanglement between �e1 ,e2� will, thus, be
generated purely by the electrostatic Coulomb forces acting
among the nucleus and electrons in the target atom A. It can,
therefore, be called as Coulombic spin-entanglement of
�e1 ,e2�. Moreover, both the E1 photoionization and the Au-
ger emission operators Fp and Fa, respectively, are spin-
independent. In the absence of such spin-dependent interac-
tions which, in the case of atoms, is primarily SOI, the
orbital and spin angular momenta in each of the two steps of
the process �1� are separately conserved. These conservation
conditions are expressed in Eqs. �A1a�, �A2a�, �A1b�, and
�A2b�, respectively, in Appendix A. This, in other words,
means that the L-S �i.e., Russell-Saunders� �19� coupling
naturally becomes applicable in each step of �1�.

We have derived an expression for the desired DM. Our
derivation, whose details are given in the Appendix A, is
completely general, rigorous, and independent of all dynami-
cal models �except that it is in the L-S coupling as no SOI is
taken into account� which can be used in a theoretical study
of the 2-DPI process �1� in any atom. The final expression
�A13� for the DM can be written as a product of two inde-
pendent terms which describe two entirely different physical
situations. It is obvious from Eqs. �A14a� that the first term

�i.e., d3��mr� /d�1dk1̂dk2̂� on the right-hand side of the DM
�A13� depends upon, among other things, the orbital angular
momentum of each of �A ,A+*

,A2+�; phase shifts, energies

��1 ,�2�, and directions �k̂1 , k̂2� of emission of both of the
emitted electrons �e1, e2�; polarization �mr� of the photon
absorbed in the first of the two processes �1�. This term, in
addition, contains both the E1 amplitude �A14b� �determined
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by the electronic states �A� and �A+*
�, plus the continuum

orbital of e1� for photoionization �1a� and the amplitude
�A14c� �obtained from the electronic states �A+*

� and �A2+�,
including the continuum orbital of e2� for Auger emission in

�1b�. Thus, d3��mr� /d�1dk1̂dk2̂ in �A13� very much depends
upon the dynamics as well as the kinematics of the two-step
process �1�. But it includes neither the spins nor the quanti-
zation directions �û1 , û2� of any of the two emitted electrons

�e1 ,e2�, or of the target atom A, excited photoion A+*
, and the

dication A2+. However, it has an implicit dependence on the
spins �S0 ,Se ,Sf� of each of the three atomic species partici-
pating in �1�. For, energies of the respective electronic states
��A�, �A+*

�, �A2+�� depend on their multiplicities ��2S0

+1� , �2Se+1� , �2Sf +1��. Hence, d3��mr� /d�1dk1̂dk2̂ in the
DM �A13� describes purely angular correlation between the
photoelectron e1 and the Auger electron e2 in the L-S cou-
pling scheme, expressed in Eqs. �A1� and �A2�, for the an-
gular momenta of the particles involved in 2-DPI �1�. Its
value is always positive and it acts merely as a multiplicative
factor in the DM �A13� for a given Auger process �1�.

The second term �i.e., ��S0 ;Se ;Sf ;u1̂ ,u2̂��1�2,�1��2�
�,

present on the right-hand side of the DM �A13�, is defined in
Eq. �A15�. Unlike the angular correlation,

��S0 ;Se ;Sf ;u1̂ ,u2̂��1�2,�1��2�
represents a 4
4 matrix. It con-

tains neither any of those physical quantities

�eg ,�1 ,�2 , k̂1 , k̂2 ,mr, etc.� nor the dynamical amplitudes
�A14b� and �A14c� which affect the angular correlation

d3��mr� /d�1dk1̂dk2̂. On the other hand,

��S0 ;Se ;Sf ;u1̂ ,u2̂��1�2,�1��2�
, is completely determined from

Eq. �A15� by the spins of the five particles �i.e., A ,A+*
,A2+,

e1, e2� which participate in the two steps of the process �1�,
in addition to the quantization directions �û1 , û2� and by the
components ��1 ,�2� along these unit vectors of the spins of
the photoelectron e1 and Auger electron e2. Hence, the sec-
ond term on the right-hand side of the DM �A13� describes
purely spin correlation between the two electrons �e1 ,e2�,
ejected sequentially in the process �1� in the absence of SOI.

B. Are photoelectron and Auger electron in a pair
entangled?

In order to definitively test the spin-entanglement proper-
ties of a photo-Auger electron pair �e1 ,e2�, produced in the
2-DPI �1� in the absence of SOI, we have applied to our DM
�A13� the necessary and sufficient, stringent Peres-
Horodecki condition �30,31�. It has already been discussed

elsewhere in this paper that d3��mr� /d�1dk1̂dk2̂ in �A13� de-
scribes purely angular correlation of �e1 ,e2� in the L-S cou-
pling and always has a single positive value for a given ex-
perimental configuration. Consequently, the properties of the
electrostatically generated spin-entanglement between
�e1 ,e2� in the present case will completely be determined by
the spin correlation matrix �A15�. We, therefore, do not write

in the following the angular correlation �A14a� explicitly and
represent, for brevity, the DM simply by the second term
present on the right-hand side of �A13�. That is, unless stated
otherwise, in the present subsection we write

�f ;�1,u1̂,k1
� ;�2,u2̂,k2

� �
 f�f ;�1�,u1̂,k1
� ;�2�,u2̂,k2

� �

→ ��S0;Se;Sf ;u1̂,u2̂��1�2,�1��2�
. �6�

�In various equations in this paper, we have interchangeably
used letters �0,e , f� for �A ,A+*

,A2+� in side Dirac’s bra and
ket notations, for brevity.� Then

�1�S0;Se;Sf ;u1̂,u2̂��1�2,�1��2�
� ��S0;Se;Sf ; û1; û2��1��2,�1�2�

�7a�

and

�2�S0;Se;Sf ;u1̂,u2̂��1�2,�1��2�
� ��S0;Se;Sf ; û1; û2��1�2�,�1��2

�7b�

are the PTs of �6� with respect to the photoelectron e1 and the
Auger electron e2, respectively.

According to the spin conservation requirements �A1b�
and �A2b�, applicable in the present case of L-S coupling, we
must have Se=S0± 1

2 and Se=Sf ±
1
2 , respectively. The same

two respective conditions are obtained by applying the trian-
gular rules for the coupling of two of the angular momenta
so that neither of the 6-j symbols, present in �A15�, vanish
identically �49�. These requirements, in other words, mean
that the respective spins �S0 ,Se ,Sf� of the electronic states

��A� , �A+*
� , �A2+�� participating in the processes �1� are not

totally independent; they, instead, are related by the condi-
tions S0=Sf = �Se± 1

2 �, or �S0−Sf � =1 with S0= �Se± 1
2 � and Sf

= �Se�
1
2 �. Let us study spin-entanglement between photo-

electron e1 and Auger electron e2 in both of these situations
occurring when SOI is not taken into account.

�i� S0=Sf = �Se± 1
2 �: Here, one needs to consider the follow-

ing three cases separately.
�a� S0=Sf =1/2 with Se=0. That is, multiplicities of each

of the electronic states of A and A2+ is two; whereas, the
excited photoion A+*

is in its singlet electronic state. The DM
obtained from �A15� and �6� is given by

��S0 = 1
2 ;Se = 0;Sf = 1

2 ;u1̂,u2̂��1�2,�1��2�

= 1
4��1�1�

��2�2�
� ��0��1�2,�1��2�

, �8�

where �ab is the Kronecker delta function �49�. Equation �8�
represents a constant matrix with each of its diagonal
elements equal to 1/4. Obviously, each of the four
eigenvalues of the PT of �8� is also equal to 1/4, i.e., greater
than zero. Hence, according to the Peres-Horodecki
condition �30,31�, the DM �8� represents a mixed separable
state of �e1 ,e2�. �This particular form of a bipartite state
has been called �46� a maximally chaotic state.� One of
the simplest possible examples of this result can be the
two-step DPI B�1s22s22p1 2P�→B+*

�1s12s22p1 1P�

EINSTEIN-PODOLSKY-ROSEN-BOHM CORRELATION IN… PHYSICAL REVIEW A 74, 052329 �2006�

052329-5



→B++�1s22s12p0 2S� in the ground electronic configuration
of a boron atom. The sequentially emitted photoelectron e1

and the Auger electron e2 form a separable spin state repre-
sented by the DM �8� in the absence of SOI.

�b� S0=Sf =0 with Se=1/2. It, in other words, means that
while the electronic state of A and of A2+ is singlet, that of
A+*

is doublet. The DM, calculated from Eqs. �6� and �A15�,
can in this case be written as

4��S0 = 0;Se = 1/2;Sf = 0;u1̂,u2̂��1�2,�1��2�

�1,�2/�1�,�2�⇒ 1
2 , 1

2
1
2 ,− 1

2 − 1
2 , 1

2 − 1
2 ,− 1

2

⇓
1
2 , 1

2 1 − u1̂ · u2̂ c1s2 − s1c2c s1c2 − c1s2c − s1s2 + �1 − c1c2�c

− is1s + is2s − i�c1 − c2�s
1
2 ,− 1

2 c1s2 − s1c2c 1 + u1̂ · u2̂ − s1s2 − �1 + c1c2�c − s1c2 + c1s2c

+ is1s + i�c1 + c2�s − is2s

− 1
2 , 1

2 s1c2 − c1s2c − s1s2 − �1 + c1c2�c 1 + u1̂ · u2̂ − c1s2 + s1c2c

− is2s − i�c1 + c2�s + is1s

− 1
2 ,− 1

2 − s1s2 + �1 − c1c2�c − s1c2 + c1s2c − c1s2 + s1c2c 1 − u1̂ · u2̂

+ i�c1 − c2�s + is2s − is1s

�4�1�u1̂,u2̂��1�2,�1��2�
�9�

with the definitions

s � sin�	2 − 	1�, c � cos�	2 − 	1�

i � 	�− 1�, û1 · û2 = c1c2 + s1s2c ,

s1 � sin �1, s2 � sin �2, c1 � cos �1, c2 � cos �2.

�10�

The PT of this DM �9� is readily obtained using either of the
definitions �7�.

We have calculated eigenvalues of �9� and of its PT �with
respect to the Auger electron e2�. Both, �9� and its PT, were
diagonalized using procedures explained in Refs. �50–52�.
The eigenvalues obtained for �9� are �0, 0, 0, 1�. The fact that
only one of the four eigenvalues is nonzero means �25� that
the DM �9� represents a pure spin state of �e1 ,e2�. The ei-
genvalues of the PT of �9� came out to be � 1

2 , 1
2 , - 1

2 , 1
2 �. These

eigenvalues clearly mean �30,31� that the spin state of
�e1 ,e2�, represented by the DM �9�, is entangled. In this case,
each of the negativity �Eq. �3�� and concurrence �Eq. �4a�� is
equal to 1. Furthermore, the degree of nonseparability �i.e.,
participation ratio or Schmidt number� �53� for this pure state
is maximum, i.e., K=2, which is that of a Bell state �7�. In
conclusion, the DM �9� represents a pure and maximally en-
tangled bipartite spin-state of photoelectron e1 and Auger

electron e2 emitted in the two consecutive steps of the pro-
cess �1� in the absence of SOI.

Although, the elements both in the matrix �9� and in its
PT obviously depend upon the spherical angles ��1 ,	1� and
��2 ,	2� of the respective spin quantization directions û1 of
photoelectron e1 and û2 of Auger electron e2; it is, however,
very remarkable that their eigenvalues are totally indepen-
dent of these angles. This means, whatever may be the spin
quantization directions �û1 , û2� �and also the propagation di-

rections �k̂1 , k̂2��, spin state of �e1 ,e2� always possesses the
properties discussed in the preceding paragraph.

Second, Refs. �20,21� analyze the spin-entanglement of
two electrons ejected in 1-DPI of an atom and of a rotating
linear molecule, respectively, both in the absence as well as
in the presence of spin-dependent interactions. The spin cor-
relation DM obtained in Eq. �A12� in Ref. �20�, or in Eq.
�A10� in Ref. �21�, in the absence of SOI, although identical
to each other, are however very different from that given in
Eq. �A15� in the present paper. But, each of these three den-
sity matrices reduces to an identical form on specializing the
first two to the transition S0=Sf =0 in Refs. �20,21� and the
third to S0=Sf =0 with Se=1/2 in the present paper (compare
Eqs. �9a� in Ref. �20� �for û1��1=� /2 ,	1�, û2��2

=� /2 ,	2��, �A12a� in Ref. �21�, and �9� herein). It has been
discussed in detail in Refs. �20,21� that the two electrons
ejected simultaneously in a S0=Sf =0 transition must neces-
sarily be in a singlet �i.e., �� 1

2
�

1 �− 1
2 �2− �− 1

2 �1 � 1
2 �2� /	2� spin

state. The identicalness of the present DM �9� to that of �9a�
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in Ref. �20� �for û1��1=� /2 ,	1�, û2��2=� /2 ,	2�� as well
as to �A12a� in Ref. �21� simply means that the photoelectron
e1 and Auger electron e2 also form a singlet spin state for the
transition presently under consideration. Thus,

�1�u1̂ ,u2̂��1�2,�1��2�
in �9� represents a bipartite singlet state of

two spin-half qubits.
Among the several possible simple examples for this par-

ticular case are

C�1s22s22p2 1S/1D� → C+*
�1s12s22p2 2S/2D� → C2+�1s22s22p0 1S�;O�1s22s22p4 1S/1D� → O+*

�1s12s22p4 2S/2D�

→ O2+�1s22s22p2 1S/1D�;Ne�1s22s22p6 1S� → Ne+*
�1s12s22p6 2S� → Ne2+�1s22s22p4 1S/2D� .

Although, SOI in O and Ne atoms is probably not as negligible as in B and C atoms, nevertheless the photoelectron e1 and
Auger electron e2 emitted in these transitions do form maximally entangled, pure singlet spin state in the absence of SOI.

�c� Let us now consider the process �1� for the remaining values of S0=Sf. Namely, S0=Sf =Se+1/2 with Se�0, or S0
=Sf =Se−1/2 with Se�1/2. The DMs for all these cases too are readily calculated from Eqs. �6� and �A15�. All these DMs can
easily be shown to be represented by the following simple equation:

�p�u1̂,u2̂�S0=Sf
= p�S0 = Sf = Se ± 1

2 ;Se��1�u1̂,u2̂�

+ �1 − p��0 �11�

with the parameter

p�S0 = Sf = Se ± 1
2 ;Se� = �0 for Se = 0,

1

3Se�Se + 1�

3

4
+ Se�Se + 1� − S0�S0 + 1��2

for Se � 0. 
 �12�

and the respective matrices �0 and �1�û1 , û2� given by Eqs.
�8� and �9�. It is obvious from Eq. �12� that the parameter p
is always positive, can assume zero value, and, on account of
the restriction �S0−Se � =1/2, p�1. Eq. �12� further gives,
p�S0=1/2 ;Se=0;Sf =1/2�=0 and p�S0=0; Se=1/2; Sf =0�
=1. With these two allowed values of p, the DM �11� rightly
reproduces the maximally chaotic state �8� for p=0 and the
maximally entangled state �9� for p=1.

On using Refs. �50–52� once again for the diagonalization
of a matrix, we find that

1
4 �1 − p�, 1

4 �1 − p�, 1
4 �1 − p�, 1

4 �1 + 3p� �13a�

are the eigenvalues of the DM �11�. The condition that all the
eigenvalues of a physically acceptable DM must necessarily
be greater than or equal to zero, requires −1/3� p�1. But,
in the present case we find that, on account of Eq. �12�,
negative values for p are not admissible. Let us now look at
the eigenvalues

1
4 �1 + p�, 1

4 �1 + p�, 1
4 �1 − 3p�, 1

4 �1 + p� �13b�

of the PT �with respect to the Auger electron e2� of the DM
�11�. An application of the Peres-Horodecki �30,31� condi-

tion now immediately suggests that p must be greater than
1/3 for �11� to represent a nonseparable spin state.

Thus, for the DM �11� to represent a spin state of a photo-
Auger-electron pair �e1 ,e2� emitted in 2-DPI with S0=Sf

=Se±1/2 and Se�0, in the absence of SOI, one must have 0
�p� 1. All these states are mixed. Those with 0 �p� 1/3
are separable; whereas, for an entangled pair of �e1 ,e2�, p
� 1/3. For a given value of the triod �S0 ,Se ,Sf�, one can
readily calculate from Eq. �12� the value of p, and hence find
out the nature of the state �11�. Some of the illustrative ex-
amples for this case are N�1s22s22p3 4S�
→N+*

�1s12s22p3 3S�→N2+�1s22s12p2 4P�,with p�S0

=3/2 ,Sf =3/2 ,Se=1�=1/6 obtained from Eq. �12�. That is,
�e1 ,e2� in this case are in a mixed separable state. On the
other hand, the photoelectron e1 and the Auger electron e2
sequentially emitted in the transition N�1s22s22p3 2P / 2D�
→N+*

�1s12s22p3 3P / 3D�→N2+�1s22s22p1 2P� are repre-
sented by Eq. �11� corresponding to p�S0=Sf =1/2 ,Se=1�
=2/3 which is a mixed entangled state of the two qubits.

In fact, for the two cases described by Eqs. �11� and �12�,
one can readily write that
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p�Se� = �
Se

3�Se + 1�
for S0 = Sf = Se +

1

2
and Se � 0, �14a�

Se + 1

3Se
for S0 = Sf = Se −

1

2
and Se �

1

2
. �14b�

These simple relations clearly show that transitions �1� corresponding to �14a� always have p�1/3, i.e., �e1 ,e2� are in a
product spin-state; whereas, those satisfying �14b� are described by p�1/3 and, hence, produce �e1 ,e2� in an entangled state.

Further, the negativity �3� of the states �11� is readily obtained from the eigenvalues �13b� of its partial transpose. However,
in order to obtain the concurrence of this state, one needs to use the DM �11� in Eqs. �4�. Both of these measure of the
entanglement come out to be equal to each other in the present case and are given by

N�
 f� = C�
 f� = �max�0,�3p − 1�/2� , �15a�
0 for S0 = Sf = Se + 1/2 and Se � 0, �15b�
�2Se�−1 for S0 = Sf = Se − 1/2 and Se �

1
2 , �15c�

Substitution of the concurrence C�
 f�, given in �15�, in the
expression �5� immediately gives us the entanglement of for-
mation EF�
 f� for the state �11�.

Figure 2 shows variations of the mixing parameter p,
negativity N�
 f�, concurrence C�
 f�, and of the entanglement
of formation EF�
 f� with the spin quantum number Se of the

photoion A+*
. Both p and all the three different measures of

entanglement have expected behavior with Se. Namely,
�e1 ,e2� with S0=Sf =Se+1/2 are always in separable states.
These two electrons, on the other hand, always form an en-
tangled state for S0=Sf =Se−1/2. Even in this case, however,
the degree of entanglement decreases very rapidly with in-
creasing Se from its maximum possible value of unity for
Se=1/2. Thus, states of �A ,A+*

,A2+� with higher multiplici-
ties produce �e1 ,e2� with lower degree of entanglement.

�ii� �S0�=�Se±1/2 � �−Sf�=�Se�1/2 � � � =1: In this case, the
DM �A15� is readily shown to become

�p�u1̂,u2̂��S0−Sf �=1 = − 1
3�1�u1̂,u2̂� + 1

3�0. �16�

The eigenvalues �50–52� of this matrix and of its PT are,
respectively, �1/3, 1/3, 1/3, 0� and �1/6, 1/6, 1/2, 1/6�. Thus
�16� represents a mixed and separable state of the electrons
�e1 ,e2�. A relevant example for the present case can be

C�1s22s22p2 1S/1D� → C+*
�1s12s22p2 2S/2D�

→ C2+�1s22s02p2 3P�

.
It is obvious from the above discussions that Eqs.

�11�–�16� completely characterize the properties of the quan-
tum entanglement �QE�, generated by the purely electrostatic
Coulomb forces inside an atom, of any spin state of the pho-
toelectron e1 plus the Auger electron e2 emitted from all
possible electronic states �A�, �A+*

�, �A2+� participating in the
two-step process �1� in the absence of SOI in the L-S cou-
pling. These properties of this Coulombic spin-entanglement
are totally decoupled form the photoionization and the Auger
decay dynamics as well as kinematics, including properties

of the ionizing radiation, and are completely predictable.
They simply depend upon the spins of the three electronic
states of the atomic species involved in this two-step process.
Spin conservation conditions suggest that there are only
three possibilities: �i� �S0−Sf � =1 with S0=Se±1/2 and Sf
=Se�1/2; �ii� S0=Sf =Se+1/2; �iii� S0=Sf =Se−1/2. In �i�
and �ii�, there is no entanglement at all; whereas, photo-
Auger electrons are always entangled in �iii�. In case �i�, the
spin state of�e1 ,e2� is always expressible as −�1�û1 , û2� /3
+�0 /3. But, in cases �ii� and �iii�, p�1�û1 , û2�+ �1− p��0 rep-
resents the spin state of �e1 ,e2�. We have shown in this paper
that 0� p�1/3 given by p=Se / �3�Se+1��, with Se�0 for
�ii�; whereas, 1 /3� p�1 obtained from p= �Se+1� / �3Se�,
with Se�1/2 for �iii�. There are no values of Se which can
give us p=1/3. In arriving at these results, �A ,A+*

,A2+� have
been described in L-S coupling purely by the electrostatic
Coulomb forces.

Bipartite states of qubits represented by p�1�û1 , û2�+ �1
− p��0, with 0� p�1, are called Werner �54� states in QI.
Obviously, one can always calculate values of p from the
expressions derived herein. These expressions contain only
the total spin Se of A+*

. According to the discussions given
herein, cases �ii� and �iii� produce Werner �54� states. Our
analysis further shows that a Werner state is entangled if and
only if p�1/3, which corresponds to our case �iii�. How-
ever, the photo-Auger-electron pair in our case �i� comes out
in a spin state represented by −�1�û1 , û2� /3+�0 /3. Thus,
Werner �54� states represent only a set of bipartite spin states
formed by two electrons ejected in the process �1�.

Further, case �iii� for the entanglement of �e1 ,e2� means
that multiplicities of the states �A� and �A++� must be equal
and one less than that of �A+*

� whose spin Se should be dif-
ferent from zero. It has already been shown elsewhere in this
paper that for Se=1/2 and p=1, �e1 ,e2� are in the maximally
entangled, singlet spin state. For this �i.e., S0=Sf =0,Se
=1/2� particular choice in case �iii�, while each of �A� and
�A2+� is singlet, but �A+*

� is a doublet state. As no SOI or any
other interaction which can flip the spins of the departing
electrons has presently been taken into account, the spin con-
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servation conditions discussed in the preceding paragraphs
then demand that e1 in A and e2in A+*

should have opposite
spins even before their emissions from the atom. However,
such simple explanations for the spin orientations of ejected
electrons while they were bound may not be applicable with
other multiplicities of �A�, �A+*

�, �A2+� which will give values
of p� 1 with �e1 ,e2� in a mixture of maximally entangled
��1� and maximally chaotic ��0� states. For, in such situa-
tions Se� 1/2 and, hence, although S0=Sf, none of A ,A2+,
and �e1 ,e2� is in a singlet state, nor A+*

is in a doublet state.
The other interesting and important thing about the Eqs.

�11�–�16� is that one can a priori determine a value of p and,
hence, select the appropriate photoionizing and Auger tran-
sitions in the process �1�, according to one’s requirements of
the degree of mixing of the maximally chaotic state �0 with

the pure, maximally entangled state �1�u1̂ ,u2̂�, in order to
produce a spin-entangled state of �e1 ,e2� with a desired de-
gree of entanglement. In other words, the Auger spectros-
copy, described by Eq. �1�, provides a simple and commonly
available method for producing physically acceptable, all
possible bipartite states of electrons with a tunable degree
p= �2Se�−1 �with S0=Sf =Se−1/2, and Se�1/2� of their spin

entanglement. Hence, spin Se of the excited photoion A+*
can

be called also a tuning parameter for the degree of entangle-
ment in the present context.

Using the expressions derived herein, one can always
theoretically determine all properties of the spin state of a
photo-Auger electron pair produced in 2-DPI in the absence
of SOI. The experimental characterization of these states
merely requires measurements of the energies of the photo-
electron e1 and of the Auger electron e2, in order to deter-

mine ��A� , �A+*
� , �A2+�� participating in the process and,

hence, calculate spins �S0 ,Se ,Sf� from the multiplicities of
each of these three electronic states in the L-S coupling. Use
of any protocol, e.g., entanglement witness �31,42–45�, etc.,
for the experimental characterization of the Coulombic en-
tanglement of �e1 ,e2� is not needed at all. In addition, the
present method can be used also as a test bed for the existing
or new protocols which may be developed in the future for
characterizing the entanglement properties of bipartite states
of qubits.

IV. EINSTEIN-PODOLSKY-ROSEN-BOHM CORRELATION
IN A PHOTO-AUGER-ELECTRON PAIR IN THE

PRESENCE OF SPIN-ORBIT INTERACTION

A. Density matrix

On the inclusion of the spin-dependent forces in the pro-
cess �1�, the QE between �e1 ,e2� will be generated by a
combination of the electrostatic Coulomb and spin-orbit in-
teractions �CSOIs�. In the presence of SOI, neither the total
orbital nor total spin angular momenta is individually con-
served in either of the two steps of the process �1�. This
renders the L-S coupling inapplicable in the presence of SOI
�19�. Instead, it is now the sum of the total orbital and spin
angular momenta which is separately conserved in each of
the two steps of the process �1�. The appropriate conserva-
tion conditions for total angular momenta valid for the
present case are those given in the two equations �B1� in the
Appendix B. This means, one now needs to work in j-j cou-
pling scheme �19�. In Appendix B, we have, therefore, de-
rived expressions in j-j coupling for the elements of our DO
defined in Eq. �2b�. Equation �B14� is the required DM for
the present purpose. This expression is completely general
and independent of all dynamical models which can be used
in a calculational study of photo-Auger electron coincidence
spectroscopy of atoms.

Each of the elements of the DM �B14a� contains some or
all of the ANS1

NS2

S1S2 �mr ;k�1 ,k�2� defined in Eq. �B14b�. The total

number of such A’s is 16. �Each of S1 and S2 can indepen-
dently take two values, i.e., 0 and 1; whereas, −S1�NS1
�S1 and −S2�NS2

�S2.� For the purpose of the present and
future applications, we have given in Eqs. �B16� the explicit
expressions for the 16 elements constituting the DM �B14�.
The requirement that a physically acceptable DM must nec-
essarily be Hermitian imposes conditions �B17� on the coef-
ficients A’s, defined in �B14b�. This, obviously, means that
only 10 of the 16 coefficients ANS1

NS2

S1S2 are independent, in-

cluding those four which are pure real. In view of �B17�, one
finds that the trace �B18� of our DM is always a pure real
quantity.

Let us compare the DMs �A13� and �B14� obtained with-
out and with SOI, respectively, in the process �1�. Obviously,
the two are completely different in many ways: �i� The
present DM �B14� is much more complicated than the pre-
vious DM �A13�. �ii� Unlike �A13�, it is not at all possible to
write �B14� as a product of two independent terms. That is,
one cannot separate the DM �B14� into angular and spin

FIG. 2. Variations of the parameter p �Eqs. �14��, negativity
N�
 f� �Eq. �3��, concurrence C�
 f� �Eq. �4a��, and of the entangle-
ment of formation E�
 f� �Eqs. �5�� with the spin Se of the excited
photoion AB+*

�Eqs. �1��. As explained in Eqs. �15�, here we have
N�
 f�=C�
 f� for all values of Se considered in this paper. Curve A,
p �from Eq. �14a�� � 1/3, always; curve B, p �from Eq. �14b�� �
1/3, always; curve C, negativity and concurrence from Eqs. �15�;
curve E, entanglement of formation from Eqs. �5� and �15�.
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parts. This, in other words, means that, unlike in the absence
of SOI, both photoionization and Auger dynamics now play
important roles in determining the spin-entanglement prop-
erties of the emitted electrons �e1 ,e2�. Therefore, a knowl-
edge of the frequency and polarization of the photon ab-
sorbed in �1a�, of the linear momenta �k�1 ,k�2� �i.e., both

energies ��1 ,�2� and directions of motion �k̂1 , k̂2�� of two
emitted electrons, the E1 matrix element �B15a� for photo-
ionization, as well as of the Auger emission amplitude
�B15b�, among others, is essential for studying the entangle-
ment properties of a photo-Auger-electron pair in the pres-
ence of SOI. Thus, CSOIs have coupled the spin entangle-
ment of �e1 ,e2� with the dynamics and the kinematics,
including the properties of the absorbed photon, in �1�. �iii�
Consequently, unlike the DM �A13�, it is not possible to
analytically analyze �B14�. Now, one cannot learn a priori
anything at all about the entanglement of �e1 ,e2�. A knowl-
edge of both photoionization and of Auger amplitudes is nec-
essary in order to be able to say anything about the properties
of the spin state of �e1 ,e2� generated by the CSOIs. That is,
one must study each atom individually with the specific tran-
sition one is interested in.

B. Example for photo-Auger-electron entanglement with spin-
orbit interaction

Let us consider a particular example of photoionization

h�r + Xe�4d105s25p6 1S0� → Xe+*
�4d95s25p6 2D5/2�

+ e1�p3/2; f5/2;7/2� �17a�

followed by the Auger emission

Xe+*
�4d95s25p6 2D5/2� → Xe�4d105s05p6 1S0� + e2�d5/2�

�17b�

in Xe atom. We have selected this two step process for study-
ing the effects of CSOIs on the spin-entanglement of �e1 ,e2�
for several reasons:

�i� Kammerling et al. �55� have measured the average
probabilities for the emission of a single Auger electron from
each of the two hole states 4d3/2 and 4d5/2 of the excited
photoion Xe+*

to be 0.783 and 0.825, respectively. They �55�
have further shown that these probabilities for the nonradia-
tive, spontaneous decay of Xe+*

depend little on the energy
of the photon absorbed by Xe. Thus the probability for the
emission of �e1 ,e2� in the above process in Xe very high.

�ii� It has recently been shown experimentally �56� that
nonrelativistic description of photoionization of as heavy a
target as Xe is both sufficient and satisfactory.

�iii� Kämmerling and Schmidt �57� have experimentally
studied this two-step process and used their measurements to
extract magnitudes and phases of the complex amplitudes for
photoionization channels 4d5/2→p3/2, 4d5/2→ f5/2, 4d5/2
→ f7/2. The experimentally extracted values �57� are in
agreement with those calculated by Johnson and Cheng �58�
in the relativistic random-phase approximation �59�. In the

notation of our Eq. �B7c�, the complex photoionization am-
plitudes taken from Ref. �57� and used in the present analysis
are

�Je = 5/2, j1 = 3/2�F�J = 1��J0 = 0,1� � D1 = d1ei�1,

�Je = 5/2, j1 = 5/2�F�J = 1��J0 = 0,1� � D2 = d2ei�2,

�Je = 5/2, j1 = 7/2�F�J = 1��J0 = 0,1� � D3 = d3ei�3

�18a�

with

d1 = 0.138 a.u.,

d2 = − 0.131 a.u., �1 − �2 = 3.04 rad,

d3 = − 0.474 a.u., �2 − �3 = 1.35 rad,

�18b�

where, a.u. stands for atomic units.
�iv� The Auger transition in �17b� is very simple as it is

determined by a single �namely, d−� partial wave only.
�v� Both, Xe and Xe2+ being in their 1S electronic state,

SOI is always zero for these two species in the present case.
However, SOI will very much be present in the 2D electronic
state of Xe+*

, and affect photoionization as well as Auger
emission in �17�.

�vi� Both, the photoelectron in �17a� and the Auger elec-
tron in �17b� are represented by higher than s partial waves.
SOI should, therefore, be present in the continua of both of
these two ejected electrons as well.

�vii� Analysis presented in Sec. III herein shows that if
one does not take the SOI into account in �17�, then �e1 ,e2�
are in the maximally entangled, pure, singlet spin state with
each of negativity �3�, concurrence �4a�, and the entangle-
ment of formation �5� equal to their maximum possible
value, i.e., equal to 1 �see Fig. 2�. Moreover, these properties
of the Coulombic spin-entanglement of �e1 ,e2� are not af-
fected at all by the respective dynamics of photoionization of
Xe or of Auger emission from Xe+*

, or by the momenta
�k�1 ,k�2�, directions �û1 , û2� of spin quantization of �e1 ,e2�, or
by a change in the polarization of the ionizing radiation. It
will, therefore, be very easy to detect even small deviations
in the entanglement properties of �e1 ,e2� due to the inclusion
of the SOI in the process �17�.

Each of the photoelectron e1 and the Auger electron e2

can come out from their respective parents Xe and Xe+*
in an

infinite number of possible directions. Moreover, these direc-
tions of their emissions are quite independent of each other.
Let us select diametric emission of �e1 ,e2�, i.e., photoelec-
tron and Auger electron are receding from the residual dica-
tion Xe2+ in �17� in opposite directions. In this collinear ex-
perimental geometry, if we take

k̂1��1,�1� � k̂��,�� , �19�

obviously when

k̂2��2,�2� � − k̂

with
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��2 = � − �,�2 = � + �� .

Consequently, the coefficients A’s, present in the DM �B14�,
will now depend upon �� ,�� only. The present geometry for
the emission of �e1 ,e2� also means that the polar axis of our
PF and the line joining these two electrons always lie in one
plane which will, henceforth, be called as the emission plane.

The spins of each of the photoelectron e1 and the Auger
electron e2 can be quantized in all possible directions in
space, quite independently of each other. But, entanglement
is well known �7� to be independent of the local choice of the
basis and coordinate system. Hence the choice of the spin
quantization directions �û1 , û2� of �e1 ,e2� should not change
entanglement between these two electrons. In the present
study, we have considered, for simplicity, that each of the
photoelectron and Auger electron has its spin quantized lon-
gitudinally to its respective direction of free motion in space.
Namely,

û1� k̂1�k̂, i.e., ��1 = �,	1 = �� , �20�

û2 � k̂2 � − k̂, i.e., ��2 = � − �,	2 = � + �� .

This, consequently, means that the final form of DM �B14�
will contain only two angles specifying the direction k̂�� ,��.

The last thing remaining to decide is the polarization of
the ionizing photon which may be used for initiating the
2-DPI process �17�. In order to investigate the effects of light
polarization on the QE properties of �e1 ,e2�, generated in the
presence of CSOIs, we have considered four possibilities.
Namely, the electromagnetic wave ionizing Xe is LP, CP
with PH, CP with NH, or is UP. These are the most common
polarizations of electromagnetic waves generally used in
various experiments in a laboratory.

The following contains a brief description of our results
for the entanglement properties of �e1 ,e2� emitted in the pro-

cess �17� in the above-mentioned �i.e., �19�� possible experi-

mental geometry of �k̂1 , k̂2� for each of the four polarizations
of the incident light.

1. Incident light linearly polarized

In order to specialize the general expressions �B16� for
the elements of the required DM to this case, we first need to
know the 16 coefficients ANS1

NS2

S1S2 �mr ;k�1 ,k�2� present therein.

These are calculated from �B14b� by substituting mr=0 for
LP incident radiation, relation �19� for diametric emission of
the photoelectron e1 and Auger electron e2, and amplitudes
�18� for the photoionization process �17a�. The resulting ex-
pressions are given in Eqs. �B19�. These A’s obviously sat-
isfy the conditions �B17� needed for the resulting DM to be
Hermitian. Thus, each of the 16 A’s reduces to be a function
of the angles �� ,�� which define the orientation in space of
the line joining e1 and e2 receding from the residual dication
Xe2+ in opposite directions.

In order to obtain the required DM, one now merely needs
to substitute in �B16� both angles �20� and coefficients
�B19�. Unless stated otherwise, we denote the resulting DM
by 
LP�� ,��. It is then diagonalized using the procedures
explained in Refs. �50–52�. Its eigenvalues are

0,0,0,

�19.532 − 15.4730�sin ��2 + �16.4860�sin ��4

+ 39.654�sin 2��2 + 381.52�cos ��4�1/2� 
 10−4.

�21a�

Thus, only one of the four eigenvalues in �21a� is nonzero.
This, obviously, means �25� that 
LP�� ,�� represents a pure
state of �e1 ,e2�. The eigenvalues of the PT of 
LP�� ,��, on
the other hand, are obtained to be

�4.0602�sin ��2 + 2.1609 sin 2� + 19.532�cos ��2� 
 10−4,

�4.0602�sin ��2 − 2.1609 sin 2� + 19.532�cos ��2� 
 10−4,

�16.4852�sin ��4 − 7.042�sin 2��2 + 381.504�cos ��4�1/2 
 10−4,

− �16.4852�sin ��4 − 7.042�sin 2��2 + 381.504�cos ��4�1/2 
 10−4.

�21b�

Here, the last of the four eigenvalues �21b� is always less
than zero, for all allowed values �between 0 and �� of the
polar angle �. Hence, in view of the Peres-Horodecki �30,31�
condition, 
LP�� ,�� represents an entangled state. One,
therefore, concludes that �e1 ,e2�, ejected in the 2-DPI �17�
using LP light, are always in a pure entangled state.

Before proceeding further, it is probably appropriate to
point out here that the eigenvalues �21� should be divided by
the trace �B18� in order for them to belong to those of a
normalized DM 
LP�� ,�� and its PT, respectively. After such
a normalization, the eigenvalues �21a� will simply become

�0, 0, 0, 1�. Second, none of the eigenvalues �21� depend
upon the azimuthal angle � of the dimetric emission direc-

tion k̂�� ,��. This, in other words, means that �e1 ,e2�, emitted
in 2-DPI �17� with LP light are always in a pure entangled
state for all possible orientations of the emission plane. In the
remaining discussion in the present Sec. IV B 1, we, there-
fore, do not further write the angle � for brevity.

In order to study the degree of entanglement of �e1 ,e2�,
we have next calculated the negativity N�
LP���� using �after
normalization� the eigenvalues �21b� in Eq. �3�; whereas,
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concurrence C�
LP���� and entanglement of formation
EF�
LP���� are obtained from the respective Eqs. �4a� and �5�
for the DM 
LP���. In the present case, we always found
�50�b�� that N�
LP����=C�
LP����, for all values of the angle
�.

Figure 3�a� shows our results for each of the measures
N�
LP����, C�
LP����, and EF�
LP���� as a function of the
polar angle �. �In view of Ref. �50�b��, curves for N�
LP����
and C�
LP���� are coincident in Fig. 3�a�.� The broken hori-
zontal line at the top of this figure represents these three

FIG. 3. Each of the three parts of this figure
shows the values of the three measures of en-
tanglement calculated in this paper for a photo-
Auger-electron pair emitted from Xe in the 2-DPI
process �17� in the presence of SOI. In each part,
the upper, broken horizontal line represents these
measures when no SOI is taken into account in
�17�. For this case, all the three measures have
the same value which is equal to one correspond-
ing to a maximally entangled state of �e1 ,e2�. The
negativity N�
 f�, concurrence C�
 f�, and en-
tanglement of formation EF�
 f� are calculated us-
ing the respective Eqs. �3�, �4a�, and �5�. �a� All
three measures in this figure are calculated when
the ionizing radiation in �17a� is LP. On account
of the pure nature of the bipartite state of �e1 ,e2�,
negativity and concurrence in this case have iden-
tical values. �b� This figure is for ionization in
�17a� by a CP photon with NH. Here again, both
negativity and concurrence have equal values.
Also, as discussed in the text of this paper �see
Sec. IV B 3�, this figure represents values of all
three measures of entanglement also for ioniza-
tion in �17a� due to the absorption of a CP photon
with PH. �c� This contains three measures of en-
tanglement for ionizing radiation in �17a� to be
UP. In this case, �e1 ,e2� were found to be in a
mixed bipartite state. Consequently, negativity
�Eq. �3�� and concurrence �Eq. �4a�� do not have
the same values which are, however, indistin-
guishable on the scale of this figure.
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measures for the Coulombic spin-entanglement of �e1 ,e2�,
i.e., when no SOI is taken into account in the 2-DPI �17�.
�This result is the one shown in Fig. 2 for the mixing param-
eter p=1.� Thus, while the introduction of SOI in �17� has no
effect on the pure nature of the state of �e1 ,e2�; however, its
entanglement properties now very much depend upon the
directions of motion of �e1 ,e2�. All the three measures of
entanglement, considered herein, have their maximum pos-
sible values of unity for the diametric emission of two elec-
trons �e1 ,e2� either in the directions of the electric field vec-
tor of the LP ionizing radiation �i.e., �=0,� in Fig. 1� or in
a plane perpendicular to it �i.e., �=� /2�. For other values of
the polar angle �, these measures vary significantly, their
minimum value being for �=65.50°, where �e1 ,e2� are
barely entangled. Thus, SOI tends to dilute the amount of
entanglement between �e1 ,e2� making it highly anisotropic
with respect to the directions of emission of two electrons.
This entanglement is, otherwise, maximum in all directions
of motion of �e1 ,e2� in the absence of SOI.

2. Incident light circularly polarized with negative helicity

Let us now study spin entanglement between �e1 ,e2�
when incident light in �17� is CP with NH, i.e., left circularly
polarized �LCP�. For this, we first substitute in �B14b� the

values of �k̂1 , k̂2� from Eq. �19� and mr=−1, along with the
quantities given in Eq. �18�. The resulting values of each of
the 16 coefficients ANS1

NS2

S1S2 �−1;� ,�� are given in Eq. �B20�.
These A’s also satisfy the required Hermiticity conditions
�B17�.

Substitutions of the coefficients �B20� as well as of the
angles �20� in Eqs. �B16� immediately give us the DM, say,

NH�� ,�� describing the state of a photo-Auger-electron pair
receding from Xe++ in opposite directions when the photon
absorbed in �17� is LCP. A diagonalization of this DM with
the processes �50–52� shows that three of its four eigenval-
ues are zero. This, in other words, means �25� that �e1 ,e2� are
in a pure state. That is, whether one uses LP or LCP light for
ionization in �17a�, the sequentially emitted �e1 ,e2� are al-
ways in a pure spin state. Moreover, similar to the case of LP,
the fourth, nonzero eigenvalue of the present DM was also a

function only of the polar angle of k̂�� ,��.
The three of the four eigenvalues of the PT of the current

DM were always positive for 0���� but the fourth eigen-
value was greater than, or equal to, zero for �=0 and � only,
remaining negative for other allowed values of this angle.
Accordingly �30,31�, the present photo-Auger-electron pair
is in an entangled state for all directions of their diametri-
cally opposite motions, except when they are moving parallel
to the incident LCP light.

Next, we calculate �50�b�� each of the three measures of
the entanglement defined in Eqs. �3�–�5�. These, for the
present case, are shown in Fig. 3�b�. A comparison of Figs.
3�a� and 3�b� shows the effects of change of ionizing radia-
tion from LP to LCP on the entanglement properties of
�e1 ,e2� ejected in the 2-DPI �17�. The curves in Fig. 3�b� for
CSOIs are very different in each of their characteristics from
those given in Fig. 3�a� for ionization by LP light when

CSOIs is taken into account, or that obtained without SOI.
Unlike in Fig. 3�a�, �e1 ,e2� in the present case are never in a
maximally entangled state: The maximum entanglement
achieved by the photo-Auger-electron pair in the present case
corresponds to concurrence C�
NH�����0.90 and entangle-
ment of formation EF�
NH�����0.80. Thus, the use of LCP
radiation for ionization in �17a� with CSOIs tends to dilute
the entanglement from those of its values with mr=0, or
without SOI for any polarization of the ionizing radiation.
Similar to the case of ionization by LP light, the entangle-
ment in Fig. 3�b� too varies significantly �but in a way which
is very different from that in Fig. 3�a�� with the change in the
directions of two oppositely moving �e1 ,e2�.

3. Incident light circularly polarized with positive helicity

In order to investigate the effects on the entanglement of
�e1 ,e2� of the PH of the CP light with the inclusion of
CSOIs, the photon absorbed in �17a� is now right circularly
polarized �RCP�. Taking mr= +1 in �B14b� �and substituting
�18� plus �19�� gives us the 16 coefficients ANS1

NS2

S1S2 �+1;� ,��.
The values of these A’s are given in Eq. �B21�. The DM,
called 
PH�� ,�� for this case, is calculated by using in Eq.
�B16� the coefficients �B21� and directions �20�. The diago-
nalization �50–52� of 
PH�� ,�� and of its PT showed that this
DM represents a pure state of �e1 ,e2� which is entangled
everywhere except when the two electrons are ejected verti-
cally in opposite directions. This behavior of the state of
�e1 ,e2� is similar to that found in Sec. IV B 2 for ionization
in �17� by LCP. We then calculated �50�b�� N�
PH����,
C�
PH����, and EF�
PH����. The values of concurrence and of
entanglement of formation obtained in the present case were
found to be identical to those calculated in the Sec. IV B 2
for the DM 
NH�� ,�� obtained for ionization in �17� by LCP
and shown in Fig. 3�b�. This simply means that as far as
entanglement properties of �e1 ,e2� are concerned, the helicity
of the CP photon absorbed in �17� does not matter at all. That
is, entanglement between a photoelectron and an Auger elec-
tron, sequentially emitted in 2-DPI �17�, does not exhibit any
dichroic properties.

4. Incident light unpolarized

Last, we investigate the entanglement between �e1 ,e2�
when the ionizing radiation in �17� is UP and CSOIs are
taken into account. An unpolarized electromagnetic wave
can be looked upon to be an even mixture of LCP and RCP
radiations. The corresponding DM, say, 
UP�� ,�� is now
readily obtained on dividing by 2 the algebraic sum of the
DMs 
NH�� ,�� and 
PH�� ,�� calculated in Secs. IV B 2 and
IV B 3 for the same geometry.

On diagonalizing �50–52� the resulting DM 
UP���, we
found that it has more than one eigenvalue to be nonzero.
This means �25�, electrons emitted in the 2-DPI when light
used in �17� is UP, are not in a pure state. This result is
totally opposite to those hitherto obtained in the present pa-
per. Thus while �e1 ,e2� emitted in �17� without SOI for any
polarization of the ionizing radiation or in the presence of
SOI with LP, LCP or RCP photon, are always in a pure state,
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the same two electrons form a mixed spin state when the
absorbed light is UP and the SOI is taken into account.
Moreover, one of the four eigenvalues of the PT of this new
DM 
UP��� became negative in the range ��25° to �
�155° only. That is, photoelectron and Auger electron are in
a mixed spin-entangled state when the propagation direction

k̂�� ,�� for their diametric emission was lying in the above-
specified range. We next calculated the N�
UP����,
C�
UP����, and EF�
UP���� for the present DM. These three
measures are shown in Fig. 3�c�. Unlike in the previous three
cases, discussed in Secs. IV B 1, IV B 2, and IV B 3, now
N�
UP�����C�
UP���� for the simple reason �50�b�� that

UP��� does not represent a pure state. However, the differ-
ence between these two measures is not visible on the scale
of Fig. 3�c�. On comparing Figs. 3�a�–3�c�, one will obvi-
ously notice that the degree of entanglement is minimum
when the light used in �17� is UP. The UP ionizing radiation
in �17a� has reduced the degree of entanglement between
�e1 ,e2� further than that it was diluted when the incident

photon is CP. Also, the range of direction k̂�� ,�� over which
�e1 ,e2�, receding from Xe2+, are entangled in the present case
is smaller than that found for ionization by LP, LCP, or RCP
radiations.

V. CONCLUSIONS

Photoelectron and Auger electron, before their sequential
emission, were part of the same atom experiencing various
interactions with its other constituents and between them-
selves. Are these interactions experienced by the two elec-
trons, plus their common fraternity, sufficient to entangle
them while they are moving freely outside the atom? The
present paper has attempted to theoretically investigate this
question both without and with SOI taken into account.

When SOI is excluded, only the electrostatic Coulomb
forces are present. Consequently, both total orbital and total
spin angular momenta are individually conserved in each
step of a 2-DPI process. These four conservation conditions
completely separate the DM into its angular and spin parts.
But, it is only the spin part of the DM which determines the
QE properties of �e1 ,e2�. These properties are found to be
totally independent of all dynamics and kinematics. Instead,
these are merely determined by the total spins of each of
�A ,A+*

,A2+� participating in any 2-DPI. The spin conserva-
tion conditions suggest that there are only three possibilities.
But, �e1 ,e2� are entangled if and only if the condition S0

=Sf =Se−1/2, with the obvious requirement Se�1/2, is sat-
isfied. The degree of entanglement in this case is simply
given by p=1/ �2Se��1/3, always. Thus, electrostatic Cou-
lomb forces can produce EPR pairs of �e1 ,e2� possessing
only discrete degrees of nonseparability given by the above
expressions and decoupled from the dynamics as well as ki-
nematics, including the properties of the ionizing radiation,
of the process �1�. The experimental determination of this
Coulombic entanglement requires a knowledge of
�S0 ,Se ,Sf�. This is readily obtained by measuring energies of
the photoelectron e1 and the Auger electron e2 in the L-S
coupling in order to identify the electronic states of

�A ,A+*
,A2+� participating in 2-DPI. In the remaining two of

the three above-mentioned possibilities, �e1 ,e2� are never en-
tangled. In one of these three cases, �e1 ,e2� are neither in a
Werner �54� state nor entangled. The expressions derived
herein completely specify all properties of both Werner as
well as non-Werner bipartite Coulombic spin-states of
�e1 ,e2� produced in the 2-DPI process �1�.

The spin-orbit energy is well known �60� to be a conse-
quence of Dirac equation in relativistic quantum mechanics
and is of the order of �v /c�2 times the potential energy,
where v is the speed of the particle. It is thus a small rela-
tivistic correction to the electrostatic Coulomb force inside
an atom. Even this weak interaction is known to produce
significant effects �e.g., fine structure splitting of energy lev-
els �19�, polarization of photoelectrons �61�, etc.,� in atoms.
Most of such effects are, however, present in single �or
independent�-particle picture of an atom which, of course,
get modified by the many-body interactions representing lo-
calized correlation. In this paper we have shown that this
weak SOI is capable of significantly influencing even the
physical phenomena like QE which not only does not have a
single-particle analogue but also violates the principle of lo-
cal realism �1�.

In the presence of CSOIs, unlike in the case when SOI is
not taken into account, only the sums of total orbital and
total spin angular momenta are conserved in each of the two
steps of 2-DPI. Thus, the number of conservation conditions
for angular momenta is now reduced from four to two. Sec-
ond, inclusion of SOI requires �19� that one should use the j-
j coupling scheme for the angular momenta, rather than the
Russell-Saunders coupling applicable in the absence of SOI.
These changes render the DM to be nonseparable in angular
and spin parts. Consequently, the QE properties of a photo-
Auger-electron pair now heavily depend not only on both the
dynamics and kinematics of 2-DPI, but also on the properties
of the light used to ionize the atom. Now, one can no longer
a priori determine the entanglement between �e1 ,e2� without
first doing the dynamical calculations theoretically or using
any of the protocols �e.g., entanglement witness �31,42–45�,
etc.� hitherto successfully used experimentally. The specific
example considered herein show that the SOI reduces the
degree of entanglement between �e1 ,e2� compared to that
when this interaction is not taken into account. Entanglement
now continuously changes both with the directions of mo-
tions of �e1 ,e2� and with the polarization of the absorbed

photon, including, of course, the states of �A ,A+*
,A2+� par-

ticipating in 2-DPI. In addition, changing the ionizing radia-
tion from LP/CP to UP, converts a pure state to a mixed state
of �e1 ,e2�.

Thus, purely Coulomb interaction can produce �e1 ,e2� in
spin-states possessing a degree of entanglement given by the
analytical expression 1/2Se; it is otherwise totally indepen-
dent of all other features of the process �1� and is completely
predictable. In order to change the degree of this Coulombic
spin-entanglement, one or more of the electronic states par-
ticipating in the 2-DPI �1� needs to be changed. The inclu-
sion of SOI, on the other hand, couples this entanglement
with the dynamics and kinematics of the process �1�, and
with the properties of the absorbed photon. The degree of
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this entanglement varies continuously �even for the same
transitions participating in 2-DPI �1�� and one can choose its
value between zero �for a product state� to one �for a maxi-
mally entangled state� by a proper choice of the polarization
of the ionizing radiation and of the direction of emission of
�e1 ,e2�. All mixed states of �e1 ,e2�, generated without or
with SOI, have degree of entanglement less than 1. A pure,
Coulombic spin-state of �e1 ,e2� is always maximally en-
tangled; whereas, the inclusion of SOI can give us a photo-
Auger-electron pair in a pure state with its degree of en-
tanglement varying from zero to one.

Attempts �62� are currently being made to theoretically
develop relativistic QI theory based on the QE of particles
with rest mass different from zero moving with speeds com-
parable to that of a photon. Harshman �63�, citing mutually
contradictory results of such previous studies, has argued,
using relativistic both quantum mechanics and entangled
bases, that spin entanglement of massive, relativistic par-
ticles depends on their linear momenta. The present analysis,
on the other hand, is for a pair of electrons moving with
speeds much less than that of light in the framework of the
nonrelativistic quantum mechanics. It shows that QE proper-
ties of �e1 ,e2� will always depend, among other things, on
these electrons’ linear momenta whenever SOI is taken into
account; otherwise, it is totally unaffected by these and other
such physical quantities.

Cinelli et al. �64� showed that two photons produced in
spontaneous parametric down conversion �SPDC� in a non-
linear optical crystal are polarization-entangled if they are
emitted only in certain directions. This spatial characteristics
of entangled photon has subsequently been used �65� to en-
gineer polarization-momentum hyperentangled two-photon
states. This property, where the polarization and momentum
degrees of freedom each store one copy of the bipartite
photon-state produced in SPDC, has recently been used in an
experiment �66� to directly determine one of the several en-
tanglement measures, namely concurrence �36–38�, with a
single, local measurement on just one photon. These devel-
opments suggest that, analogous to the experiments �64,65�
with photons, it should be possible to engineer the spin-
momentum entanglement between two spin-entangled elec-
trons produced by 2-DPI in the presence of SOI. This raises
the subsequent possibility of experimental determination of
the spin-entanglement of a bipartite electronic state with a
single measurement, similar to the one done in Ref. �66� for
photons. This will make the gedanken experiment, originally
performed on electrons by Bohm �2� on EPR �1� proposition,
to carry out in a laboratory.

Finally, it is probably obvious from the discussions pre-
sented herein that whenever there is entanglement between
the sequentially emitted photoelectron e1 and the Auger elec-
tron e2, without or with SOI, it is due completely as well as
exclusively to the internal forces and/or the electronic states
of �A ,A+*

,A2+� participating in the process �1�. External con-
ditions and/or laboratory environments have little role to
play in it. Also, generation of the suggested entanglement
does not require any special external preparations, whatso-
ever, which may lead to the coupling of the spins of �e1 ,e2�
with the environment out side the target or other sources of

decoherence and/or dissipation. Consequentially, the present
entanglement is least prone to the harmful effects of deco-
herence and dissipation, usually produced by external condi-
tions.
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APPENDIX A: DENSITY MATRIX FOR THE ANGLE- AND
SPIN-RESOLVED, SEQUENTIAL EMISSION OF A

PHOTOELECTRON AND AN AUGER ELECTRON FROM
AN ATOM WITHOUT TAKING SPIN-ORBIT

INTERACTION INTO ACCOUNT

This appendix contains a derivation of the DM used in the
discussion in Sec. III of this paper. In order to analyze the
Einstein-Podolsky-Rosen-Bohm correlation �i.e., spin-
entanglement� of the bipartite state formed by the photoelec-
tron e1 and the Auger electron e2, it is necessary that our DM
for the two-step process �1� be both angle and spin resolved.
In the following derivation, we do not take SOI into account
not only in none of the bound electronic states �A�, �A+*

�, and
�A2+�, but also in the continuum of either of the two ejected
electrons �e1 ,e2�. Only the electrostatic Coulomb forces for
particles participating in 2-DPI process �1� are thus included.
In addition, neither the photoionization operator Fp in the E1
approximation, nor the Auger emission operator Fa, depends
upon any spin variables. In such situations, L-S coupling �19�
becomes applicable. Consequently, each of the orbital angu-
lar momenta and spin angular momenta are individually con-
served in step �1a� as well in the step �1b� of the process�1�.

We, therefore, have

�r
� + L�0 = L� e + �1

� �A1a�

and

L� e = L� f + �2
� �A2a�

for the conservation of the orbital angular momenta in the

respective two steps of �1�. Here, �L0
� , Le

� ,Lf
� � are the total

orbital angular momenta of �A ,A+*
, A2+�, respectively;

whereas, �1
� and �2

� are those of the respective photoelectron
e1 and Auger electron e2. Similarly, for the conservation of
the spin angular momenta we have

S�0 = S�e + s�1
�=
1

2
� �

1
� �A1b�

and

S�e = S� f + s�2
�=
1

2
� �

2
� . �A2b�

The quantities ��S0
� � , �Se

� � , �Sf
� � , �s�1 � , �s�2 � � in the above two

equations represent, respectively, total spins of each of the
species �A ,A+*

,A2+, e1, e2� participating in the Auger emis-
sion process �1�. Further, we use the symbols
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ML0
,MLe

,MLf
,MS0

,MSe
,MSf

for representing, along our
quantization axis �specified in Fig. 1�, projections of the cor-
responding angular momenta defined in Eqs. �A1� and �A2�.
One can now readily write �19� �A�= �L�0S�0ML0

MS0
�,�A+*

�
= �L� eS�eMLe

MSe
�, and �A2+�= �L� fS� fMLf

MSf
� for the electronic

states of A ,A+*
, and A2+, respectively, in the L-S coupling.

In the present as well as in the following appendix,
��1û1k�1�− and ��2û2k�2�− are the continuum spin orbitals of
the photoelectron e1 and Auger electron e2, respectively. A
minus superscript on these means that each of the continuum
orbitals of e1 and of e2 individually satisfies asymptotic in-
coming wave boundary conditions �67� appropriate for
photoionization as well as for Auger emission.

In order to calculate the desired DM, we first need to
know the DO 
i present in Eqs. �2�. It, for a non-interacting
system of an unpolarized atom �in the L-S coupling� plus a
polarized photon, is given by �see, for example Ref. �20��


i = 
0 � 
r =
1

�2L0 + 1��2S0 + 1� �
ML0

MS0

�0;1mr��0;1mr� ,

�A3�

where we have defined �0;1mr���0� �1mr�. �In various equa-
tions in this and the following appendix, we have inter-
changeably used letters �0,e , f� for A ,A+*

,A2+� inside
Dirac’s bra and ket notations, for brevity.� An element
�which is diagonal in ûi and k�i, but nondiagonal in �i, with
i=1, 2� of the DO defined in Eq. �2b� is

�f ;�1û1k�1;�2û2k�2�
 f�f ;�1�û1k�1;�2�û2k�2�

=K �
MLf

MSf

�f ;�1û1k�1;�2û2k�2�FaFp
iFp
†Fa

†


�f ;�1�û1k�1;�2�û2k�2� . �A4�

In this expression we have summed over all the degenerate
states �A2+� of A2+ in the L-S coupling. On substituting �A3�
and using the completeness of the states �A+*

� of A+*
, the

above DM takes the following form:

�f ;�1û1k�1;�2û2k�2�
 f�f ;�1�û1k�1;�2�û2k�2�

=
K

�2L0 + 1��2S0 + 1� �
ML0

MLe
MLe

� MLf

MS0
MSe

MSe
� MSf

�f ;�2û2k�2�Fa�e�


�e;�1û1k�1�Fp�0;1mr��0;1mr�Fp
†�e�;�1�û1k�1�


�e��Fa
†�f ;�2�û2k�2� . �A5�

Here, �e� and �e�� represent degenerate states of the excited

photoion A+*
, i.e., �e�= �L� eS�eMLe

MSe
� and �e��

= �L� eS�eMLe
� MSe

� �. Further in �A5�, �e ;�1û1k�1�
=A��A+*

� ��1û1k�1�−� is an antisymmetrized state of the ex-

cited photoion A+*
and of the photoelectron e1, with A an

antisymmetrization operator. Likewise, �f ;�2û2k�2�

=A��A2+� ��2û2k�2�−� is an antisymmetrized state of the dica-
tion A2+ and of the Auger electron e2.

Expression �A5� represents a four-dimensional matrix for
a 2
2 system which contains, among other things, complete
information on photoelectron e1 and Auger electron e2
ejected sequentially in the two-step process �1� taking place
in the L-S coupling in the absence of SOI. The nondiagonal
��1���1 ,�2���2� elements in �A5� represent the coherent
effects; whereas, diagonal ��1�=�1 ,�2�=�2� elements de-
scribe angular distribution of spin-resolved e1 and e2. For
diagonal elements, �A5� simplifies to a form identical to that
given elsewhere ��22,28�, see, for example, Eq. �14.4� in Ref.
�22��. It is obvious that the DM �A5� is Hermitian, i.e.,

�f ;�1û1k�1;�2û2k�2�
 f�f ;�1�û1k�1;�2�û2k�2�

=�f ;�1�û1k�1;�2�û2k�2�
 f�f ;�1û1k�1;�2û2k�2�*. �A6�

The next task for us is to evaluate the matrix elements of
the E1 photoionization operator Fp and of the Auger emis-
sion operator Fa occurring on the right-hand side of �A5�. In
order to calculate the matrix elements of Fp, one needs to
introduce the couplings suggested in Eq. �A1a� for the orbital
and in �A1b� for the spin angular momenta for photoioniza-
tion �1a� in L-S coupling. We, therefore, have for the cou-
plings expressed on the left-hand side of Eqs. �A1a�,

�0;1mr� = �
LML

�− 1�1−L0−ML	2L + 1
 L0 1 L

ML0
mr − ML

�

��L01�LML;S0MS0

� . �A7�

Here, �.. .. ..

.. .. .. � is a 3-j symbol �49�. Similarly, angular mo-

mentum couplings shown on the right-hand side of Eqs. �A1�
give

�e;�1û1k�1�

= �− 1��1/2�−Le−Se �
�1m1�1

�
LML
SMS

i�1�− 1��1−ML−MS e−i��1


	�2L + 1��2S + 1�
 Le �1 L

MLe
m1 − ML

�


 Se

1
2 S

MSe
�1 − MS

� 
 �Y�1

m1�k̂1��*


�D�1�1

1/2 ��1��*��Le�1�LML;
Se
1

2
�SMS�−

. �A8�

In Eq. �A8�, ��1
is the Coulomb phase �26� for the �1th

partial wave of the photoelectron e1; D are the well-known
rotational harmonics �49� with �1�	1 ,�1 ,0� the Euler angles
which rotate the polar axis of the space-frame �shown in Fig.

1� into the spin-polarization direction u1̂. Further in �A8�, the
coupled state ��Le�1�LML ; �Se

1
2

�SMS�− represents the excited

photoion A+*
in its �A+*

� electronic state and the photoelec-
tron e1 with its respective orbital and spin angular momenta

�1
� and s�1 �see, Eqs. �A1��. The E1 photoionization matrix
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element needed in the DM �A5� is now readily calculated to
be

Pe � �e;�1û1k�1�Fp�0;1mr�

= �− 1�
1
2

+L0+Le+Se+MS0	2S0 + 1 �
�1m1�1

LML

�− i��1�− 1��1ei��1


 �2L + 1�
 Le �1 L

MLe
m1 − ML

�
 L0 1 L

ML0
mr − ML

�

� Se

1

2
S0

MSe
�1 − MS0


Y�1

m1�k̂1�D�1�1

1/2 ��1�


��Le�1�L�Fp��L01�L� . �A9�

In arriving at this result, use has been made of the conserva-
tion conditions �A1�. Although, not explicitly specified, the
bracket ��Le�1�L �Fp � �L01�L� in the above equation depends
upon the multiplicities �2S0+1� and �2Se+1� of the eigen-
states of A and A+*, respectively, in the L-S coupling. This, in
turn, affects the energy �1=h�r− �Ee−E0� available to the
photoelectron e1.

For calculating the Auger emission amplitudes present in
�A5�, one needs

�f ;�2û2k�2� = �− 1�1/2 �
�2m2�2
AaBb

i�2�− 1��2−Lf−Sf−a−b


e−i��2	�2A + 1��2B + 1� 
 
 Lf �2 A

MLf
m2 − a

�


 Sf

1
2 B

MSf
�2 − b

�

�Y�2

m2�k̂2��*�D�2�2

1/2 ��2��*��Lf�2�Aa;
Sf
1

2
�Bb�−

�A10�

to represent the �A2++e2� system. Here, ��2
is the Coulomb

phase for the �2th partial wave of the Auger electron e2;
�2�	2 ,�2 ,0� are the Euler angles which rotate the polar axis
of the space frame �shown in Fig. 1� into the spin-

polarization direction u2̂ of e2. Further in �A10�,
��Lf�2�Aa ; �Sf

1
2

�Bb�− is a state of the dication A2+ and Auger
electron e2 coupled according to the scheme expressed in
Eqs. �A2�. The Auger decay matrix element, needed in the
DM �A5�, is now readily calculated to be

Ae � �f ;�2û2k�2�Fa�A+*
�

= �− 1�−�1/2�+Lf+Sf+MLe
+MSe	�2Le + 1��2Se + 1�


 �
�2m2�2

�− i��2�− 1�−�2ei��2
 Lf �2 Le

MLf
m2 − MLe

�



 Sf
1
2 Se

MSf
�2 − MSe

�Y�2

m2�k̂2�D�2�2

1/2 ��2�


��Lf�2�Le�Fa�Le� �A11�

The derivation of �A11� depends on the application of the
angular momentum conservation conditions �A2�; the
bracket ��Lf�2�Le �Fa �Le� in the above equation implicitly in-
volves the respective multiplicities �2Se+1� and �2Sf +1� of
the eigenstates of A+* and A2+ in the L-S coupling which
determines the energy �2=Ee−Ef of the Auger electron e2.

Next, we need to calculate the DM �A5�. This is obtained
by substituting in �A5�, the E1 photoionization and Auger
decay amplitudes Pe and Ae, respectively. The simplification
of the consequent expression for the DM involves a heavy
use of Racah algebra. In order to make this process easier,
we first calculate the following two expressions separately:

1

2S0 + 1 �
ML0

MS0

Pe�Pe��
†

�
1

2S0 + 1 �
ML0

MS0

�e;�1û1k�1�Fp�0;1mr�


�0;1mr�Fp
†�e�;�1�û1k�1� �A12a�

and

�
MLf

MSf

Ae�Ae��
† � �

MLf
MSf

�f ;�2û2k�2�Fa�e��e��Fa
†�f ;�2�û2k�2� .

�A12b�

Evaluation of �A12a� involves substitution of �A9� and of its
Hermitian conjugate, single use of the identity �6.2.8� from
Edmonds �49�, and some other minor simplifications;
whereas, calculation of �A12b� requires substitution of �A11�
and of its Hermitian conjugate, application of the identity
�6.2.8� two times, including other simplifications.

The final, simplified forms of �A12a� and of �A12b� thus
obtained are then substituted in the DM �A5� and the remain-
ing sums over �MLe

,MLe
� ,MSe

,MSe
� � are evaluated using iden-

tities �14.42�, �3.7.8�, and �6.2.8�. The first identity is taken
from de Shalit and Talmi �68�, while the last two are given in
Ref. �49�. These and some other simplifications help us in
writing the final expression for the DM in the following
product of two independent terms:

�f ;�1u1̂k1
� ;�2 u2̂ k2

� �
 f�f ;�1� u1̂ k1
� ;�2� u2̂ k2

� �

=
d3��mr�

d�1dk1̂dk2̂

��S0;Se;Sf ;u1̂,u2̂��1�2,�1��2�
. �A13�

Here,
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d3��mr�

d�1dk1̂dk2̂

= �− 1�mr+L0+Le+Lf
�2Le + 1�K
4��2L0 + 1� �

�1�1�L1LL�
�2�2�L2MLr

�− 1��1�+L+L2�2Lr + 1�	�2L1 + 1��2L2 + 1�
�1 �1� L1

0 0 0
�
�2 �2� L2

0 0 0
�



 1 1 Lr

mr − mr 0
�
L2 L1 Lr

M − M 0
� 
 �1 1 Lr

L L� L0
���2 �2� L2

Le Le Lf
���1 �1� L1

L L� Lr

Le Le L2
�


�YL1

−M�k̂1��*�YL2

M �k̂2��*Pe�Le�1;L01;L��Pe�Le�1�;L01;L���*Ae�Lf�2;Le;Le��Ae�Lf�2�;Le;Le��* �A14a�

with

Pe = �− i��1�− 1��1ei��1�2L + 1�	2�1 + 1��Le�1�L�Fp��L01�L� �A14b�

containing the E1 photoionization amplitude ��Le�1�L �Fp � �L01�L� and

Ae = �− i��2�− 1��2ei��2	2�2 + 1��Lf�2�Le�Fa�Le� �A14c�

depending upon the Auger decay amplitude ��Lf�2�Le �Fa �Le�.
On the other hand, the second term on the right-hand side of �A13� is given by

��S0,Se,Sf ;u1̂,u2̂��1�2,�1��2�
= �− 1�S0+Sf−2Se+�1�+�2��2Se + 1� �

snm1m2

�− 1�s+n�2s + 1�
1/2 1/2 s

�1 − �1� m1
�
1/2 1/2 s

�2 − �2� m2
�


�1/2 1/2 s

Se Se S0
��1/2 1/2 s

Se Se Sf
��Dm1,n

s �	1,�1,0��*�Dm2,−n
s �	2,�2,0��*. �A15�

Here, �.. .. ..

.. .. .. � and �.. .. ..

.. .. ..

.. .. .. � are 6-j and 9-j symbols �49�,

respectively.

APPENDIX B: DENSITY MATRIX FOR THE ANGLE- AND
SPIN-RESOLVED, SEQUENTIAL EMISSION OF A

PHOTOELECTRON AND AN AUGER ELECTRON FROM
AN ATOM TAKING SPIN-ORBIT INTERACTION

INTO ACCOUNT

In the following, we present details of the derivation of
the DM used in Sec. IV for studying spin entanglement be-
tween a photoelectron e1 and an Auger electron e2 emitted
when both electrostatic Coulomb as well as spin-orbit inter-
actions in each of the two steps of the process �1� are fully
taken into account. �However, both the E1 operator for the
photoionization step �1a� and the interelectronic interaction
ejecting the Auger electron in �1b� are still independent of
the spins.� In such a physical situation, neither the orbital nor
the spin angular momentum will individually be conserved
in any of the steps in �1�, i.e., L-S coupling will not be
applicable �19�. Hence, one cannot use either of the Eqs.
�A1� or �A2�. On the other hand, the total angular momenta
will now be conserved �19�. These are given �19� by

�� r + J�0 = J�e + j�1�=�� 1 + s�1�=� 1
2
��1�� �B1a�

and

J�e = J� f + j�2�=�� 2 + s�2�=� 1
2
��2�� �B1b�

for the two respective steps of the process �1�. Here, J�0=L�0

+S�0, J�e=L� e+S�e, and J� f =L� f +S� f are the total angular momenta
of A, A+*

, and of A2+, respectively. Let us represent by
�M0 ,Me ,Mf� the projections of �J�0 ,J�e ,J� f� along our space
quantization axis �see Fig. 1�. Then Ref. �19�, �A�= �J0M0�,
�A+*

�= �JeMe�, and �A2+�= �JfMf� are the respective electronic
states of each of the three atomic species participating in the
process �1�. Thus, j-j coupling �19� describes the physical
situation arising from the inclusion of the SOI in our study of
the process �1�. Unless mentioned otherwise, the other sym-
bols, used in this appendix, have their meanings the same as
specified elsewhere in this paper.

The DO �corresponding to the one in Eq. �A3�� for repre-
senting the noninteracting system of a photon and unpolar-
ized atom is now given by


i = 
0 � 
r =
1

�2J0 + 1��M0

�0;1mr��0;1mr� . �B2�

An element of the required DO �2b� then becomes

�f ;�1û1k�1;�2û2k�2�
 f�f ;�1�û1k�1;�2�û2k�2�

= K�
Mf

�f ;�1û1k�1;�2û2k�2�FaFp
iFp
†Fa

†�f ;�1�û1k�1;�2�û2k�2� .

�B3�

This equation includes sum over all the Zeeman levels �19�
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of A++ which remain unresolved as well as unobserved. Sub-
stitution of Eq. �B2� in �B3� yields

�f ;�1û1k�1;�2û2k�2�
 f�f ;�1�û1k�1;�2�û2k�2�

=
K

�2J0 + 1� �
M0 Mf

�f ;�1û1k�1;�2û2k�2�FaFp�0;1mr�


�0;1mr�Fp
†Fa

†�f ;�1�û1k�1;�2�û2k�2� �B4�

On twice using in �B4� the completeness relation
�Me

�JeMe��JeMe � =1��Me
�e��e� for the magnetic states of

the excited photoion A+*, one finds that

K
�2J0 + 1� �

M0 Me Me� Mf

�f ;�2û2k�2�Fa�e�


�e;�1û1k�1�Fp�0;1mr��0;1mr�Fp
†�e�;�1�û1k�1�


�e��Fa
†�f ;�2�û2k�2� . �B5�

In analogy with the DM �A6�, suitable for L-S coupling, the
present DM �B5�, appropriate for j-j coupling, is Hermitian
as well.

In order to calculate the matrix elements of the photoion-
ization and of Auger emission operators Fp and Fa, respec-
tively, we follow procedures similar to those used in Appen-
dix A with the difference that unlike therein, we now need to
work in the j-j coupling. Consequently, we now have �ac-
cording to the left-hand side of Eq. �B1a��,

�0;1mr� = �
JMJ

�− 1�1−J0−MJ	2J + 1
 J0 1 J

MJ0
mr − MJ

�

��J01�JMJ� �B6a�

for the �photon � atom� system before the interaction be-
tween the two takes place. Similarly, taking the coupling of
the angular momenta on the right-hand side of Eq. �B1b� into
account, we express

�e;�1û1k�1� = �− 1��1/2�−Je �
�1m1�1
j1mj1

�
JMJ

i�1�− 1��1+j1−mj1
−MJ


e−i��1j1	�2j1 + 1��2J + 1�
 �1
1
2 j1

m1 �1 − mj1

�


 Je j1 J

Me mj1 − MJ
�


�Y�1

m1�k̂1��*�D�1�1

1/2 ��1��*��Jej1�JMJ�− �B6b�

in terms of the j-j coupled states ��Jej1�JMJ�− of the �A+*

+e1� system.
In order to obtain an expression for the matrix element of

the transition �1a� in j-j coupling, we use states �B6� and find

Pe � �e;�1û1k�1�Fp�0;1mr�

= �− 1�−1/2 �
�1m1�1
j1mj1

�− i��1


�− 1��1+mj1ei��1j1


 	2j1 + 1
 �1
1
2 j1

m1 �1 − mjl

�Y�1

m1�k̂1�D�1�1

1/2 ��1�


��e;j1mj1

− �Fp�0;1mr� . �B7a�

Here we have defined

��e;j1mj1

− �Fp�0;1mr� � �− 1�1−J0−Je+j1�
JMJ

�− 1�2MJ�2J + 1�


 
 J0 1 J

M0 mr − MJ
�



 Je j1 J

Me mj1 − MJ
��Jej1�F�J��J01�

�B7b�

with

��Jej1�JMJ�Fp��J01�J�MJ�� = �Jej1�F�J��J01��JJ��MJMJ�

�B7c�

obtained by using the conservation condition �B1a� for the
total angular momentum applicable to the step �1a� of the
process �1�. In order to obtain a simplified form for �B7�, and
hence for the required DM, let us rewrite the above expres-
sion using the angular momentum transferred �69� jt=�r
− j1=Je−J0 from absorbed photon to the photoelectron e1
observed along with its spin polarization. �Here, the excited
photoion A+*

remains unobserved �69�. The definition of the
angular momentum transfer is readily obtained from the con-
servation condition �B1a�.� This scheme of recoupling of the
angular momenta can be shown �69� to reduce
��e;j1mj1

− �Fp �0;1mr� to the following form:

��e;j1mj1

− �Fp�0;1mr� = �− 1�−J0−Je−M0−mj1�
jtmt

�2jt + 1�


 
 1 j1 jt

mr − mj1 mt
�
 Je J0 jt

Me − M0 mt
�


�Jej1�F�jt��J01� , �B8a�

where

�Jej1�F�jt��J01� � �
J

�− 1�J�2J + 1�� 1 J0 J

Je j1 jt
�


�Jej1�F�J��J01� . �B8b�

Substitution of �B8a� in �B7a� and some subsequent simpli-
fications lead to the following:
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Pe = �− 1�−�1/2�−J0−Je−M0 �
�1m1�1
j1mj1

�
jtmt

�− i��1�− 1��1ei��1j1�2jt + 1�


	2j1 + 1
 �1
1
2 j1

m1 �1 − mjl

�
 1 j1 jt

mr − mj1 mt
�



 Je J0 jt

Me − M0 mt
�Y�1

m1�k̂1�D�1�1

1/2 ��1�


�Jej1�F�jt��J01� , �B9�

the final form of the matrix element for the transition �1a� in
E1 approximation in the j-j coupling.

Let us next evaluate the matrix element for the Auger
transition �1b�. Taking the angular momentum coupling ex-
pressed on the right-hand side of Eq. �B1b� into account, a
state of the �A2++e2� system is given by

�f ;�2û2k�2� = �− 1��1/2�−Jf �
�2m2�2
j2mj2

�
JMJ

i�2�− 1��2+j2−mj2
−MJe−i��2j2


 	�2j2 + 1��2J + 1�
 �2
1
2 j2

m2 �2 − mj2

�


 Jf j2 J

Mf mj2 − MJ
�


�Y�2

m2�k̂2��*�D�2�2

1/2 ��2��*��Jf j2�JMJ�−. �B10�

Here, ��Jf j2�JMJ�− is the j-j coupled state of �A2++e2�. The
above expression can also be written in analogy with the
state �B6b� for the �A+*

+e1� system. Now the Auger decay
matrix element is readily calculated to be

Ae � �f ;�2û2k�2�Fa�A+*
� = �− 1�−�1/2�+Jf+Me �

�2m2�2
j2mj2

�− i��2


�− 1��2−j2+mj2ei��2j2	�2j2 + 1��2Je + 1�



 �2
1
2 j2

m2 �2 − mj2

�
 Jf j2 Je

Mf mj2 − Me
�


 Y�2

m2�k̂2�D�2�2

1/2 ��2���Jf j2�Je�Fa�Je� �B11�

in the j-j coupling. In arriving at �B11�, use has been made
of the conservation condition �B1b� in the following form:

��Jf j2�JMJ�Fa�JeMe� = ��Jf j2�Je�Fa�Je��JJe
�MJMe

.

The final step in the calculation of the DM for the process
�1� in the j-j coupling requires the substitutions of the matrix
elements �B9� and �B11� in �B5� and simplification of the
subsequent expression using Racah algebra. However, one of
the simpler ways to do it is to first separately evaluate and
simplify the following two expressions which are simulta-
neously present in �B5�:

�
M0

Pe�Pe��
† � �

M0

�e;�1û1k�1�Fp�0;1mr��0;1mr�Fp
†�e�;�1�û1k�1�

�B12�

and

�
Mf

Ae�Ae��
† � �

Mf

�f ;�2û2k�2�Fa�e��e��Fa
†�f ;�2�û2k�2� .

�B13�

Simplification procedure for �B12� involves, among other
things, �i� substitution of �B9� and of its Hermitian conju-
gate, �ii� double use of the identity �14.42� given in Ref. �68�,
and �iii� a single application of Eq. �2.19� from Ref. �70�. In
order to simplify �B13�, on the other hand, one merely needs,
inter alia, to substitute �B11� and twice use Eq. �14.42� from
de Shalit and Talmi �68�.

The simplified forms of each of �B12� and �B13�, thus
obtained, are then substituted in the DM �B5� and the re-
maining sums over Me, Me� are readily evaluated using the
orthonormality of 3-j symbols �see, for example, Eq. �3.7.8�
in �49��. A few other simplifications help us in writing the
DM for the process �1� in j-j coupling when SOI is taken
into account in the following final form:

�f ;�1û1k�1;�2û2k�2�
 f�f ;�1�û1k�1;�2�û2k�2� = �− 1��1�+�2� �
S1 MS1

NS1

S2 MS2
NS2


 1
2

1
2 S1

�1 − �1� MS1

�
 1
2

1
2 S2

�2 − �2� MS2

�

�DMS1

NS1

S1 ��1��*�DMS2
NS2

S2 ��2��*ANS1
NS2

S1S2 �mr;k�1k�2� , �B14a�

where we have defined
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ANS1
NS2

S1S2 �mr;k�1,k�2� = �− 1�1+mr+J0+2Je+Jf
�2Je + 1�K
4��2J0 + 1� �

�1�1�j1j1�L1ML1
J1J2jt

�2�2�j2j2�L2ML2
MLrjt�

�− 1��1�+�2−j2�+jt 
 �2S1 + 1��2S2 + 1��2J1 + 1��2J2 + 1��2Lr

+ 1�	�2L1 + 1��2L2 + 1�
�1 �1� L1

0 0 0
�
�2 �2� L2

0 0 0
�
 L1 S1 J1

ML1
NS1

− M
�
 L2 S2 J2

ML2
NS2

M
�
 1 1 Lr

mr − mr 0
�



 J1 J2 Lr

− M M 0
��Je Je J2

jt jt� J0
��Je Je J2

j2 j2� Jf
���1 �1� L1

1
2

1
2 S1

j1 j1� J1
���2 �2� L2

1
2

1
2 S2

j2 j2� J2
�� 1 1 Lr

j1 j1� J1

jt jt� J2
�


�YL1

ML1�k̂1��*�YL2

ML2�k̂2��*Pe�Jej1;J01; jt;�1��Pe�Jej1�;J01; jt�;�1���
*Ae�Jf j2;Je;�2��Ae�Jf j2�;Je;�2���

* �B14b�

with

Pe�Jej1;J01; jt;�1� = �− i��1ei��1j1�− 1��1+jt�2jt + 1�	�2�1 + 1��2j1 + 1��Jej1�F�jt��J01� �B15a�

and

Ae�Jf j2;Je;�2� = �− i��2ei��2j2	�2�2 + 1��2j2 + 1���Jf j2�Je�Fa�Je� �B15b�

containing the photoionization matrix element �Jej1 �F�jt� �J01� and the Auger decay element ��Jf j2�Je �Fa �Je�, respectively,
both defined in the j-j coupling in Eqs. �B8b� and �B11�.

The four diagonal elements of the matrix �B14� are

�
 f�1
2

, 1
2

; 1
2

, 1
2

� � f ; 1
2 û1k�1; 1

2 û2k�2�
 f� f ; 1
2 û1k�1; 1

2 û2k�2� = − 1
2A00

00 − g�û1;k�1,k�2� − g�û2;k�1,k�2� − h�û1, û2;k�1,k�2�,�
 f�1
2

,− 1
2

; 1
2

,− 1
2

� � f ; 1
2 û1k�1;− 1

2 û2k�2�
 f� f ; 1
2 û1k�1;− 1

2 û2k�2� = − 1
2A00

00 − g�û1;k�1,k�2� + g�û2;k�1,k�2� + h�û1, û2;k�1,k�2�,�
 f�− 1
2

, 1
2

;− 1
2

, 1
2

� � f ;− 1
2 û1k�1; 1

2 û2k�2�
 f� f ;− 1
2 û1k�1; 1

2 û2k�2� = − 1
2A00

00 + g�û1;k�1,k�2� − g�û2;k�1,k�2� + h�û1, û2;k�1,k�2�,�
 f�− 1
2

,− 1
2

;− 1
2

,− 1
2

� � f ;− 1
2 û1k�1;− 1

2 û2k�2�
 f� f ;− 1
2 û1k�1;− 1

2 û2k�2� = − 1
2A00

00 + g�û1;k�1,k�2� + g�û2;k�1,k�2� − h�û1, û2;k�1,k�2� . �B16a�

Here, we have defined

g�û1;k�1,k�2� � 1
2	3�− 1

	2
s1e−i	1A10

10 + c1A00
10 + 1

	2
s1ei	1A−10

10 �,g�û2;k�1,k�2� �
1

2	3

−

1
	2

s2e−i	2A01
01 + c2A00

01

+
1
	2

s2ei	2A0−1
01 �,h�û1, û2;k�1,k�2� �

1

6
−
1
	2

c1s2e−i	2A01
11 + c1c2A00

11 +
1
	2

c1s2ei	2A0−1
11 � +

1

2
s1s2e−i�	1+	2�A11

11

−
1
	2

s1c2e−i	1A10
11 −

1

2
s1s2ei�	2−	1�A1−1

11 
 −
1

2
s1s2e−i�	2−	1�A−11

11 +
1
	2

s1c2ei	1A−10
11 +

1

2
s1s2ei�	1+	2�A−1−1

11 � .

�B16b�

Each of the 12 nondiagonal elements of the DM �B14� is, on
the other hand, given by

�
 f�1
2

, 1
2

; 1
2

,− 1
2

� � f ; 1
2 û1k�1; 1

2 û2k�2�
 f� f ; 1
2 û1k�1;− 1

2 û2k�2�
= − G−�û2;k�1,k�2� − H�1��û1, û2;k�1,k�2� ,

�
 f�1
2

, 1
2

;− 1
2

, 1
2

� � f ; 1
2 û1k�1; 1

2 û2k�2�
 f� f ;− 1
2 û1k�1; 1

2 û2k�2�
= − G−�û1;k�1,k�2� − H�2��û1, û2;k�1,k�2� ,

�
 f�1
2

, 1
2

;− 1
2

,− 1
2

� � f ; 1
2 û1k�1; 1

2 û2k�2�
 f� f ;− 1
2 û1k�1;− 1

2 û2k�2�
= − H�3��û1, û2;k�1,k�2�;

�
 f�1
2

,− 1
2

; 1
2

, 1
2

� � f ; 1
2 û1k�1;− 1

2 û2k�2�
 f� f ; 1
2 û1k�1; 1

2 û2k�2�
= G+�û2;k�1,k�2� + H�4��û1, û2;k�1,k�2� ,

�
 f�1
2

,− 1
2

;− 1
2

, 1
2

� � f ; 1
2 û1k�1;− 1

2 û2k�2�
 f� f ;− 1
2 û1k�1; 1

2 û2k�2�
= H�5��û1, û2;k�1,k�2� ,
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�
 f�1
2

,− 1
2

;− 1
2

,− 1
2

� � f ; 1
2 û1k�1;− 1

2 û2k�2�
 f� f ;− 1
2 û1k�1;− 1

2 û2k�2�
= − G−�û1;k�1,k�2� + H�2��û1, û2;k�1,k�2�;

�
 f�− 1
2

, 1
2

; 1
2

, 1
2

� � f ;− 1
2 û1k�1; 1

2 û2k�2�
 f� f ; 1
2 û1k�1; 1

2 û2k�2�
= G+�û1;k�1,k�2� + H�6��û1, û2;k�1,k�2� ,

�
 f�− 1
2

, 1
2

; 1
2

,− 1
2

� � f ;− 1
2 û1k�1; 1

2 û2k�2�
 f� f ; 1
2 û1k�1;− 1

2 û2k�2�
= H�7��û1, û2;k�1,k�2� ,

�
 f�− 1
2

, 1
2

;− 1
2

,− 1
2

� � f ;− 1
2 û1k�1; 1

2 û2k�2�
 f� f ;− 1
2 û1k�1;− 1

2 û2k�2�
= − G−�û2;k�1,k�2� + H�1��û1, û2;k�1,k�2�;

�
 f�− 1
2

,− 1
2

; 1
2

, 1
2

� � f ;− 1
2 û1k�1;− 1

2 û2k�2�
 f� f ; 1
2 û1k�1; 1

2 û2k�2�
= − H�8��û1, û2;k�1,k�2� ,

�
 f�− 1
2

,− 1
2

; 1
2

,− 1
2

� � f ;− 1
2 û1k�1;− 1

2 û2k�2�
 f� f ; 1
2 û1k�1;− 1

2 û2k�2�
= G+�û1;k�1,k�2� − H�6��û1, û2;k�1,k�2� ,

�
 f�− 1
2

,− 1
2

;− 1
2

, 1
2

� � f ;− 1
2 û1k�1;− 1

2 û2k�2�
 f� f ;− 1
2 û1k�1; 1

2 û2k�2�
= G+�û2;k�1,k�2� − H�4��û1, û2;k�1,k�2� , �B16c�

where

G−�û1;k�1,k�2� �
1
	6


1

2
�1 − c1�e−i	1A10

10 −
1
	2

s1A00
10

+
1

2
�1 + c1�ei	1A−10

10 � ,

G−�û2;k�1,k�2� �
1
	6


1

2
�1 − c2�e−i	2A01

01 −
1
	2

s2A00
01

+
1

2
�1 + c2�ei	2A0−1

01 � ,

G+�û1;k�1,k�2� �
1
	6


1

2
�1 + c1�e−i	1A10

10 +
1
	2

s1A00
10

+
1

2
�1 − c1�ei	1A−10

10 � ,

G+�û2;k�1,k�2� �
1
	6


1

2
�1 + c2�e−i	2A01

01 +
1
	2

s2A00
01

+
1

2
�1 − c2�ei	2A0−1

01 � ,

H�1��û2, û2;k�1,k�2� �
1

3	2
�H1

�1��û1, û2;k�1,k�2� + H2
�1�


�û1, û2;k�1,k�2� + H3
�1��û1, û2;k�1,k�2�

+ H4
�1��û1, û2;k�1,k�2�� ,

H�2��û1, û2;k�1,k�2� �
1

3	2
�H1

�2��û1, û2;k�1,k�2� + H2
�2�


�û1, û2;k�1,k�2� + H3
�2��û1, û2;k�1,k�2�

+ H4
�2��û1, û2;k�1,k�2�� ,

H�3��û1, û2;k�1,k�2� � 1
3�H1

�3��û1, û2;k�1,k�2� −
1

2	2
s1��1 + c2�


ei	2A0−1
11 + �1 − c2�e−i	2A01

11� + 1
4 �1 + c1�


�1 + c2�ei�	1+	2�A−1−1
11 + 1

4 �1 − c1��1

− c2�e−i�	1+	2�A11
11 + 1

4 �1 − c1��1

+ c2�ei�	2−	1�A1−1
11 + 1

4 �1 + c1��1

− c2�e−i�	2−	1�A−11
11 � ,

H�4��û1, û2;k�1,k�2� �
1

3	2
�H1

�4��û1, û2;k�1,k�2� + H2
�4�


�û1, û2;k�1,k�2� + H3
�4��û1, û2;k�1,k�2�

+ H4
�4��û1, û2;k�1,k�2�� ,

H�5��û1, û2;k�1,k�2� � 1
3�H1

�5��û1, û2;k�1,k�2� −
1

2	2
s1��1 − c2�


ei	2A0−1
11 + �1 + c2�e−i	2A01

11� + 1
4 �1 + c1�


�1 − c2�ei�	1+	2�A−1−1
11 + 1

4 �1 − c1��1

+ c2�e−i�	1+	2�A11
11 + 1

4 �1 − c1��1

− c2�ei�	2−	1�A1−1
11 + 1

4 �1 + c1��1

+ c2�e−i�	2−	1�A−11
11 � ,

H�6��û1, û2;k�1,k�2� �
1

3	2
�H1

�6��û1, û2;k�1,k�2� + H2
�6�


�û1, û2;k�1,k�2� + H3
�6��û1, û2;k�1,k�2�

+ H4
�6��û1, û2;k�1,k�2�� ,

H�7��û1, û2;k�1,k�2� �
1

3
H1
�7��û1, û2;k�1,k�2� +

1

2	2
s1��1 + c2�


ei	2A0−1
11 + �1 − c2�e−i	2A01

11� + 1
4 �1 − c1�


�1 + c2�ei�	1+	2�A−1−1
11 + 1

4 �1 + c1��1
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− c2�e−i�	1+	2�A11
11 + 1

4 �1 + c1��1

+ c2�ei�	2−	1�A1−1
11 + 1

4 �1 − c1��1

− c2�e−i�	2−	1�A−11
11 � ,

H�8��û1, û2;k�1,k�2� � 1
3�H1

�8��û1, û2;k�1,k�2� +
1

2	2
s1��1 − c2�


ei	2A0−1
11 + �1 + c2�e−i	2A01

11� + 1
4 �1 − c1�


�1 − c2�ei�	1+	2�A−1−1
11 + 1

4 �1 + c1��1

+ c2�e−i�	1+	2�A11
11 + 1

4 �1 + c1��1

− c2�ei�	2−	1�A1−1
11 + 1

4 �1 − c1��1

+ c2�e−i�	2−	1�A−11
11 � , �B16d�

with

H1
�1��û1, û2;k�1,k�2� � −

1
	2

c1s2A00
11 +

1

2
s1s2�e−i	1A10

11

− ei	1A−10
11 � ,

H2
�1��û1, û2;k�1,k�2� � 1

2c1��1 + c2�ei	2A0−1
11 + �1 − c2�e−i	2A01

11� ,

H3
�1��û1, û2;k�1,k�2� �

1

2	2
s1�1 + c2��ei�	1+	2�A−1−1

11

− ei�	2−	1�A1−1
11 � ,

H4
�1��û1, û2;k�1,k�2� �

1

2	2
s1�1 − c2��− e−i�	1+	2�A11

11

+ e−i�	2−	1�A−11
11 �;

H1
�2��û1, û2;k�1,k�2� � −

1
	2

s1c2A00
11 +

1

2
s1s2�e−i	2A01

11

− ei	2A0−1
11 � ,

H2
�2��û1, û2;k�1,k�2� � 1

2c2��1 + c1�ei	1A−10
11 + �1 − c1�e−i	1A10

11� ,

H3
�2��û1, û2;k�1,k�2� �

1

2	2
s2�1 + c1��ei�	1+	2�A−1−1

11

− e−i�	2−	1�A−11
11 � ,

H4
�2��û1, û2;k�1,k�2� �

1

2	2
s2�1 − c1��− ei�	1+	2�A11

11

+ ei�	2−	1�A1−1
11 �;

H1
�3��û1, û2;k�1,k�2� �

1

2
s1s2A00

11 −
1

2	2
s2��1 + c1�ei	1A−10

11

+ �1 − c1�e−i	1A10
11�;

H1
�4��û1, û2;k�1,k�2� � − H1

�1��û1, û2;k�1,k�2� ,

H2
�4��û1, û2;k�1,k�2� � 1

2c1��1 + c2�e−i	2A01
11 + �1 − c2�ei	2A0−1

11 � ,

H3
�4��û1, û2;k�1,k�2� � −

1

2	2
s1�1 + c2��e−i�	1+	2�A11

11

− e−i�	2−	1�A−11
11 � ,

H4
�4��û1, û2;k�1,k�2� �

1

2	2
s1�1 − c2��ei�	1+	2�A−1−1

11

− ei�	2−	1�A1−1
11 �;

H1
�5��û1, û2;k�1,k�2� � − H1

�3��û1, û2;k�1,k�2�;

H1
�6��û1, û2;k�1,k�2� � − H1

�2��û1, û2;k�1,k�2� ,

H2
�6��û1, û2;k�1,k�2� � 1

2c2��1 − c1�ei	1A−10
11 + �1 + c1�e−i	1A10

11� ,

H3
�6��û1, û2;k�1,k�2� �

1

2	2
s2�1 − c1��ei�	1+	2�A−1−1

11

− e−i�	2−	1�A−11
11 � ,

H4
�6��û1, û2;k�1,k�2� �

1

2	2
s2�1 + c1��− e−i�	1+	2�A11

11

+ ei�	2−	1�A1−1
11 �;

H1
�7��û1, û2;k�1,k�2� � −

1

2
s1s2A00

11 −
1

2	2
s2��1 − c1�ei	1A−10

11

+ �1 + c1�e−i	1A10
11�;

H1
�8��û1, û2;k�1,k�2� � − H1

�7��û1, û2;k�1,k�2� . �B16e�

The Hermiticity of �B14� requires that

A00
00 = �A00

00�*, A00
10 = �A00

10�*,

A00
01 = �A00

01�*, A00
11 = �A00

11�*;

A1−1
11 = �A−11

11 �*, A11
11 = �A−1−1

11 �*;

A10
11 = − �A−10

11 �*, A01
11 = − �A0−1

11 �*;

A10
10 = − �A−10

10 �*, A01
01 = − �A0−1

01 �*. �B17�

We further have from �B16a�,

Tr�
 f� = − 2A00
00. �B18�

Here, Tr stands for the trace of a matrix.
The 16 coefficients ANS1

NS2

S1S2 �mr ;k�1 ,k�2�, calculated from

�B14b�, by substituting Eqs. �18� and �19�, in addition to
mr=0, are
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A00
10��,�� = 0, A00

01��,�� = 0,

A1−1
11 ��,�� = − 0.005 860 cos2 � ,

A−11
11 �� ,��=−0.005 860 cos2 �,

A10
10��,�� = i0.000 837 sin 2�ei�,

A−10
10 �� ,��= i0.000 837 sin 2�e−i�,

A01
01��,�� = − i0.000 837 sin 2�ei�,

A0−1
01 �� ,��=−i0.000 837 sin 2�e−i�,

A10
11��,�� = 0.001 211 sin 2�ei�,

A−10
11 �� ,��=−0.001 211 sin 2�e−i�,

A01
11��,�� = − 0.001 211 sin 2�ei�,

A0−1
11 �� ,��=0.001 211 sin 2�e−i�,

A11
11��,�� = − 0.001 218 sin2 �e2i�,

A−1−1
11 �� ,��=−0.001 218 sin2 �e−2i�,

A00
00��,�� = − 0.001180 − 0.000774 cos 2� ,

A00
11��,�� = 0.002321 + 0.003539 cos 2� . �B19�

Each of the A’s in �B19� �as well as in �B20� and �B21�� is
to be multiplied by ��Ae�Jf =0, j2=5/2 ;Je=5/2 ,�2

=2��2K� / �4��. Here, the Auger decay amplitude
Ae�Jf , j2 ;Je ,�2� are defined in Eq. �B15b�; whereas, constant
K, present in �B14b� has already been explained elsewhere
in the present communication. This multiplication, however,
has not explicitly been shown in Eqs. �B19� �including �B20�
and �B21�� for brevity.

The following coefficients

A00
00��,�� = − 0.000 792 817 + 0.000 386 796 cos 2 � ,

A0−1
01 ��,�� = �0.000 598 331 + i0.000 418 455�sin 2 �e−i�,

A00
01��,�� = − 0.000 142 918 + 0.000 846 167 cos 2 � ,

A01
01��,�� = �− 0.000 598 331 + i0.000 418 455�sin 2 �ei�,

A−10
10 ��,�� = �− 0.000 101 058 − i0.000 418 455�sin 2 �e−i�,

A00
10��,�� = − 0.000 142 918 cos 2 � + 0.000 846 167,

A10
10��,�� = �0.000 101 058 − i0.000 418 455�sin 2 �ei�,

A0−1
11 ��,�� = �− 0.001 036 34 − i0.000 724 786�sin 2 �e−i�,

A00
11��,�� = 0.001 160 39 − 0.002 378 45 cos 2 � ,

A01
11��,�� = �0.001 036 34 − i0.000 724 786�sin 2 �ei�,

A−10
11 ��,�� = �0.000 175 038 + i0.000 724 786�sin 2 �e−i�,

A10
11��,�� = �− 0.000 175 038 + i0.000 724 786�sin 2 �ei�,

A−1−1
11 ��,�� = 0,

A−11
11 ��,�� = − 2 * �0.001 160 39 + i0.001 025�sin2 � ,

A1−1
11 ��,�� = − 2 * �0.001 160 39 − i0.001 025�sin2 � ,

A11
11��,�� = 0, �B20�

are obtained from Eq. �B14b� again. These are for CP elec-
tromagnetic radiation with NH �i.e., mr=−1�. In order to ob-
tain expressions �B20� for the 2-DPI process �17� in Xe, we
have made use of Eqs. �18� and �19�.

Last, we need the coefficients ANS1
NS2

S1S2 �+1;k�1 ,k�2� also for

the ionizing radiation in �17� to be RCP �i.e., CP with PH�
for the diametric emissions of photoelectron and Auger elec-
tron. For this, we again repeat the methodologies used in
calculating �B19� and �B20�, but this time with mr= +1. The
resulting 16 coefficients now come out to be

A00
00��,�� = − 0.000 792 817 + 0.000 386 796 cos 2 � ,

A0−1
01 ��,�� = �− 0.000 598 331 + i0.000 418 455�sin 2 �e−i�,

A00
01��,�� = 0.000 142 918 − 0.000 846 167 cos 2 � ,

A01
01��,�� = �0.000 598 331 + i0.000 418 455�sin 2 �ei�,

A−10
10 ��,�� = �0.000 101 058 − i0.000 418 455�sin 2 �e−i�,

A00
10��,�� = 0.000 142 918 cos 2 � − 0.000 846 167,

A10
10��,�� = �− 0.000 101 058 − i0.000 418 455�sin 2 �ei�,

A0−1
11 ��,�� = �− 0.001 036 34 + i0.000 724 786�sin 2 �e−i�,

A00
11��,�� = 0.001 160 39 − 0.002 378 45 cos 2 � ,

A01
11��,�� = �0.001 036 34 + i0.000 724 786�sin 2 �ei�,

A−10
11 ��,�� = �0.000 175 038 − i0.000 724 786�sin 2 �e−i�,

A10
11��,�� = �− 0.000 175 038 − i0.000 724 786�sin 2 �ei�,

A−1−1
11 ��,�� = 0,

A−11
11 ��,�� = − 2�0.001 160 39 − i0.001 025�sin2 � ,

A1−1
11 ��,�� = − 2�0.001 160 39 + i0.001 025�sin2 � ,

A11
11��,�� = 0. �B21�
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