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We review a number of ideas related to area-law scaling of the geometric entropy from the point of view of
condensed matter, quantum field theory, and quantum information. An explicit computation in arbitrary dimen-
sions of the geometric entropy of the ground state of a discretized scalar free field theory shows the expected
area law result. In this case, area-law scaling is a manifestation of a deeper reordering of the vacuum produced
by majorization relations. Furthermore, the explicit control on all the eigenvalues of the reduced density matrix
allows for a verification of entropy loss along the renormalization group trajectory driven by the mass term. A
further result of our computation shows that single-copy entanglement also obeys area law scaling, majoriza-
tion relations, and decreases along renormalization group flows.
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I. INTRODUCTION

The amount of entanglement present in a quantum state is
of fundamental relevance to determine how hard it is to
simulate it by classical means. It is generally argued that a
highly entangled quantum state carries a huge superposition
of product states that cannot be handled on a classical com-
puter. Yet, this statement must be made precise, since a small
amount of entanglement can indeed be simulated efficiently.
The relevant precise question is, thus, how much entangle-
ment can be efficiently simulated classically.

This abstract question should at least be clarified when
considering relevant physical systems. Can the amount of
entanglement present in a two-dimensional lattice of har-
monic oscillators be efficiently represented in a classical
computer? Although the answer to this question is not yet
settled, qualitative progress has been recently achieved. One
of the ingredients essential to this discussion is the area law
for the geometric entropy and the representation of quantum
states by projected entangled pairs.

An important related problem is to understand how en-
tanglement varies along renormalization group �RG� trajec-
tories. We shall bring growing evidence for the idea that RG
flows entail a loss of entanglement. This entanglement loss
will be shown compatible with area law scaling of the en-
tropy.

We organize the contents of this paper by first reviewing a
number of previous results on area law scaling of ground
state entropy in different systems using the language of con-
densed matter, quantum field theory, and quantum informa-
tion theory. We shall then present a computation of entangle-
ment entropy on a discretized bosonic free field theory in
arbitrary dimensions. This gives us control on the eigenval-
ues of the reduced density matrix on a subsystem which, in
turn, allows for a discussion of majorization relations obeyed
by the reduced density matrix of the system. We extend this
discussion to the single-copy entanglement measure. RG loss
of entanglement is also verified in detail for arbitrary dimen-
sion networks of harmonic oscillators.

II. A BRIEF REVIEW OF THE AREA LAW

A. Measures of entanglement for many-body systems

An arbitrary quantum state of, e.g., N spins is, in general,
highly entangled. To quantify such a statement we can use
various figures of merit. For instance, concurrence �1� is easy
to compute and detects some pairwise entanglement though
it cannot scan correlations throughout the system. An appro-
priate and widely used candidate to quantify entanglement is
the von Neumann entropy of the reduced density matrix of
the state under analysis, when only a subset of degrees of
freedom is retained. To be precise, let us consider a quantum
state made out of N qubits ���� �C2��N and its density ma-
trix of a ��������. Next, we consider the reduced density
matrix of a subset of qubits denoted by A, �A�TrĀ�, where
all qubits but those belonging to the set A are traced out. The
von Neumann entropy of the reduced density matrix is then
defined as

S��A� = − Tr�A ln �A. �1�

The entropy is often referred to as entanglement entropy.
In general, a set of particles will be distributed randomly

over space. Entanglement entropy can be computed for all
sorts of partitions of the system, yielding information about
the quantum correlations among the chosen subparts. A par-
ticular and extremely relevant class of physical systems are
those made of local quantum degrees of freedom which are
arranged in chains or, more generally, in networks. For such
systems it is natural to analyze their entanglement by study-
ing geometrical partitions, that is, computing the entangle-
ment entropy between a set of contiguous qubits versus the
rest of the system. We shall refer to this particular case of
entanglement entropy �2� as geometric entropy �3� �also
called fine grained entropy in �4��.

The appearance of scaling of the geometric entropy with
the size of the subsystem under consideration has been
shown to be related to quantum phase transitions in one-
dimensional systems, further reflecting the universality class
corresponding to the specific phase transition under consid-
eration �3,5� �see also �6��. Broadly speaking, a large entropy
is related to the presence of long distance correlations,
whereas a small entropy is expected in the presence of a
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finite correlation length. The precise scaling of geometric
entropy does eventually determine the limits for today’s ef-
ficient simulation of a physical quantum system on a classi-
cal computer.

There are many other ways to quantify entanglement. The
von Neumann entropy we have chosen as our central figure
of merit has an asymptotic operational meaning. Given infi-
nitely many copies of a bipartite quantum state, it quantifies
how many EPR pairs can be obtained using local operations
and classical communication. A different measure of en-
tanglement can be associated with the analysis of entangle-
ment on a single-copy of the quantum system. This single-
copy entanglement �7–10� can be defined as

E1��A� = − ln �A
�1�, �2�

where �A
�1� is the maximum eigenvalue of �A. This quantity

provides the amount of maximal entanglement that can be
extracted from a single copy of a state by means of local
operations and classical communication. As we shall see
later on, the von Neumann entropy and the single-copy en-
tanglement appear to be deeply related in any number of
dimensions.

B. Volume vs area law

Random states are known to carry large entanglement. To
be precise, let us consider a random infinite system of qubits.
On average, the density matrix for a random subset of N
qubits carries maximum von Neumann entropy,

S��N� 	 N . �3�

This result �11� shows that the entropy of random states
grows as the number of particles included in the subset. This
is referred to as a volume-law scaling. An arbitrary state uses
the maximum possible superposition of the basis elements
with no symmetry whatsoever among their coefficients. Its
efficient representation by classical means appears certainly
difficult.

Physical theories create entanglement through interac-
tions, which are typically local. Thus, e.g., the ground state
of a sensible physical Hamiltonian is not a random state. It is
natural to expect a low amount of entropy since local inter-
actions will entangle the noncontiguous degrees of freedom
in a somewhat sequential way. We may encounter local in-
tense entanglement that dilutes at long distances. This is pre-
cisely the structure of standard quantum theories, with cor-
relations that decay with a power law at phase transitions and
with an exponential law away from them. It is then reason-
able to ask what is the limit of efficient simulability in terms
of the entanglement present in a given state.

In many physical theories, local degrees of freedom are
arranged in a specific geometrical way as mentioned previ-
ously. We may have quantum systems defined on spin chains,
networks or, in general, D-dimensional lattices. Those sys-
tems may have a continuum limit described by a quantum
field theory or, alternatively, may be devised as quantum
simulators, a preview of quantum computers. We may then
discuss the amount of geometrical entanglement present on
the system from three complementary points of view: con-

densed matter, quantum field theory and quantum informa-
tion.

As we shall see, the basic ingredient of locality of inter-
actions suggests that entropy for a geometrical region should
be dominated by the entanglement present on the surface
separating it from the rest of the system. To be precise, con-
sider an infinite D-dimensional lattice where we assign part
A to an inner hypercube of size L, N=LD, and part B to the
outside. Locality seems to suggest

S��L� 	 LD−1 	 N�D−1�/D. �4�

This behavior is commonly referred to as area law scaling
for the geometric entropy. Let us note that one-dimensional
quantum systems correspond to a well-understood limiting
case for the above formula, where the power law turns out to
be substituted with a logarithmic scaling at phase transitions,
that is

S��L� 	 ln L , �5�

and saturates away from them

S��L�� const, ∀ L , �6�

as shown in Refs. �5,12,13� These results are deeply con-
nected to conformal symmetry and control the classical
simulability of the system.

Recent evidence hints at a logarithmic violation of the
area law in some two-dimensional systems made with anti-
commuting variables �14–17�. To be precise, some of these
models display an entropy scaling law of the type

S��L� 	 LD−1 ln L . �7�

It is unclear whether such systems support a limiting quan-
tum field theory description in the continuum limit.

It is important to make a general remark concerning the
different approaches to the computation of entanglement in
quantum systems. Let us note that discretized quantum sys-
tems allow for uncontroversial computations of the entropy.
This is not the case of quantum field theories, where regular-
ization and renormalization are needed since the number of
degrees of freedom is formally unbounded. In such a frame-
work, the adimensional entropy requires the appearance of
some short-distance regulator �

S��L� 	 
L

�
�D−1

�8�

which entails the necessary discussion of its renormalization
and its observability. Let us just mention here that the coef-
ficient of the area law is universal for D=1 systems whereas
remains scheme-dependent in higher dimensions.

The problem turns extremely subtle in the case of gravity,
where the geometry of space-time is dynamical and the way
to compute for a black hole the Bekenstein area-law pre-
factor from first principles is far from clear �18–20�. Recent
progress on the side of AdS/CFT correspondence seems to
link entanglement entropy in a quantum field theory living
on the boundary to the black-hole entropy of the bulk
�19,20�.
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C. Locality and PEPS

The basic heuristic argument for an area law scaling of
entropy for the ground state of physical systems is rooted in
the locality of the interactions. Steps to make this argument
quantitative have been made in Refs. �21–26�.

A local Hamiltonian tends to entangle nearest neighbors.
Long-distance entanglement emerges as a coherent combina-
tion of local interactions. The correctness of this argument
would imply that the reduced entropy of a geometric bipar-
tition of a system will get its main contribution from the
entanglement between degrees of freedom at opposite sites
of the boundary that separates the regions. This, in turn, im-
plies an area-law scaling. Let us note that such a naive argu-
ment works in any dimension and does not depend on the
correlation length present in the system. The area law would
emerge from locality, whatever the mass gap is. We shall
discuss the limitations of this argument shortly.

This argument needs a clear formulation and verification.
Although we lack definite answers about the necessary and
sufficient conditions a Hamiltonian must obey to produce a
ground state with area-law entropy, some progress has been
achieved using one-dimensional matrix product states �MPS�
and their generalization to higher dimensions, projected en-
tangled pair states �PEPS�. We first consider a one-
dimensional system with open boundary conditions de-
scribed by a MPS

��� = � �A�1

i1 A�1�2

i2 , . . . ,A�n−1

in ��i1, . . . ,in� , �9�

where the sum extends to i1 , . . . , in=1, . . . ,d, which are
physical indices attached to local Hilbert spaces, and
�1 , . . . ,�n−1=1, . . . ,�, which are ancillae indices. The ten-
sors A��

i can be viewed as projectors from the ancillae indi-
ces to a physical one. This representation provides the basis
for the density matrix renormalization group technique.

The generalization of the MPS construction to higher di-
mensional networks carries the name of PEPS. In a
D-dimensional network, where ancillae degrees of freedom
are linked to their nearest neighbors, the role of the MPS
projector is taken by a tensor of the form

A�
�
	�

a , �10�

where the physical indices span a D-dimensional lattice and
ancillae run from 1 to �. Again, the role of each tensor A is
to project maximally entangled pairs connecting local neigh-
bors onto a physical local space. Entanglement is thus car-
ried by the links connecting ancillae. Each entangled pair,
that is, each sum over one ancilla index hides a connecting
bond of the type ��=1

� 1/�����. If one of the two ancillae in
the bond is traced out, the entropy for the remaining ancilla
is S=ln �.

We are now in a position to present the argument in Ref.
�21� showing that finite � PEPS entail area-law scaling for
the entropy. Let us assume that the ground state of a quantum
system is described by a PEPS with finite �. It follows that
the entropy of a subpart of the system is bounded by the

number of bonds which are cut by the separating surface
times the entropy per broken bond. This amounts to an area
law

S��A�
 �No. of cut bonds�ln �	 Area ln � . �11�

A violation of the area law within the PEPS representation
requires infinite-dimensional ancillae.

We should again distinguish the one-dimensional case,
where the ground state of infinite critical systems are known
to carry logarithmic entropy �5�,

S��L� 	
c

3
ln

L

a
, �12�

where a is the lattice spacing and c the central charge that
characterizes the universality class of the phase transition.
Yet, the boundary of a one-dimensional block is made by two
single points. Such a state with logarithmic entropy cannot
be represented using finite-dimensional MPS and we must
resort to arbitrarily large �. This limitation is at the heart of
the problems that the DMRG technique encounters when ap-
plied to quantum phase transitions. On the other hand, the
entropy is bounded away from critical points and MPS pro-
vide an efficient way to represent the system. MPS states
with finite � are often referred to as finitely correlated states.

Coming back to higher dimensions, it is then a major
issue to establish whether finite � PEPS can describe faith-
fully the ground state of physical systems. The fact that
PEPS with finite � can incorporate an area law is appealing.
Recently, a particular class of finite PEPS has been con-
structed that display polynomial decay laws, that is long
range correlation �26�. These PEPS are also shown to de-
scribe ground states of frustration-free Hamiltonians and
such states can approximate exponentially well any finitely
correlated state. It is still unclear whether the ground states
of standard quantum systems fall into this description or,
alternatively, they need infinite �. This may set apart what is
efficiently simulable from what is not.

D. Renormalization group transformations on MPS
and PEPS and the support for an area law

We have argued that one-dimensional finite � MPS can
support a maximum amount of entropy independent of the
size of the system and that, in contradistinction, finite
D-dimensional PEPS can accommodate an area law. Let us
give an independent quantitative argument for this statement.

Consider a renormalization group transformation of a
MPS state with constant A defined by the coarse graining of
two sites �27�

A��
i A�	

j � Ã�	
ij = �

l=1

min�d2,�2�

�lUl
�ij�V�	

l , �13�

where we have decomposed the product of two adjacent ma-
trices using a singular value decomposition. We can under-
stand the unitary matrix U as a change of basis on the new
coarsed degree of freedom and construct a new MPS with
A�	�

l =�lV�	
l . Therefore, the ancillae indices close under such

operation whereas the physical index grows. Upon iteration
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of this operation, the range of the physical index will reach a
maximum value �2 and will get locked to that value. This is
the magic of one dimension. The long-distance properties of
the system are completely described by a single square ef-
fective matrix. Entropy is then bounded.

The analogous argument in two-dimensional systems fol-
lows a slightly different path. The coarse-graining step reads

A�
�
	

a A

��
	��

b

A���
��

c A
���
����

d = Ã
������

		����

ab

cd = �
l=1

min„d4,��4�2
…

�lUl

ab

cd V
������

		����

l
.

�14�

As before, we can absorb the global U as a change of the
local coarse-grained basis and assign a new PEPS to �V.
Note the different growth of indices. On the one hand, physi-
cal indices merge in groups of four and would naively need a
volume law increase, d4. On the other hand, the ancillae rank
increase from �4 to ��4�2, that is, it follows an area law.
Given that the singular value decomposition will be locked
by the smallest dimension of the two above, the area law will
define the rank of the tensor that contains the effective long-
distance description of the model. The argument generalizes
to D dimensions where the PEPS A�1,. . .,�2D

i with a physical
index i=1, . . . ,d and ancillae indices �1 , . . . ,�2D=1, . . . ,�.
A renormalization group transformation of this PEPS makes
the new collective physical index to run i�=1, . . . ,d2D

, that
is, with a volume law, and the new collective ancillae
�1� , . . . ,�2D� =1, . . . ,�2D−1

, that is, as an area law. The singular
value decomposition makes all the long-distance properties
of the state to be contained in an effective PEPS with a
number of degrees of freedom that grows with just an area
law. The rank of the effective PEPS is ln �ef f =2D−1 ln �.
From this simple argument, it follows that PEPS can support
an area-law scaling for the geometrical entropy.

E. Some explicit examples of area law

There is an extensive literature on computations of the
entropy for particular cases that cannot be faithfully summa-
rized here. One-dimensional spin systems �e.g., quantum
Ising model, XX model, and Heisenberg model� obey a loga-
rithmic scaling at the critical point �5,12,13,28–30�. Away
from the quantum phase transition point, the entropy gets
saturated. This explicit computation falls into the universal
scaling predicted by conformal invariance. This result has
been further verified and extended to many other quantum
systems in one dimension.

The literature on computations of entanglement entropy in
higher dimensional systems is far less extensive due to the
difficulty to produce explicit results. The first analysis of the
entanglement entropy in two- and three-dimensional systems
were done in discretized approaches to quantum field theory
�2,4,31�. Further analysis showed that the entanglement en-
tropy is related to the trace anomaly in curved space-times
giving an explicit relation between the actual results for free
fermions and free bosons �32�.

Rigorous computations in discretized harmonic networks
proved no departure from the area law �23,33�. Further

analysis of entanglement entropy on higher dimensional net-
works has been done in Refs. �34–36�.

F. Exceptions to the area law

We have argued that the area law is deeply connected to
locality of interactions. It is, therefore, reasonable to expect
violations of such scaling in models with nonlocal interac-
tions. This is the generic case of a quantum computation of
an NP-complete problem. It has been numerically verified
that this is the case when an adiabatic quantum computation
is applied to the NP-complete exact cover problem, a variant
of the 3-satisfiability problem. Along the computation, the
ground state becomes maximally entangled, that is, its en-
tropy scales as the volume of the system �37,38�. A physical
quantum computer will definitely need to face the challenge
of maintaining those huge fine-tuned superpositions of states.

Locality of interactions is not the only ingredient that con-
trols entropy. Entropy is related to the eigenvalues of the
Schmidt decomposition of a system in two parts. If the sub-
systems retain a lot of symmetry, the sub-Hilbert spaces or-
ganize themselves in representations

Spin chains away from criticality S	const
Critical spin chains S	 ln N

D-dimensional harmonic networks S	N�D−1�/D

NP-complete problems S	N

of the symmetry group. This entails a reduction of the
Schmidt number of the above decomposition, that is, a lower
entropy. Such a counter mechanism to reduce the entropy in
highly connected systems has been explicitly checked in the
case of the Lipkin-Meshkov model which is defined by a
spin system fully and symmetrically connected. Although it
is tempting to argue that the system is infinite-dimensional
�the geometry of the Hamiltonian corresponds to a simplex
of N→� vertices�, the entropy scales only logarithmically,
which is the actual bound for symmetric spaces �39�. This
logarithmic scaling of the entropy follows the one-
dimensional logarithmic law, which might just be an acci-
dent.

It should not come as a surprise that slightly entangled
states that do not correspond to an eigenstate of a given
Hamiltonian dynamically evolve to highly entangled states
under its action. This has been analyzed in Refs. �40,41�
even for simple Hamiltonians like the quantum Ising chain.
No area law is expected for slightly entangled random states
when they are evolved with local Hamiltonians.

As mentioned previously, a case of nontrivial violation of
the area law was first considered in �14� and then analyzed in
�15,17�. Some two-dimensional systems with anticommuting
variables were found to display a logarithmic correction to
the area law, that is, S	L ln L. On the other hand, some
previous computations for free Dirac fermions seem to pro-
duce no area-law violation �42,44,45� in any number of di-
mensions. This issue deserves further investigation. Finally
let us mention that in the computation of quantum correc-
tions to the entropy of a black hole, logarithmic corrections
have also been obtained �43�.
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G. Physical and computational meaning of an area law

We can attach physical meaning to an area-law scaling of
entropy in different but related ways. We may argue that
entropy is a measure of surprise due to quantum correlations
and that a state that obeys an area law carries less correla-
tions than a random state. As the size of the inner block
increases, we only get a reduced amount of surprise, com-
pare to the maximum possible, when discovering that our
block was correlated to the exterior. It is then arguable that
the theory that has produced such a state may accept a sim-
pler description. In some sense, this argument is implicit in
the holographic description of some quantum systems.

From a computational point of view, low entropy means
small quantum correlations, that is, small entanglement. It is
known that states that are only slightly entangled can be
efficiently simulated by classical means �46�. A fundamental
question is thus formulated: what entropy growth law can be
efficiently simulated by a classical computer?

So far, this question can only be answered partially. In one
dimension D=1 quantum critical phenomena show a loga-
rithmic scaling which cannot be reproduced using finite MPS
techniques. Formally, the simulation remains efficient in the
sense that to reproduce critical behavior we need � to be
polynomial in L. This, though, produces an obvious practical
computational slowing down and limitation. A new promis-
ing idea to represent a quantum state with a different and
nonlocal tensor structure has been proposed in Ref. �47� with
the name of multiscale entanglement renormalization ansatz
�MERA�. The basic idea is to substitute a linear MPS repre-
sentation with a RG-inspired construction that also identifies
the key use of disentangling operations for blocks before
proceeding to a coarsed description.

The question in two dimensions has been addressed in
�21� in a sequential way. A PEPS is taken as lines of spins
that are collected into effective degrees of freedom which are
further treated in a MPS manner.

III. AREA LAW IN D DIMENSIONS

A. The Hamiltonian of a scalar field in D dimensions

Let us consider the theory of a set of harmonic oscillators
in D dimensions which is expected to verify area-law scaling
of the entropy. A number of nontrivial issues can be dis-
cussed in this explicit example. First, we shall analyze the
regularized version of a scalar free field theory in order to get
its reduced density matrix when an inner geometrical ball is
integrated out. Its eigenvalues can, then, be used to compute
the geometrical entropy that will scale as dictated by the area
law. Second, we can compare the behavior of the entropy to
the one of the single-copy entanglement. Third, we can ana-
lyze whether area-law scaling is backed by a deeper sense of
order, namely majorization theory.

Our computation will generalize the one presented in Ref.
�2� to D dimensions. Let us consider the Klein-Gordon
Hamiltonian

H =
1

2
� dDx��2�x�� + ����x���2 + 2���x���2� , �15�

where ��x� is the canonical momentum associated with the
scalar field ��x� of mass . The D-dimensional Laplacian
reads

�� =
1

rD−1

�

�r

rD−1��

�r
� +

1

r2 L̂2� , �16�

where r= �x�� and L̂2 is the total angular momentum operator
in D dimensions. It is convenient to introduce the real spheri-

cal harmonic functions Zl�m�, which are eigenfunctions of L̂2

with eigenvalues l�l+D−2�. The set of numbers �m� stands
for other Casimir and component labels in the group SO�D�.
We now project the angular part of the scalar fields � and �,

�l�m��r� = r�D−1�/2� dDxZl�m���1, . . . ,�D−2,����x�� ,

�17a�

�l�m��r� = r�D−1�/2� dDxZl�m���1, . . . ,�D−2,����x�� ,

�17b�

where r ,�1 , . . . ,�D−2 and � define the spherical coordinates
in D dimensions. The Hamiltonian now reads

H = �
l�m�

Hl�m�, �18�

where

Hl�m� =
1

2
�
�

0

dr��l�m�
2 �r� + rD−1� �

�r
�l�m��r�

r
D−1

2
��2

+ 
 l�l + D − 2�
r2 + 2��l�m�

2 �r�� . �19�

An ultraviolet regularization of the radial coordinate in the
above Hamiltonian will transform the scalar field theory into
a chain of coupled harmonic oscillators. This is achieved by
discretizing the continuous radial coordinate r into a lattice
of N discrete points spaced by a distance a,

Hl�m� =
1

2a
�
j=1

N ��l�m�,j
2 + 
 j +

1

2
�D−1� �l�m�,j+1

�j + 1��D−1�/2

−
�l�m�,j

j�D−1�/2�2

+ 
 l�l + D − 2�
j2 + 2��l�m�,j

2 �x�� .

�20�

The size of the system is L= �N+1�a, where a and L act as an
ultraviolet and infrared cutoff, respectively. We can compare
this expression with the Hamiltonian of an open chain of N
coupled harmonic oscillators

H =
1

2�
i=1

N

pi
2 +

1

2 �
i,j=1

N

xiKijxj �21�

and identify Kij as
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Kij = 
 l�l + D − 2�
j2 + 2��ij + 
1 −

1

2j
�D−1

�
 j −
3

2
��ij

+ 
1 +
1

2j
�D−1

�
N −
1

2
− j��ij

+ � j +
1

2
j�j + 1�

�
D−1

�i,j+1 + � i +
1

2
i�i + 1�

�
D−1

�i+1,j , �22�

where � is the step function.

B. Geometric entropy and single-copy entanglement

We now proceed to trace out an inner geometric ball
around the origin to obtain the reduced density matrix of the
ground state of the system on the exterior of that ball. Fol-
lowing similar steps as in �2� we define � as the square root
of K, that is K=�2. The Gaussian ground state of the system
can be expressed as

�0�x1, . . . ,xN� = �−N/4�det��1/4e−�xT�·x/2�, �23�

where x��x1 , . . . ,xN�. We construct the density matrix �out

by tracing over the inner n oscillators

�out�x,x�� 	 e−1/2�xT	·x+x�T	·x��+xT�·x�, �24�

where � and 	 are defined by

�� 1
2BTA−1B , �25a�

	� C − � , �25b�

and A=��1÷n ,1÷n�, B=��1÷n ,n+1÷N�, and C=��n
+1÷N ,n+1÷N� are submatrices of �.

We proceed with the diagonalization of this structure ro-
tating and rescaling the variables x=VT	D

−1/2y, where 	
=VT	DV and 	D is diagonal. Using this transformation, 	
becomes identity, �→��=	D

−1/2V�VT	D
−1/2, and the density

matrix reads

�out�y,y�� 	 e−1/2�y2+y�2�+yT��y�. �26�

If we do the appropriate change of coordinates y=Wz �where
W is an orthogonal matrix� such that WT��W becomes diag-
onal with eigenvalues �i�, we get �out as a tensor product of
the two coupled harmonic oscillators density matrices

�out�z,z�� 	 �
i=1

N−n

e−1/2�zi
2+zi�

2�+�i�zizi�. �27�

We can now compute the entropy associated with the re-
duced density matrix �out. This entropy can be expressed as a
sum over contributions coming from each term in the re-
duced density matrix tensor product structure

Sl�m� = �
i=1

N−n

Sl�m�,i��i� , �28�

where

Sl�m�,i��i� = − ln�1 − �l�m�,i� −
�l�m�,i

1 − �l�m�,i
ln �l�m�,i �29�

is the entropy associated with each subdensity matrix in the
product shown in Eq. �27� and �l�m�,i is the parameter that
generates the eigenvalues of these densities matrices. Note
that each eigenvalue �=�l�m�,i entails a set of probabilities of
the form

pn = �1 − ���n n = 0,1,2,3, . . . , �30�

defined by �i=�i� / �1+ �1−�i�
2�1/2� for each l�m� set.

To compute the total entropy, we have to sum over all
possible values of �m� and l.

S = �
l�m�

Sl�m�. �31�

We realize from Eq. �19� that Hl�m� only depends on l, so the
entropy associated with its ground state will also be �m�
independent, and therefore

S = �
l=0

�

��l,D�Sl, �32�

being ��l ,D� the degeneracy of the total angular momentum

operator L̂2 for a fixed l. In three dimensions, for example,
�m�=m can go from −l to l so that ��l ,3� is 2l+1. The same
computation in D dimensions requires the computation of the
degeneracy of SO�D� representations

��l,D� = 
l + D − 1

l
� − 
l + D − 3

l − 2
� . �33�

Given the explicit knowledge of all the eigenvalues of the
reduced density matrix, we can also obtain a formula for the
single-copy entanglement Eq. �2�. The largest eigenvalue of
density matrix for two coupled harmonic oscillators is �1
−��. This largest eigenvalue of the density matrix �out will be
the product of the largest eigenvalues of the density matrices
which compound �out,

�out
�1� = �

l�m�
�
i=1

N−n

�1 − �l�m�,i� = �
l=0

� 
�
i=1

N−n

�1 − �l�m�,i����l,D�

.

�34�

The single-copy entanglement finally reads

E1��L� = − �
l=0

�

��l,D�
�
i=1

N−n

ln�1 − �i�� . �35�

C. Perturbative computation for large angular momenta

Note that our expressions for the entropy and the single-
copy entanglement depend on a final sum that ranges over all
the values of angular momentum l. This sum may not be
convergent as the radial discretization we have implemented
is not a complete regularization of the field theory. To be
precise, the asymptotic dependence on l should be under
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control in order to correctly assess the convergence of the
series.

Let us note that, for l�N, the nondiagonal elements of K
Eq. �22� are much smaller than the diagonal ones. These
suggests the possibility of setting up a perturbative compu-
tation.

We split up the K matrix in a diagonal K0 and nondiago-
nal �� matrices, where parameter � is just introduced to
account for the order in a perturbative expansion of the non-
diagonal piece

K = K0 + �� . �36�

This expansion is somewhat tedious and nonilluminating.
Technical details are presented in Appendix A. The main
observation is that the first contribution i=1 out of every set
of �l,�m�,i elements is relevant and it can further be expanded
as a series in l−1,

�� �l,�m�,1 =
1

l4�
k=0

5
�k

lk + O�l−10� . �37�

We can then get the entropy Sl�m�.

Sl�m� � Sl�m�,1

= �
k=1

� 
1

k
− ln�����k =

1

l4�
k=0

5
sk + tk ln l

lk + O�l−10� ,

�38�

where the coefficients sk and tk are defined in Appendix A. A
similar result for the single-copy entanglement reads

E1 � �
l=0

�

− ��l,D�ln�1 − �� + O�l−10�

= �
l=0

�

��l,D��
k=1

�
�k

k
� �

l=0

�

��
j=1

5
� j

l4+j + O�l−10� , �39�

where � j are the coefficients of the expansion given also in
Appendix A. Finally, using Eq. �33� and defining �k
�� j=0

k � jtk−j and �k�� j=0
k � jsk−j where � j are the coefficients

of the degeneracy expansion, we determine the contribution
to the total entropy, for l= l0¯�, where l0 is big enough
such that the approximations are valid,

�S � �
j

5

� j
��6 − D + j� − �
l=1

l0 1

l6−D+j�
− �

j

5

� j
���6 − D + j� + �
l=1

l0 ln l

l6−D+j� , �40�

where ��n� is the Riemann zeta function and ���n� its deriva-
tive. Defining �k�� j=0

k � j�k−j, the single-copy entanglement
becomes

�E1 � �
j=0

5

� j
��6 − D + j� − �
l=1

l0 1

l6−D+j� . �41�

The above results show that the sum over angular mo-
menta l converges for D�5. A radial discretization of a sca-

lar field theory produces finite results for D�5 and needs
further regularization in orthogonal �angular� directions to
the radius in higher dimensions. We will come back to this
question later.

D. Area-law scaling

The analysis of the scaling law obeyed by the geometric
entropy proceeds as follows. The analytical treatment of the
chain of oscillators lead to the final sum over angular mo-
menta in Eq. �32�. The computation of this sum requires
polynomial, rather than exponential, effort as the size of the
system increases. This justifies why large systems are acces-
sible within this approach. The eigenmodes �l�m�,i are ob-
tained by diagonalization of matrices of order less than N.
Finally the tail of the sum over angular momenta is com-
puted using the asymptotic expressions given in Eq. �40�.

We have computed the geometrical entropy and the
single-copy entanglement for different dimensionalities of
the system. Within the range 1�D�5 we do observe the
expected area-law scaling

S = kS�,D,a,N�
R

a
�D−1

, �42�

as well as a similar scaling for the single copy entanglement

E1 = kE�,D,a,N�
R

a
�D−1

, �43�

where in all our considerations the lattice spacing can be
taken a=1. Figure 1 shows this perfect scaling for both mea-
sures of entanglement.

The explicit prefactor in the area law is regularization
dependent but can be computed and compared with previous
analysis. Figure 2 shows the result obtained for this prefactor
in the area law for the case of D=3 and =0 as the size of
the system increases.

Good stability is already reached for N=600, where we
recover the result of �2� and complete it with the single-copy
entanglement
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FIG. 1. The entropy S and the single-copy entanglement E1

resulting from tracing the ground state of a massless scalar field in
three dimensions, over the degrees of freedom inside a sphere of
radius R.
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kS� = 0,D = 3,N → �� = 0.295�1� , �44a�

kE� = 0,D = 3,N → �� = 0.0488�1� . �44b�

Let us note that the ratio of the area law prefactors for the
entropy and the single-copy entanglement is close to 6. This
value is much larger than the factor of 2 computed to be the
exact ratio in one-dimensional critical systems �9�. We thus
conclude that the amount of entanglement that can be ex-
tracted from a single copy of a system as compared to the
asymptotic value for infinite copies does decrease with the
dimensionality.

We can analyze in more detail the dependence of our two
measures of entanglement as a function of the dimensionality
of the system. This is shown in Fig. 3 for an N=60 and 5

n
30 as a function of RD−1 and we verify that the area
law is observed for any value of the dimension D.

The robustness of the area scaling law for arbitrary mass
 is also readily checked �see Fig. 5�. The appearance of a
mass term in the Hamiltonian produces exponential decays
of correlators but does not affect the short-distance entangle-

ment which is ultimately responsible for the area law. This
supports the idea that geometric entropy comes from the lo-
cal neighborhood of the surface separating the region which
is integrated out. The exponential decay of massive modes is
immaterial and their contribution to the entanglement en-
tropy is as important as the one coming from massless
modes.

Let us concentrate briefly in the dependence of kS and kE
on the dimension D. Those coefficients present divergences
at D=1 and D=5 �see Fig. 3�. The first one is due to the fact
that in one dimension the strict power area law breaks down,
since the limiting case carries a logarithmic dependence. For
D�5, as we have shown before, the sum over partial waves
does not converge. This is due to the fact that we have regu-
larized the Hamiltonian using a radial lattice. This regular-
ization is insufficient to handle higher dimensional modes
due to the increase of degrees of freedom per radial shell. To
avoid this problem, a more elaborated regularization of the
initial D-dimensional Hamiltonian is required. Such a regu-
larization will likely have to break the rotational symmetry
and will make the computations rather involved. We observe
in Fig. 4 that the entropy to single-copy entanglement ratio
verifies the expected limit 2, for D tending to 1.

E. Vacuum reordering

Area law implies that entropy grows with the size of the
system, that is, the eigenvalues of the density matrix, prop-
erly sorted from the largest to the smallest, decay in a slower
way for larger systems. It has been numerically shown in
Ref. �48� that this order relation between systems of different
length verifies the strong condition of majorization, a fact
proven analytically for conformal field theories in Ref. �49�.
As the size of the system increases from L to L��L, it is
verified that �L���L, where �L and �L� are the set of eigen-
values for the corresponding reduced density matrices.

Majorization relations characterize strong ordering. Every
eigenvalue changes in a way that is consistent with a set of
majorization constraints. We shall refer to this fact as
vacuum reordering.
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FIG. 2. Coefficient for the area law entropy the area law in D
=3 as a function of size of the system. Good stability is reached for
N=600. In the inset, the corresponding coefficient for the single-
copy area law is plotted.
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FIG. 3. Dependence of the geometric entropy and single-copy
entanglement slopes, kS and kE, on the dimension D for a massless
scalar field. Note the divergence at D=5 due to the insufficient
radial regularization of the original field theory.
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FIG. 4. Evolution of entropy to single-copy entanglement ratio
S /E1 as a function of the dimension D. The line starts at a value of
2, as demonstrated analytically in �9� and grows monotonically. The
higher the dimension is, the less entanglement is carried by a single
copy of the system as compared to many copies.
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We show that the same underlying reordering of the
vacuum is present in any number of dimensions. Unfortu-
nately, a similar analytical treatment to the D=1 case is out
of reach because the conformal group in D�1 is spanned by
a finite number of generators. As a consequence, there is no
full control on the partition function of conformal field
theory in D�1 dimensions, which could be used to general-
ize the one-dimensional theorem.

Vacuum reordering can be treated within our seminumeri-
cal approach. From Eq. �27� we see that the reduced density
matrix of the exterior of a ball of radius R, can be expressed
as a tensor product of simpler density matrices,

�out�R� = �
l�m�
�l�m��R� = �

l�m�

�

i=1

N−n

�l�m�,i�R�� , �45�

where �l�m� is what we call �out in Sec. III B and �l�m�,i are
defined in the same section. A similar composition applies
for another size R�

�out�R�� = �
l�m�
�l�m��R�� = �

l�m�

 �

i=1

N−n�

�l�m�,i�R��� . �46�

It is shown as a lemma in Ref. �48� that, if majorization
relations are satisfied by each �l�m��R� and �l�m��R��, they will
be also satisfied by ��R� and ��R��. Note, though, that it is
not possible to follow the same argument for �l�m�,i�R� and
�l�m�,i�R�� since n�n�. To make dimensions agree, we need
to complete with identity operators the smallest set. We then
find that some majorization relations for the subparts are
obeyed in one sense, and the rest in the opposite one. Thus,
we construct the density matrices �l�m��R� and �l�m��R�� doing
the tensorial product of their components which are gener-
ated using Eq. �30�. Once we have their eigenvalues we are
ready to check that if R�R�, then

�out�R�� � �out�R� , �47�

which means by definition

�
i=1

k

pi�
�
i=1

k

pi ∀ k = 1, . . . ,� , �48�

where pi and pi� are the eigenvalues of �out�R� and �out�R��,
respectively. For the l	N case, we have done a numerical
computation with N=60 and truncating the vector of eigen-
values at the 50th element. Several dimensions D and traced
sizes n have been studied, and all majorization relations are
satisfied in all of them, as expected. When l�N, we can use
the analytical results of Appendix A to check the same result.

IV. ENTANGLEMENT LOSS ALONG RG
TRAJECTORIES

We shall now exploit the control achieved on the eigen-
values of the reduced density matrix in D dimensions to
study how entanglement evolves along renormalization
group transformations. This was studied for the quantum
Ising model in Ref. �48�. We shall now add equivalent results

for the set of harmonic oscillators in D dimensions. Results
will turn out to be qualitatively similar, reinforcing the con-
cept of entanglement loss along RG flows.

The renormalization of a bosonic field is particularly
simple since the Hamiltonian only carries one coupling,
namely the mass term. After a block transformation, the res-
caling of fields is used to make the kinetic term to be nor-
malized to 1

2 . The RG flow of the massive scalar field re-
duces to an effective change of the mass. That is, the study of
the long distance behavior of a correlator is viewed as taking
a larger mass for the field, modulo a scaling factor. This
implies the existence of two fixed points which are =0
�ultraviolet, UV� and =� �infrared, IR�. Since no other
fixed point is possible, the RG flow must be monotonic in .

Entanglement loss comes along this flow. First, we study
this change from a global perspective. We observe the obvi-
ous global loss of entanglement. For =0, geometric entropy
grows with a slope kS�D ,=0� for the massless field and it is
zero for the =� case. Thus,

SUV� SIR ∀ R . �49�

This result is related to the c theorem as discussed in Refs.
�50–54�, which states global irreversibility in the RG trajec-
tory which interpolates between UV and IR fixed points.

On top of this global loss of entanglement, the geometric
entropy obeys a monotonic decrease along the RG flow. This
behavior is illustrated for D=3 in Figs. 5 and 6 the entropy
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FIG. 5. Geometric entropy S for a sphere of radius R in D=3 as
a function of the mass . Note that larger masses produce a smaller
coefficient in the scaling area law.
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FIG. 6. Entanglement loss along the RG trajectories seen in the
space spanned by the eigenvalues of the reduced density matrix.
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for different masses where it is seen that

��⇒ kS���� kS�� . �50�

Thus, the system is more ordered as the mass increases.
It is natural to pose the question if this order relation

verifies also stricter majorization relations, that is, vacuum
reordering. Specifically, we analyze whether ���� and ���,
the density matrices corresponding to the free bosonic model
with masses ��, respectively, obey p���� and p���.

p��� � p���� . �51�

Using similar arguments as in the previous section, we
only need to check that each �l�m�,i�� majorizes �l�m�,i���.
Considering Eq. �30�, that means,

�
i=1

k

�1 − ���i
�
i=1

k

�1 − �����i ∀ k = 1, . . . ,� , �52�

and therefore,

�1 − �k+1�
 �1 − ��k+1� ∀ k = 1, . . . ,� . �53�

This happens if and only if ��
�. As in the previous section,
we have verified this fact numerically in the l	N regime,
and analytically using the perturbation calculus done in Ap-
pendix A.

It should be noted that monotonic loss of entanglement is
mandatory in such a simple model with a single parameter
�� controlling the flow. It is far from obvious that such
entropy loss is rooted in a such a subtle reordering of the
vacuum as the one dictated by majorization.

V. CONCLUSIONS

Area-law scaling for the geometric entropy is present in
harmonic networks of arbitrary dimensions. This follows
from a computation that makes use of an analytical approach
capable of making an analytical extension of the computa-
tion to arbitrary D, followed by a final numerical resumma-
tion of angular momenta, whose tail is controlled analyti-
cally.

A similar scaling law is observed for the single-copy en-
tanglement. This result suggests that entanglement, whatever
measure we use, scales with an area law due to the fact that
entanglement is concentrated on the surface of the region
which is traced out. The ratio of single-copy entanglement to
geometric entropy tends to zero as the dimension of the net-
work increases.

It is natural to interpret a change in the size of the sub-
system which is traced out as well as any modification of the
parameters in the Hamiltonian as a probe on the vacuum.
Our explicit computations unveil ubiquous vacuum reorder-
ing governed by majorization relations of the vacuum state
reduced density matrix eigenvalues. Geometric entropy scal-
ing is just one manifestation of this set of order relations.

The fact that finite PEPS support an area-law scaling
makes them a natural tool to investigate regularized quantum
field theories.
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APPENDIX A: PERTURBATION THEORY

We need to perform a perturbative computation for large
momenta in order to determine the contribution to the total
entropy and single-copy entanglement of all angular momen-
tum modes. We organize our computation in three parts. In
the first part, we carry out perturbation theory with matrices,
following the same steps as explained in Sec. III B when
considering the approximation l�N. This will produce an
analytical expression for the �’s parameters. The second part
of the computation consists in Taylor expanding the above
results for � in a series in l−1. Finally, we will get the entropy
and single-copy entanglement contributions, expanding the
entropy and single-copy modes in terms of l−1 powers, and
summing over l. In this sum l take values from l0 until in-
finity, where l0 must be sufficiently large, such that all ap-
proximations done previously are right.

1. Computation of the � parameter

Let us recall that, for l�N, the nondiagonal elements of K
in Eq. �22� are much smaller than the diagonal ones. That
gives us the possibility of setting up a perturbative computa-
tion.

We split up the K matrix in a diagonal K0 and nondiago-
nal ��, matrices where � is just introduced to account for the
order in a perturbative expansion of the nondiagonal piece

K = K0 + �� . �A1�

We will follow the steps described in Sec. III B. We expand
��K in its different contributions to order �,

� =�0 + �� + �2�̃ + �3�̂ + O��4� . �A2�

To get each term we impose the condition �2=K,

��0�ij =�i�ij ,

���ij = �i�i+1,j + � j� j+1,i,

��̃�ij =
�i

2 + �i−1
2

�i +� j
�ij +

�i� j−1

�i +� j
�i+2,j +

� j�i−1

�i +� j
�i,j+2,

��̂�ij =
���̃ + �̃��ij

�i +� j
, �A3�

where � j and � j are defined since

� j � l�l + D − 2�
j2 + � j ,

� j � 
1 +
1

2j
�D−1

+ 
1 −
1

2j
�D−1

+ 2,
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� j � −

j +
1

2
j�j + 1�

1

� j +� j+1
. �A4�

We structure � in three matrices A, B, and C,

A ���1 ÷ n,1 ÷ n� = A0 + �A1 + �2A2 + O��3�

B ���1 ÷ n,n + 1 ÷ N� = �B0 + �2B1 + �3B2 + O��4�

C ���n + 1 ÷ N,n + 1 ÷ N� = C0 + �C1 + �2C2 + O��3� .

�A5�

From these matrices, we define � and 	 which we write in
series of �:

�� 1
2BTA−1B = �2�0 + �3�1 + �4�2 + O��4� ,

	� C − � =�0 + �� + O��2� , �A6�

where

�0 =
1

2
B0

TA0
−1B0 =

�n
2

2�n
�i,1� j,1,

�1 =
1

2
�B1

TA0
−1B0 + B0

TA0
−1B1 + B0

TA1
−1B0�

= −
�n

2

2�n

�n+1

�n +�n+2
��i,2� j,1 + �i,1� j,2� ,

�2 = 1
2 �B2

TA0
−1B0 + B0

TA0
−1B2 + B0

TA2
−1B0 + B1

TA0
−1B1 + B1

TA1
−1B0

+ B0
TA1

−1B1� . �A7�

We shall see later, that at second-order perturbation in �,
only ��2�11 and ��2�22 of �2 are necessary. Then

��2�11 =
�n

2

2�n
� �n−1

2

�n�n−1
+
�n−1

2 + �n
2

2�n
2 +

�n

�n−1

�n−1
2

��n+1 +�n−1�2

+
2�n−1

2

�n−1��n+1 +�n−1�

+
2

�n��n +�n+1�

 �n+1

2

�n +�n+2

�n+1
2 + �n

2

2�n+1
+
�n

2 + �n−1
2

2�n

+
�n−1

2

�n+1 +�n−1
��

��2�22 =
�n

2

2�n

�n+1
2

��n + gan+2�2 . �A8�

Let us diagonalize 	,

	D = V	VT, �A9�

where V is an orthogonal matrix �VVT=1�. Therefore, the
eigenvalues are

det�	 − w1� = �
i=1

N−n

��n+i − w� + O��2� = 0

⇒ wi =�n+i + O��2� , �A10�

and

�	D�ij = ��n+i + O��2���ij . �A11�

If we impose �A9� over V=V0+�V1+�2V2+O��3�, we ob-
tain

V0 = 1 ,

�V1�ij =
�n+i

�n+i −�n+j
�i+1,j +

�n+j

�n+j −�n+i
�i,j+1,

�V2�11 =
1

2

 �n+1

�n+1 −�n+2
�2

. �A12�

Once we have V and 	D we are able to compute ��=�2��0�
+��1�+�2�2�+O��3��, which is defined by

�� � 	D
−1/2V�VT	D

−1/2. �A13�

Thus

�0 = �	D
−1/2�0�0�	D

−1/2�0,

�1 = �	D
−1/2�0��1 + V0�1 + �1V0

T + V1�0 + �0V1
T��	D

−1/2�0,

�2 = �	D
−1/2�2�0�	D

−1/2�0 + �	D
−1/2�0�0�	D

−1/2�2 + �	D
−1/2�0��2

+ V1�1 + �1V1
T + V2�0 + �0V2

T + V1�0V1
T��	D

−1/2�0,

�A14�

and therefore

��0��ij =
�n

2

2�n+1�n
�i,1� j,1,

��1��ij =
�n

2

2�n+1�n

�n+1

�n+2
�n+1
 1

�n+1 −�n+2
+

1

�n +�n+2
�

 ��i,1� j,2 + �i,2� j,1� ,

��2��11 =
��2�11

�n+1
−

�n
2

2�n�n+1

�n+1
2

��n −�n−1�2

−
�n

2

2�n�n+1
� 2�n+1

2

��n+2 +�n���n+1 −�n+2�

−
1

2�n+1
2 
�n+1

2 �n+1 +�n+2

�n+1 −�n+2
− �n

2�n +�n+1

�n
��

��2��22 =
�n

2�n+1
2

2�n+2�n

 1

�n+1 −�n+2
+

1

�n +�n+2
�2

.

�A15�

It will be useful to write �� in its matrix form
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�� = �2�
an + �2cn �dn 0 . . .

�dn �2en 0 . . .

0 0 0 . . .

] ] ] �

� + O��5� , �A16�

where

an �
�n

2

2�n+1�n

dn � an�n+1

�n+2
�n+1
 1

�n+1 −�n+2
+

1

�n +�n+2
�

�A17�

and cn and en are, respectively, ��2��11 and ��2��22. We can
observe now, that if we had not found the second order con-
tribution of ����11 and ����22, we would not have been able
to compute the eigenvalues of �� to this order.

Diagonalizing ��, we find the eigenvalues v1 and v2

v1 = �2
an + �2
cn +
d2

an
� + O��3��

v2 = �4
en −
dn

2

an
� + O��5� = 0 + O��5� , �A18�

which allows us to compute the �i’s parameters,

�i =
vi

1 + 1 − vi
2

, �A19�

and which read

�1 =
�2

2
�an + �2
cn +

d2

an
� + O��3�� ,

�2 = 0 + O��5� ,

�i = O��7� ∀ i� 2. �A20�

2. Expansion of � in terms of l−1 powers

We rename �1 as �, and neglect the rest since at this order
they are 0 and no contribute neither to the entropy nor to the
single-copy entanglement. We are interested in expanding �
in powers of l−1. To do this, we have to expand first � j and
� j

�n = l�
i=0

9
�n

�i�

li + O�l−9� , �A21�

where

�n
�0� =

1

n
,

�n
�1� =

D − 2

2n
,

�n
�2� =

n�n

2
+

�D − 2�2

8n
,

�n
�3� =

�D − 2�3 − 4�D − 2�n2�n

16n
,

�n
�4� = −

5�D − 2�4 − 24�D − 2�2n2�n + 16n4�n
2

128n
,

�n
�5� =

7�D − 2�5

256n
+

− 40�D − 2�2n2�n + 48n4�n
2

256n

] . �A22�

No more coefficients have been presented here since they
have huge expressions and they do not shed any light on our
arguments. Using �n we can obtain the expansion of �n,

�n =
1

l
�
i=0

6
�n

�i�

li + O�l−8� , �A23�

where

�n
�0� =

���n,n+1

�n
�0� +�n+1

�0� ,

�n
�1� = − �n

�0��n
�1� +�n+1

�1�

�n
�0� +�n+1

�0� ,

�n
�2� = �n

�0��
�n
�1� +�n+1

�1�

�n
�0� +�n+1

�0� �2

−
�n

�2� +�n+1
�2�

�n
�0� +�n+1

�0� �
] . �A24�

Once we have �n and �n in series of l−1, we can expand �,

� =
1

l4�
i=0

6
�i

li + O�l−10� , �A25�

with

�0 =
��n

�0��2

4�n
�0� +�n+1

�0�

�1 = �n
�0�2�n

�1��n
�0��n+1

�0� − �n
�0���n

�1��n+1
�0� +�n

�0��n+1
�1� �

4���n
�0��2 + ��n+1

�0� �2�

] . �A26�

Although � depends on the number of oscillators which we
trace out, we have omitted the subindex n to simplify the
notation.

3. The entropy

The contribution to the entropy of a �l , �m��-mode be-
comes,
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Sl�m� = − ln�1 − �l� −
�l

1 − �
ln �l � �

k=1

� 
1

k
− ln�����k.

�A27�

If we substitute �

Sl�m� =
1

l4�
k=0

5
sk + tk ln l

lk + O�l−10� , �A28�

where

s0 = �0 − �0 ln �0,

s1 = − �1 ln �0,

s2 = −
�1

2

2�0
− �2 ln �0,

s3 =
�1

3 − 6�0�1�2

6�0
2 − �3 ln �0

] ,

and

ti = 4�i, 0� i
 3

t4 = 4��0
2 + �4� ,

t5 = 4�2�0�1 + �5� . �A29�

To determine the contribution to the entropy of all modes
with the same l, we use the expansion of the degeneration,

��l,D� = 
l + D − 1

l
� − 
l + D − 3

l − 2
� = lD−2�

k=0

�
�k�D�

lk ,

�A30�

which allows us to sum over all the possible values of �m�

�
�m�

Sl�m� = ��l,D�Sl�m� = �
i=0

5
�i ln l + �i

l6−D+i + O�lD−12� ,

�A31�

where �k�� j=0
k � jtk−j and �k�� j=0

k � jsk−j. Finally, we can
compute the contribution to total entropy, for l from l0 to �,
where l0 is big enough such that these approximations are
justified.

�S � �
j

5

� j
��6 − D + j� − �
l=1

l0 1

l6−D+j� − �
j

5

� j
���6 − D + j�

+ �
l=1

l0 ln l

l6−D+j� , �A32�

being ��k� the Riemann zeta function, and ���k� its deriva-
tive.

4. The single-copy entanglement

We can do the same as for the entropy to find the contri-
bution to the single-copy entanglement for large values of l.
First, we expand the contribution to the total single-copy
entanglement of the �l , �m�� modes,

�E1�l�m� � − ln�1 − �l� = �
i=0

5
�i

l4+i + O�l−10� , �A33�

where

�i = �i0� i
 3,

�4 = 
 �0
2

2
+ �4� ,

�5 = ��0�1 + �5� . �A34�

Next, we sum for all possible values of �m�, using Eq. �A30�,

�E1�l = ��l,D��E1�l�m� = �
i=0

5
�i

lD−6+i , �A35�

where �k�� j=0
k � j�k−j. Proceeding as before, we finally get

�E1 � �
j=0

5

� j
��6 − D + j� − �
l=1

l0 1

l6−D+j� . �A36�
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