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Recently, there has been growing interest in using adiabatic quantum computation as an architecture for
experimentally realizable quantum computers. One of the reasons for this is the idea that the energy gap should
provide some inherent resistance to noise. It is now known that universal quantum computation can be
achieved adiabatically using two-local Hamiltonians. The energy gap in these Hamiltonians scales as an
inverse polynomial in the number of quantum gates being simulated. Here we present stabilizer codes which
can be used to produce a constant energy gap against one-local and two-local noise. The corresponding
fault-tolerant universal Hamiltonians are four-local and six-local, respectively, which are the optimal result
achievable within this framework.
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Adiabatic quantum computation was originally proposed
by Farhi et al. as a method for solving combinatorial optimi-
zation problems �1�. In this scheme, one starts with a Hamil-
tonian whose ground state is easy to construct, and gradually
varies the Hamiltonian into one whose ground state encodes
the solution to a computational problem. By the adiabatic
theorem, the system will remain in the instantaneous ground
state provided that the Hamiltonian is varied sufficiently
slowly. More precisely, any closed system acted on by
H�t /T� from t=0 to T will remain in the ground state with
high probability provided that T is sufficiently large. Differ-
ent formulations �2–5� of the adiabatic theorem yield differ-
ent conditions on T, but essentially the minimal T scales
polynomially with the inverse eigenvalue gap between the
ground state and first excited state.

Recently, there has been growing interest in using adia-
batic quantum computation as an architecture for experimen-
tally realizable quantum computers. Aharonov et al. �6�,
building on ideas by Feynman �7� and Kitaev �8�, showed
that any quantum circuit can be simulated by an adiabatic
quantum algorithm. The energy gap for this algorithm scales
as an inverse polynomial in G, the number of gates in the
original quantum circuit. G is identified as the running time
of the original circuit. By the adiabatic theorem, the running
time of the adiabatic simulation is polynomial in G. Because
the slowdown is only polynomial, adiabatic quantum compu-
tation is a form of universal quantum computation.

Most experimentally realizable Hamiltonians involve only
few-body interactions. Thus theoretical models of quantum
computation are usually restricted to involve interactions be-
tween at most some constant number of qubits k. Any Hamil-
tonian on n qubits can be expressed as a linear combination
of terms, each of which is a tensor product of n Pauli matri-
ces, where we include the 2�2 identity as a fourth Pauli
matrix. If each of these tensor products contains at most k
Pauli matrices not equal to the identity then the Hamiltonian
is said to be k-local. The Hamiltonian used in the universality
construction of �6� is three-local throughout the time evolu-

tion. Kempe et al. subsequently improved this to two-local in
Ref. �9�.

Schrödinger’s equation shows that, for any constant g,
gH�gt� yields the same time evolution from time 0 to T /g
that H�t� yields from 0 to T. Thus, the running time of an
adiabatic algorithm would not appear to be well defined.
However, in any experimental realization there will be a
limit to the magnitude of the fields and couplings. Thus it is
reasonable to limit the norm of each term in H�t�. Such a
restriction enables one to make statements about how the
running time of an adiabatic algorithm scales with some
measure of the problem size, such as G.

One of the reasons for interest in adiabatic quantum com-
putation as an architecture is the idea that adiabatic quantum
computers may have some inherent fault tolerance �10–14�.
Because the final state depends only on the final Hamil-
tonian, adiabatic quantum computation may be resistant to
slowly varying control errors, which cause H�t� to vary from
its intended path, as long as the final Hamiltonian is correct.
An exception to this would occur if the modified path has an
energy gap small enough to violate the adiabatic condition.
Unfortunately, it is generally quite difficult to evaluate the
energy gap of arbitrary local Hamiltonians.

Another reason to expect that adiabatic quantum compu-
tations may be inherently fault tolerant is that the energy gap
should provide some inherent resistance to noise caused by
stray couplings to the environment. Intuitively, the system
will be unlikely to get excited out of its ground state if kbT is
less than the energy gap. Unfortunately, in most proposed
applications of adiabatic quantum computation, the energy
gap scales as an inverse polynomial in the problem size.
Such a gap only affords protection if the temperature scales
the same way. However, a temperature which shrinks poly-
nomially with the problem size may be hard to achieve ex-
perimentally.

To address this problem, we propose taking advantage of
the possibility that the decoherence will act independently on
the qubits. The rate of decoherence should thus depend on
the energy gap against local noise. We construct a class of
stabilizer codes such that encoded Hamiltonians are guaran-
teed to have a constant energy gap against single-qubit exci-*Electronic address: sjordan@mit.edu
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tations. These stabilizer codes are designed so that adiabatic
quantum computation with four-local Hamiltonians is uni-
versal for the encoded states. We illustrate the usefulness of
these codes for reducing decoherence using a noise model,
proposed in Ref. �10�, in which each qubit independently
couples to a photon bath.

To protect against decoherence we wish to create an en-
ergy gap against single-qubit disturbances. To do this we use
a quantum error-correcting code such that applying a single
Pauli operator to any qubit in a codeword will send this state
outside of the code space. Then we add an extra term to the
Hamiltonian which gives an energy penalty to all states out-
side the codespace. Since we are only interested in creating
an energy penalty for states outside the code space, only the
fact that an error has occurred needs to be detectable. Since
we are not actively correcting errors, it is not necessary for
distinct errors to be distinguishable. In this sense, our code is
not truly an error-correcting code but rather an error-
detecting code. Such passive error correction is similar in
spirit to ideas suggested for the circuit model in Ref. �15�.

It is straightforward to verify that the four-qubit code

�0L� =
1

2
��0000� + i�0011� + i�1100� + �1111�� , �1�

�1L� =
1

2
�− �0101� + i�0110� + i�1001� − �1010�� �2�

satisfies the error-detection requirements, namely,

�0L���0L� = �1L���1L� = �0L���1L� = 0, �3�

where � is any of the three Pauli operators acting on one
qubit. Furthermore, the following two-local operations act as
encoded Pauli X, Y, and Z operators:

XL = Y � I � Y � I ,

YL = − I � X � X � I ,

ZL = Z � Z � I � I . �4�

That is,

XL�0L� = �1L�, XL�1L� = �0L� ,

YL�0L� = i�1L�, YL�1L� = − i�0L� ,

ZL�0L� = �0L�, ZL�1L� = − �1L� .

An arbitrary state of a single qubit ��0�+��1� is encoded as
��0L�+��1L�.

Starting with an arbitrary two-local Hamiltonian H on N
bits, we obtain a new fault tolerant Hamiltonian on 4N bits
by the following procedure. An arbitrary two-local Hamil-
tonian can be written as a sum of tensor products of pairs of
Pauli matrices acting on different qubits. After writing out H
in this way, make the following replacements:

I → I�4, X → XL, Y → YL, Z → ZL

to obtain a new four-local Hamiltonian HSL acting on 4N
qubits. The total fault tolerant Hamiltonian HS is

HS = HSL + HSP, �5�

where HSP is a sum of penalty terms, one acting on each
encoded qubit, providing an energy penalty of at least Ep for
going outside the code space. We use the subscript S to in-
dicate that the Hamiltonian acts on the system, as opposed to
the environment, which we introduce later. Note that HSL and
HSP commute, and thus they share a set of simultaneous
eigenstates.

If the ground space of H is spanned by ���1��¯ ���m�� then
the ground space of HS is spanned by the encoded states
��L

�1��¯ ��L
�m��. Furthermore, the penalty terms provide an en-

ergy gap against one-local noise which does not shrink as the
size of the computation grows.

The code described by Eqs. �1� and �2� can be obtained
using the stabilizer formalism �16,17�. In this formalism, a
quantum code is not described by explicitly specifying a set
of basis states for the code space. Rather, one specifies the
generators of the stabilizer group for the code space. Let Gn
be the Pauli group on n qubits �i.e., the set of all tensor
products of n Pauli operators with coefficients of ±1 or ±i�.
The stabilizer group of a code space C is the subgroup S of
Gn such that x���= ��� for any x�S and any ����C.

A 2k-dimensional code space over n bits can be specified
by choosing n-k independent commuting generators for the
stabilizer group S. By independent we mean that no genera-
tor can be expressed as a product of others. In our case we
are encoding a single qubit using four qubits, thus k=1 and
n=4, and we need three independent commuting generators
for S.

To satisfy the orthogonality conditions, listed in Eq. �3�,
which are necessary for error detection, it suffices for each
Pauli operator on a given qubit to anticommute with at least
one of the generators of the stabilizer group. The generators

g1 = X � X � X � X ,

g2 = Z � Z � Z � Z ,

g3 = X � Y � Z � I �6�

satisfy these conditions, and generate the stabilizer group for
the code given in Eqs. �1� and �2�.

Adding one term of the form

Hp = − Ep�g1 + g2 + g3� �7�

to the encoded Hamiltonian for each encoded qubit yields an
energy penalty of at least Ep for any state outside the code
space.

Two-local encoded operations are optimal. None of the
encoded operations can be made one-local, because they
would then have the same form as the errors we are trying to
detect and penalize. Such an operation would not commute
with all of the generators.

Intuitively, one expects that providing an energy gap
against a Pauli operator applied to any qubit protects against
one-local noise. We illustrate this using a model of decoher-
ence proposed in Ref. �10�. In this model, the quantum com-
puter is a set of spin-1 /2 particles weakly coupled to a large
photon bath. The Hamiltonian for the combined system is
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H = HS + HE + �V ,

where HS�t� is the adiabatic Hamiltonian that implements the
algorithm by acting only on the spins, HE is the Hamiltonian
which acts only on the photon bath, and �V is a weak cou-
pling between the spins and the photon bath. Specifically, V
is assumed to take the form

V = �
i
	

0

�

d��g���a��+
�i� + g*���a�

† �−
�i�� ,

where �±
�i� are raising and lowering operators for the ith spin,

a� is the annihilation operator for the photon mode with
frequency �, and g��� is the spectral density.

From this premise Childs et al. obtain the following mas-
ter equation:

d	

dt
= − i�HS,	� − �

a,b
MabEab�	� , �8�

where

Mab = �
i

�Nba�gba�2�a��−
�i��b��b��+

�i��a�

+ �Nab + 1��gab�2�b��−
�i��a��a��+

�i��b��

is a scalar,

Eab�	� = �a��a�	 + 	�a��a� − 2�b��a�	�a��b�

is an operator, �a� is the instantaneous eigenstate of HS with
energy �a,

Nba =
1

exp����b − �a�� − 1

is the Bose-Einstein distribution at temperature 1/�, and

gba = 
�g��b − �a� , �b 
 �a,

0, �b � �a.
� �9�

Suppose that we encode the original N-qubit Hamiltonian
as a 4N-qubit Hamiltonian as described above. As stated in
Eq. �5�, the total spin Hamiltonian HS on 4N spins consists of
the encoded version HSL of the original Hamiltonian HS plus
the penalty terms HSP.

Most adiabatic quantum computations use an initial
Hamiltonian with an eigenvalue gap of order unity, indepen-
dent of problem size. In such cases, a nearly pure initial state
can be achieved at constant temperature. Therefore, we will
make the approximation that the spins start in the pure
ground state of the initial Hamiltonian, which we will denote
�0�. Then we can use Eq. �8� to examine d	 /dt at t=0. Since
the initial state is 	= �0��0�, Eab�	� is zero unless �a�= �0�. The
master equation at t=0 is therefore

�d	

dt
�

t=0
= − i�HS,	� − �

b

M0bE0b�	� . �10�

HSP is given by a sum of terms of the form �7�, and it
commutes with HSL. Thus, HS and HSP share a complete set
of simultaneous eigenstates. The eigenstates of HS can thus
be separated into those which are in the code space C �i.e.,

the ground space of HSP� and those which are in the orthogo-
nal space C�. The ground state �0� is in the code space. M0b
will be zero unless �b��C�, because �±= �X± iY� /2, and any
Pauli operator applied to a single bit takes us from C to C�.
Equation �10� therefore becomes

�d	

dt
�

t=0
= − i�HS,	� + �

b�C�

M0bE0b�	� . �11�

Since �0� is the ground state, �b��0, thus Eq. �9� shows
that the terms in M0b proportional to �g0b�2 will vanish, leav-
ing only

M0b = �
i

Nb0�gb0�2�0��−
�i��b��b��+

�i��0� .

Now let us examine Nb0.

�b − �0 = �b��HSL + HSP��b� − �0��HSL + HSP��0� .

�0� is in the ground space of HSL, thus

�b�HSL�b� − �0�HSL�0� � 0,

and so

�b − �0 � �b�HSP�b� − �0�HSP�0� .

Since �b��C� and �0��C,

�b�HSP�b� − �0�HSP�0� = Ep,

thus �b−�0�Ep.
A sufficiently large �Ep will make Nba small enough that

the term �b�C�M0bE�	� can be neglected from the master
equation, leaving

�d	

dt
�

t=0
 − i�HS,	� ,

which is just Schrödinger’s equation with a Hamiltonian
equal to HS and no decoherence. Note that the preceding
derivation did not depend on the fact that �±

�i� are raising and
lowering operators, but only on the fact that they act on a
single qubit and can therefore be expressed as a linear com-
bination of Pauli operators.

Nb0 is small but nonzero. Thus, after a sufficiently long
time, the matrix elements of 	 involving states other than �0�
will become non-negligible and the preceding picture will
break down. How long the computation can be run before
this happens depends on the magnitude of �b�C�MobE�	�,
which shrinks exponentially with Ep /T and grows only poly-
nomially with the number of qubits N. Thus it should be
sufficient for 1 /T to grow logarithmically with the problem
size. In contrast, one expects that if the Hamiltonian had only
an inverse polynomial gap against one-local noise, the tem-
perature would need to shrink polynomially rather than loga-
rithmically.

Now that we know how to obtain a constant gap against
one-local noise, we may ask whether the same is possible for
two-local noise. To accomplish this we need to find a stabi-
lizer group such that any pair of Pauli operators on two bits
anticommutes with at least one of the generators. This is
exactly the property satisfied by the standard �17� five-qubit
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stabilizer code, whose stabilizer group is generated by

g1 = X � Z � Z � X � I ,

g2 = I � X � Z � Z � X ,

g3 = X � I � X � Z � Z ,

g4 = Z � X � I � X � Z . �12�

The codewords for this code are

�0L� =
1

4
��00000� + �10010� + �01001� + �10100� + �01010�

− �11011� − �00110� − �11000� − �11101� − �00011�

− �11110� − �01111� − �10001� − �01100� − �10111�

+ �00101�� ,

�1L� =
1

4
��11111� + �01101� + �10110� + �01011� + �10101�

− �00100� − �11001� − �00111� − �00010� − �11100�

− �00001� − �10000� − �01110� − �10011� − �01000�

+ �11010�� .

The encoded Pauli operations for this code are convention-
ally expressed as

XL = X � X � X � X � X ,

YL = Y � Y � Y � Y � Y ,

ZL = Z � Z � Z � Z � Z .

However, multiplying these encoded operations by members
of the stabilizer group does not affect their action on the code
space. Thus we obtain the following equivalent set of en-
coded operations:

XL = − X � I � Y � Y � I ,

YL = − Z � Z � I � Y � I ,

ZL = − Y � Z � Y � I � I . �13�

These operators are all three-local. This is the best that can
be hoped for, because the code protects against two-local
operations and therefore any two-local operation must anti-
commute with at least one of the generators.

In addition to increasing the locality of the encoded op-
erations, one can seek to decrease the number of qubits used
to construct the codewords. The quantum singleton bound
�17� shows that the five-qubit code is already optimal and
cannot be improved in this respect.

The distance d of a quantum code is the minimum number

of qubits of a codeword which need to be modified before
obtaining a nonzero inner product with a different codeword.
For example, applying XL, which is three-local, to �0L� of the
five-qubit code converts it into �1L�, but applying any two-
local operator to any of the codewords yields something out-
side the code space. Thus the distance of the five-qubit code
is 3. Similarly the distance of our four-qubit code is 2. To
detect t errors a code needs a distance of t+1, and to correct
t errors, it needs a distance of 2t+1.

The quantum singleton bound states that the distance of
any quantum code which uses n qubits to encode k qubits
will satisfy

n − k � 2�d − 1� . �14�

To detect two errors, a code must have distance 3. A code
which encodes a single qubit with distance 3 must use at
least five qubits, by Eq. �14�. Thus the five-qubit code is
optimal. To detect 1 error, a code must have distance 2. A
code which encodes a single qubit with distance 2 must have
at least three qubits, by Eq. �14�. Thus it appears possible
that our four-qubit code is not optimal. However, no three-
qubit stabilizer code can detect all single-qubit errors, which
we show as follows.

The stabilizer group for a three-qubit code would have
two independent generators, each being a tensor product of
three Pauli operators:

g1 = �11 � �12 � �13,

g2 = �21 � �22 � �23.

These must satisfy the following two conditions: �1� they
commute and �2� an X, Y, or Z on any of the three qubits
anticommutes with at least one of the generators. This is
impossible, because condition �2� requires �1i��2i� I for
each i=1,2 ,3. In this case g1 and g2 anticommute.

The stabilizer formalism describes most but not all cur-
rently known quantum error-correcting codes. We do not
know whether a three-qubit code which detects all single-
qubit errors while still maintaining two-local encoded opera-
tions can be found by going outside the stabilizer formalism.
It may also be interesting to investigate whether there exist
computationally universal three-local or two-local adiabatic
Hamiltonians with a constant energy gap against local noise.
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