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Entanglement generation and protection by detuning modulation
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We introduce a protocol for steady-state entanglement generation and protection based on detuning modu-
lation in the dissipative interaction between a two-qubit system and a bosonic mode. The protocol is a
global-addressing scheme which only requires control over the system as a whole. We describe a postselection
procedure to project the register state onto a subspace of maximally entangled states. We also outline how our
proposal can be implemented in a circuit-quantum electrodynamics setup.
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I. INTRODUCTION

The controllable generation of entangled states has trig-
gered a considerable amount of interest in the physics com-
munity. In particular, within cavity-quantum electrodynamics
(cavity-QED) contexts, the achievement of two-qubit en-
tanglement has seen a flourishing of proposals. It has been
suggested to set entanglement between two remote atomic
qubits by using the cancellation of which-path information
relative to spontaneously emitted photons [1]. The resonant
interaction of a cavity field with two qubits has revealed a
striking entangling power even when the field is prepared in
an incoherent state [2]. In a similar setup, entanglement can
be created through the continuous detection of the field leak-
ing from the cavity containing the atoms [3]. However, qubit
entanglement can also be set in a regime of dissipative dy-
namics, where the system at hand interacts with a structured
environment [4] and the conditions for entanglement genera-
tion between subsystems undergoing purely dissipative dy-
namics have been studied [5,6]. Strategies for the effective
engineering and simulation of such environments have sub-
sequently been envisaged [7]. Most recently, schemes have
been proposed for efficiently inducing discrete-variable en-
tanglement in a bipartite system by transferring the correla-
tion properties of a continuous-variable state [8].

It is easy to recognize the importance of protocols that are
able to reliably protect correlations, once they are estab-
lished, from the unavoidable spoiling effects of decoherence
and decay. This has led to proposals of passive as well as
active schemes [9]. The use of decoherence-free subspaces is
the prototypical example of passive strategies, where the cor-
relations set in a system can be protected by choosing a
proper encoding of the information [10,11]. More recently, it
has been suggested to use macroscopic quantum jumps as a
tool to create an entangled state of two qubits, preparing it in
a dark state [12]. One could also consider generalized
dynamical-decoupling (bang-bang) schemes [13] to actively
cancel the effect of the environment on the system of inter-
est. These strategies are appealing and intriguing from a the-
oretical point of view and proof-of-principle experiments
have been performed, for example in a solid-state setup [14].
However, they are still far from complete and too demanding
for the current state of the art.

In this paper we find a strategy, based on dissipative
qubit-bus dynamics, enabling the simultaneous generation of
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two-qubit entanglement and protection against both qubit
and bus losses. No structured-bath engineering is required in
our scheme. The protection is achieved by using a simple
global addressing of the register, a feature which relaxes the
usually assumed requirement of single-qubit addressing at
the center of many dynamical-decoupling protocols and
brings our scheme closer to experimental feasibility. While a
quantitative analysis is deferred until later, here we briefly
provide an intuitive picture of the mechanism behind our
proposal. It is known from the study of the so-called Dicke
model [15] that a bipartite qubit system, prepared with the
qubits in their excited state and exposed to the fluctuations of
a common reservoir, soon decays via the channel given by
the symmetric state |s)=(1/+2)(|01)+[10)) (with |0) and |1)
the single-qubit logical levels) into the total ground state of
the qubits. Thus, there is a transient period in the dynamics
of the two qubits when a maximally entangled component is
involved in the state of the system. However, the system
does not exhibit entanglement because of a competition be-
tween the fading symmetric state and the increasingly popu-
lated collective ground state. In order to reverse this situa-
tion, the influence of |s) must be emphasized and stabilized
with time. The protection from environmental effects is then
achieved by this stabilization and also by simultaneously in-
ducing a relative phase between the qubits. In proper condi-
tions, this results in part of the population of the symmetric
state being moved into the antisymmetric state |a)=(1/
\v2)(|01)—=]10)), which is decoupled from the decay mecha-
nism (it is a subradiant state) [15]. In this paper we show that
an entangled steady state is produced by modulating a detun-
ing between the common bus and the register. The results
depend on the temporal profile of the modulation, which rep-
resents a dial that can be turned so as to span a specific sector
of entangled steady states. Finally, we address an active pro-
tocol based on postselection, which projects the state of the
qubits almost completely onto the symmetric state, thereby
achieving nearly maximal entanglement.

It is important to stress the differences between a bang-
bang scheme [13] and our own one. Although both scheme
ultimately rely on the control of the interaction between the
register and the environment, the two approaches are intrin-
sically different. Bang-bang schemes keep the state of inter-
est unchanged throughout the evolution by effectively decou-
pling it from the environment. Our protocol however
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produces entanglement through the exploitation of purely
dissipative dynamics. The protection of the entanglement
from the influences of the external world is provided by the
development of a subradiant behavior of the system due to
the detuning modulation. Moreover, in a bang-bang protocol
the timing is set by the fast switching rate of a control field,
which is given by the inverse of the coupling strength be-
tween the system and the environment. Our scheme, on the
other hand, is based on a weak-coupling regime between the
register and the bus, which sets a slower time scale than
bang-bang schemes. This reflects not just a technical diver-
sity, but is a manifestation of two almost complementary
ways of designing protection from an environment.

The remainder of the paper is organized as follows. In
Sec. II we address the Bloch equations derived from the
qubits’ reduced master equation, in a weak-coupling regime
and first Born-Markov approximation. This describes the dy-
namics of the qubits interacting with a leaky bus mode ex-
posed to a bosonic multimode reservoir at thermal equilib-
rium with temperature 7. The Bloch equations (as well as the
master equation) fully account for a time-dependent detun-
ing, which modulates the coupling between the qubits and
the bus. Section III explains in some detail how single-qubit
addressing is not required in our scheme. This paves the way
toward setting our proposal within the context of active (but
simple) global-addressing scenarios. In Sec. IV we describe
the postselection protocol to improve the amount of en-
tanglement set between the qubits by a nearly perfect projec-
tion of their joint state onto the symmetric state |s). Finally,
Sec. V describes a physical system to embody our proposed
scheme. We show in some detail how a circuit-QED setup of
two superconducting charge qubits incorporated in a micro-
wave planar stripline resonator can be used. This offers prac-
tical advantages compared to the standard cavity-QED setup.
The details regarding the derivation of the qubits’ master
equation are given in the Appendix.

II. THE SYSTEM AND DETUNING MODULATION
PROTOCOL

We consider two qubits, labelled 1 and 2, interacting with
a one-sided single-mode cavity field described by the
bosonic creation (annihilation) operator d* (4). Each qubit is
characterized by a transition frequency E° and interacts with
the cavity field (frequency w,) via a dipole interaction with
strength g. We assume a leaky cavity exposed to a multi-
mode bosonic environment. The cavity mode is in a thermal
state with temperature 7 and average photon number 7
=(eP?—1)7", where B~'=KyT and K} is the Boltzmann con-
stant (we use units such that #=1). The strength of the field
mode-external bath coupling is given by the cavity decay-
rate x. Within the rotating wave approximation, we model

each qubit-field interaction as IA{Cj=g(&Té';+H.c.) (j=1,2),
where 67 =(67)"=|0),(1|. The total energy of the system is

2 0
2 At A E; (1) . ~
madanS (i) )
j=

with 6‘5 the z-Pauli matrix of qubit j. We have considered an
implicit time dependence of the single-qubit transition fre-

PHYSICAL REVIEW A 74, 052317 (2006)

global Lo——
potential

FIG. 1. Two qubits interact with the same cavity mode (in con-
tact with a thermal reservoir, decay rate «) acting as a common bus.
An inhomogeneous global potential, setting a time-dependent de-
tuning is also shown.

quency. The detuning between the jth qubit and the cavity
field mode is indicated as Aj(t):E?(t)—wc. By introducing
the transverse-mode energy decay rate y and assuming «
< w,, the evolution of the qubits-bus system is described by
the master equation (A1) given in the Appendix. Our system
is sketched in Fig. 1.

As we are interested in just the dynamics of the qubits, we
adiabatically eliminate the bus mode and derive the corre-
sponding Bloch equations. This is straightforwardly done by
deriving a reduced master equation for the qubits only and
projecting it onto the basis {|T=11),|s),|a),|| =00)},,. We
refer to the Appendix for the details of the adiabatic elimi-
nation. Here we concentrate on the form of the Bloch equa-
tions relevant to our work, where we assume the initial state
| 1)1, is prepared and, for the sake of simplicity, we consider
the case of a detuning in amplitude smaller than the cavity
decay rate. Using the notation @;=(lel) (i.j

2(kir+p)
=1.,s,a,|) and G,q,(kﬁ)=617+g -

K

they read

9,011 == 4G ()@ +2G() (045 + Cud)

004 =— G?(2ﬁ)[cos A(no—isin A(r)o,, + He] + 2G}(ﬁ)
X(QTT - st) - 2G8(ﬁ)(9ss - Qll) +2cos A(t)
X[GY(me +Gymey ],

0,050 =—2G|(27)Q,, + i sin A(N[2G) (W)@ +2G)(A)Q |,
- G?(Zﬁ)(gﬁ + Qaa)]- (2)

The equation for @,, is given by that for o, with 0, — Q,,
and A(r) — 7—A(r). The equation for @, is the Hermitian
conjugate of the one for @, and the equation for @, is found
from Q| =1-0;=Q—0Q4 We have taken A,(7)>0, with
A,(1)=0 and A,(r)=A(r) for ease of notation. In Sec. III we
consider the generalization of this situation to two-qubit de-
tuning and in the Appendix we provide the form of the re-
duced master equation. Moreover, we stress that the absence
of terms like @1,,@+, (and analogous) is due to the specific
choice of the initial state. In particular, if any coherence is
initially present in the qubit state, the set of Egs. (2) must be
complemented by a second closed system of Bloch equations
which can easily be derived.
From Egs. (2) the initial state | ), evolves into
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FIG. 2. (Color online) Fidelity of the two-qubit state @ for the
full-resonant case with the symmetric state |s),, (solid line) and the
antisymmetric one |a),, (identical to zero) against the dimensionless
interaction time 7=g%t/ k.

o= X il 12l + (@usladio(s| + H.c.). (3)

J=l.a.s,]

In order to illustrate the basic features of our proposal, we
consider y=n=0 for the moment. These parameters will be
reintroduced later on. As a measure of the entanglement in
the bipartite mixed state of qubits 1 and 2, we use the con-
currence [16] wﬁch, fog bipartite state, can be calculated as
C(@)=max[0, Ve, ~Sa] with @=e(e2,0l)0" (82, 0))
(¢" is the complex conjugate of @) and a;=a; (i=2,3,4)
are the eigenvalues of 0. For a qubit state as Eq. (3), we have

Cle)= maX[0,2(|Qlo,01| -veope))] (4)

with 2010,01=0s+ 05— Cus— Q- In order to gain as much
information as we can about the behavior of C(p), we relax
the max condition. Thus, in the following plots, entangle-
ment is present only when C(p)>0. Moreover, we address a
physically interesting situation by considering the initial state
[ 1)1 which, as our system is formally equivalent to a Dicke
model [15], decays toward the ground state || );, on a time
scale which is faster than the single-qubit relaxation time.
Thus, for the steady state of the system, no entanglement is
expected between 1 and 2. As we stress later, this choice for
an initial state is dictated by the global addressing context of
this work. The state | 1), can be prepared via a global po-
tential and without local control [17].

As time passes, the superradiant state is rotated toward a
mixed state. While still exhibiting no quantum correlations
(it never violates the Peres-Horodecki separability criterion
[18]), the state nevertheless has a good projection onto |s);,
and no contribution from the antisymmetric state |a);,. This
is shown in Fig. 2 where the fidelities F;=,(j|elj);,=¢;;
(j=s,a) are plotted against the dimensionless interaction
time r=g%/k. At 7=2.5, 0,,=0.37 (with @,,=0), though
the state is still mixed and separable due to the nonzero value
of the fully polarized states | 1), and || );,. This suggests a
minimization of the influence of these components on @. The
idea behind our proposal is to exploit this fact and change the
dynamical evolution of the qubits, by introducing a detuning
A, so as to induce an evolution with an initial state which is
no more |1);, but o(7=2.5). Thus, at 7=2.5 an external po-
tential is switched on and changes the transition frequency
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FIG. 3. (Color online) C(p) against 7 for the initial state |1 ),
and A(7)=100(7—7;). We have considered 7,=1.5,2.5,3.5
(dashed, solid, and dotted line, respectively). The inset shows the
behavior of the detuning functions.

E(f(t). The dynamics of the qubits are therefore described by
Egs. (2) [no component outside the subspace encompassed
by Egs. (2) is present in the new initial state] and the con-
currence is plotted against 7 in Fig. 3 solid line), where A
=10g%/ k with g=0.3, so that the adiabatic condition is fully
respected. We find C>0.3, stable at the steady state of the
qubits. This interesting result can be compared with [2]
which does not achieve a stable entanglement. The plot re-
sults from a transition between the entanglement function of
the full resonant case before 7=2.5 and that of the single-
qubit detuning described above for 7>2.5. This situation is
equivalent to taking A(7)=100(7-2.5) (in units of g*/«),
where ©(7—1,) is the Heaviside function. The steady-state
value of the entanglement turns out to be dependent weakly
on the amplitude of A(7) but strongly on 7. For instance, in
Fig. 3 we show the results of small deviations from the case
considered above by plotting the concurrence relative to 7,
=1.5 (dashed line) and 7,=3.5 (dotted line), which give rise
to smaller steady-state entanglement. This results from a
smaller @,,(7;) component in the two-qubit state and a dis-
advantageous competition between |s);, and |a);,, which
lowers the entanglement. This is strikingly exemplified by
increasing 7, by one order of magnitude. In this case, the
switching on of the detuning occurs in correspondence to a
state of the two qubits which is mainly decayed to ||),
[@(7=25)=0.999 501].

It is worth stressing that, even though our choice for g/«
may seem to put the above example at the boundary of the
applicability of the adiabatic elimination, we have checked
that for g/x~0.1, no significant change occurs in the en-
tanglement generation process [30]. In principle, the true
evolution of the system, obtained by numerically solving the
complete master equation (without adiabatic elimination)
should be compared to the situation here at hand. However,
this is in general a very hard task, which goes beyond the
scopes of the present work. Nevertheless, by checking the
effects of values for g/« which are largely within the validity
of the adiabatic elimination, we can be sure of the validity of
the above approach. The system is flexible enough to tolerate
a less strict ratio of the different time scales involved in the
problem.

The appearance of steady-state entanglement can be
shown clearly by the behavior of the density matrix ele-
ments. A careful analysis reveals that the qubit entanglement
is due to the presence of |s);, and |a);,. The calculation of
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FIG. 4. (Color online) Fidelities F; , for a detuning modulation
strategy based on a Heaviside function with 7y=2.5. The solid line
is for Fj, the dotted one for F,. At 7=7,, an antisymmetric state
component is developed. For large 7, both the antisymmetric and
symmetric state fidelities are stabilized.

the fidelities F;, in presence of the detuning modulation,
reveals that as soon as the detuning is switched on, an |a),,
component is developed, which after a transient period, sta-
bilizes to a steady state value. This stabilization holds also
for the |s);, component, with 9> @,,. These behaviors can
be seen in Fig. 4 for the Heaviside function with 7,=2.5.
However @, never vanishes, thus affecting the entangle-
ment. This clarifies the mechanism behind the entanglement
generation and protection. Without a detuning modulation,
the system would never develop any subradiant behavior
(i.e., the overlap with |a),, will always be zero). This is not
true for a modulated situation, where the dynamical condi-
tions are changed. Once the system has decayed into an in-
coherent superposition of |s)5, | 1)1, and || ), (for 7<),
one qubit acquires a relative phase with respect to the other
one due to the detuning, which results in the development of
a subradiant component. The steady state entanglement is the
result of a competition between | | ),,, the antisymmetric and
the symmetric component.

The assumption of a Heaviside function regulating A(z) is
not critical. In order to relax this assumption, we have
checked the results corresponding to a smooth raising edge
of the detunings given by the function A(1+e?!(0-7)=1/2
with A an amplitude. For proper choices of A and b, this is
a slowly rising function (with respect to the time-scale set by
K, see the Appendix) producing a concurrence which differs
from the result obtained for a Heaviside function by less than
1%, as shown in Fig. 5 for =3, 7,=2.5, and .A=10. Thus,
for definiteness and in order to simplify the calculations, we
assume a Heaviside profile of the detuning rising edge [31].

It should now be clear that a detuning function with a
single rising edge represents the best choice. This can be
confirmed by considering the value of C as a function of the
time width of a single square pulse. As already stressed, the
turning on of the detuning corresponds to the maximization
of the symmetric state component and the introduction of an
|a),, component in @. If the detuning is switched off after a
time &7, the symmetric component quickly goes to zero (to-
gether with any correlation between |s) and |a)) while the
subradiant part is preserved. This achieves a nonzero station-
ary entanglement which nevertheless is reduced with respect
to the case of a Heaviside function. Indeed, in the above
conditions, at the generic time 7,, the steady-state entangle-
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FIG. 5. (Color online) Comparison between the concurrence ob-
tained by using a Heaviside function 100(7-2.5) (dashed line) and
the smooth detuning function 10(1+e%23-7)~12 (solid line). The
inset shows the time behavior of the detuning functions.

ment quantitatively corresponds to the fraction of the anti-
symmetric state being present in @, as can be immediately
seen by considering a state like 0=X,_; , A;|j)12(j|. For
7,— 7y> 87, the population of | 1), is zero and so is the sym-
metric state fraction. That is A; ;=0 so that C(@)=A,. The
entanglement is stable, even though small, due to the sole
presence of the subradiant component, developed at the
switching-on of the pulse. As soon as 7 becomes larger than
7,, making the symmetric state fraction (and its correlations
with |a);,) non-negligible, the entanglement is not only
stable but also reaches the asymptotic value corresponding to
Fig. 3, as can easily be seen. As 7, is increased, this behavior
holds for a larger 67, demonstrating that a large steady-state
entanglement is achieved only for a steplike function (as
mentioned before, the raising edge functional behavior is ir-
relevant).

A further case can be considered, namely a periodic
modulation. However, this modulation implies the switching
on/off of the detuning at instants of time that correspond to
smaller fidelities of the state @ with the symmetric state. For
instance, in Fig. 6 we consider the case of a square wave
Ay, (=102 (=1)"'®(7-2.51), which produces N/2
square pulses of amplitude 10 (units of g?/«). No entangle-
ment results from this detuning modulation strategy, as the
switching of the detuning introduces a jagged drop in the
fidelity compared to the situation in Fig. 4. While the on part
of the square wave always corresponds to a slow increase of
C, the off part results in a larger decrease, resulting in an
overall pull down of entanglement.

0Ff

- 0.1
C
-0.2

-03

0 10 20 30 40

FIG. 6. (Color online) Concurrence (red curve, left vertical
scale) superimposed on the detuning function A, (7) (black curve,
right scale) against 7 for the qubits initially prepared in the super-
radiant state |T);,. In this plot we have considered N=16. No en-
tanglement is ever present between the qubits.
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FIG. 7. (Color online) Concurrence against 7 for a modulated
detuning with g=0.3x, y=107«, and 7=0.06. The time axis has
been extended in order to show that a concurrence close to 0.2 is
present for 7up to 100. The slow entanglement decay is due to the
presence of a nonzero 7y, while the smaller steady-state value is
largely due to the thermal nature of the bath (7 #0).

So far, only the case with no spontaneous emission and a
zero-temperature bath has been considered. In order to in-
clude the effects of y, n# 0, we need to solve Egs. (2) for v,
n# 0 and relate them more closely to a physical setup that
will implement our protocol. Although more detail will be
given later, here we mention that the situation considered is
such that y<<g?/«k and 7<<1, which are realistic conditions
in several physical systems such as circuit-quantum electro-
dynamics of superconducting charge qubits integrated in mi-
crowave cavities [19,20]. We will postpone discussion of the
order of magnitude of these physical parameters until Sec. V.
To fix the ideas and to be as close as possible to physical
reality, we consider 7=0.06 and y=1073k. Moreover, in
tackling this analysis, we find it convenient to refer to the
computational basis {|1),[10),|01),|])};». The essential fea-
tures of the previously considered case still hold, with the F;
function also maximized at 7=2.5. The main effect of the
nonzero thermal photon number is a reduction in the steady-
state entanglement value. This is due to 7 # 0, which reduces
the coherence @, thus preventing the state from mimick-
ing the symmetric state. On the other hand, y# 0 introduces
a second time scale in the system, which results in a slow
decay of both the populations of states |10);,, [01),, and of
the coherence Q¢ ;. This accounts for an overall decay of C,
as shown in Fig. 7. Despite the decrease found for nonzero v,
the entanglement still remains as large as 0.2 for interaction
times up to 7=100. This corresponds to an effective en-
tanglement protection from both thermal behavior of the
bosonic bath and the qubits’ spontaneous decay.

II1. DOUBLE DETUNING AND GLOBAL ADDRESSING

In this section we address the question of whether the
assumption of a single-qubit detuning modulation is critical
to the proposed protocol. The answer to this provides an
effective justification and an a posteriori motivation for the
analysis conducted so far. In order to do this, we reconsider
the physical system described in Sec. II (see the Appendix)
with the inclusion of the second qubit detuning A,(¢). This
modifies the dynamics of the system in such a way that the
Bloch equations (2) remain unaltered with the replacement

A —A®r)= A, ()= A,(¢). Thus, considering both the qubits
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as detuned in time is equivalent to just considering the en-
ergy of qubit 1 being modulated with an effective time-

dependent detuning A(r). That is, the analysis conducted so
far is perfectly general and there is no limitation in consid-
ering a single-qubit modulation as this case encompasses rig-
orously the most general situation of double detuning. Obvi-
ously, the A;(#)’s cannot be chosen arbitrarily, in general.

This result has two main implications. The first is that in
order for the protocol we have described to be effective, we
must consider detuning functions which are opposite in sign
(i.e., one detuning must be positive, the other negative). The
second point is pragmatically relevant as we can now put our
scheme within the context of global addressing protocols
[21]. Indeed, it should be clear after the above discussion
that the realization of the detuning-modulation protocol sim-
ply requires the appropriate setting of a potential which ad-
dresses both the qubits in the correct way (increasing the
energy spacing of qubit 1 with respect to the resonant value
w, and reducing the spacing of qubit 2). No single-qubit
addressability is needed, which considerably reduces the ex-
perimental efforts for the implementation of the scheme. It is
not necessary to require a strongly focused potential applied
to just one of the two qubits and having no effect on the
dynamics of the other one. In order to fix this idea, one can
consider a global magnetic field inducing a Zeeman-like ef-
fect on the qubits’ energy levels, the shifting being different
from qubit to qubit because of a gradient in the magnetic
potential (see Fig. 1). In Sec. V we address the physical
mechanism responsible for such a shift by considering a spe-
cific experimental setup that can be used in order to imple-
ment our proposal.

IV. ENTANGLEMENT IMPROVEMENT
BY POSTSELECTION

As the entanglement is set in a (quasi-) steady state, the
required degree of control over the system is reduced. With
the exception of the choice for the optimal value of 7, at
which to switch on the detuning, no fine time control is nec-
essary in order to properly drive the dynamics of the system.
Nevertheless, it might be desirable in many situations to
raise C up to a maximal entanglement of one ebit. We have
seen an intrinsic limitation in the amount of establishable
entanglement due to the unavoidable presence of the spuri-
ous population of || );,. A procedure which allows us to cut
away the unwanted contribution from || )}, is represented by
the postselection of the two-qubit state after some detection
event. Explicitly, consider the fading influence of the 0,
component. In the specific case here at hand, each time the
state of the two qubits is not found to be || ),,, the overlap
with |s),, increases, improving the entanglement between the
qubits. Thus, by using the positive-operator-valued-measure

(POVM) {I1y=| | ),5(||,IT,=1-TI,} with 1 the identity opera-
tor, we can postselect the state resulting from the qubits not
being found in the global ground state. This changes @ into
Q‘,,=/\/ﬂ]Qﬁ]=N(Q—Qu|L>12<l|) with A a normalization
factor. As @41 —0, this effectively results in a projection of
the two-qubit state onto the subspace spanned by |s,a);, with
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FIG. 8. (Color online) Comparison between the entanglement in
the postselected state with and without the detuning-modulation
protocol (solid and dashed curves, respectively). A Heaviside modu-
lation is considered in the solid line case.

asymptotically |,(s|@,|s);,>0.9. After the analysis in Sec. II,
we know that a large fraction of |s),, implies a large degree
of entanglement. This is witnessed by the entanglement
properties of the resulting state, which is represented in Fig.
8. The plot represents the amount of entanglement in the
postselected state when the measurement is performed at the
instant 7 in the evolution of the two-qubit state. Both the
detuning-modulated (solid line) and the full-resonant case
(dashed line) are shown. In both the cases there is an im-
provement in the amount of stationary entanglement. While
the second case has concurrence stabilized around 0.4, an
entanglement larger than 0.9 is obtained in the modulated
case. However, a full ebit is not possible as the spontaneous
emission and the thermal effects of the bath spoil the corre-
lations between the qubits. Indeed, we have checked that
almost a complete ebit is achievable if y=n=0 is considered,
where the detuning-modulated condition is better than the
unmodulated case, as the concurrence value always remains
above the entanglement curve of the unmodulated case.

V. PHYSICAL SETUP

The physical system we suggest to use in order to imple-
ment our proposal is given by two superconducting charge
qubits, embodied by superconducting quantum interference
devices (SQUIDs) [22], nanolithographically implanted in a
quasi-unidimensional microwave stripline resonator [23].
This system offers advantages in many respects. First, the
qubits are stationary within the cavity, so that the require-
ment for a fine tuning of the transit time through the cavity
(typical of microwave cavity-QED implementations) is no
more an issue. Second, the coupling between the qubits in
the register and the cavity bus can easily be arranged so as to
satisfy the weak coupling regime required by our proposal.
Finally, the manipulability of charge qubits embodied by
SQUIDs allows for a detuning modulation in the global ad-
dressing fashion depicted in this paper.

In detail, we assume the charging regime and the low-
temperature limit [22] and set each SQUID to work at the
charge degeneracy point, where the qubits are encoded in
equally weighted superpositions of states, having zero and
one excess Cooper pair on the SQUID island, namely |i>j
=(1/\s“'2)(|0)i|2e))j (2e being the charge of a Cooper pair).
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The degeneracy point is set by biasing each SQUID with a
dc electric field connected to the superconducting devices via
the ground plate of the resonator. The free Hamiltonian of a
single SQUID is thus given by (1/2)E)(¢)&, with E%(¢) the
Josephson energy (tuned via an external magnetic flux ¢
piercing the SQUIDs). By modulating the magnetic flux, we
can change the energy separation between the qubit levels,
thus setting the detunings with respect to the cavity mode
frequency. A gradient can be incorporated into the external
magnetic flux so as to realize a configuration of equal and
opposite detunings for the qubits in our register.

The microstrip resonator can be modelled as a distributed
LC oscillator, where C is the capacitance between the plates
of the stripline and L is the overall inductance of the device
(depending on the length of the resonator, typically in the
range of 1 cm). In this setup, y/«x==10"2 and a cavity quality
factor of ~100 are conservative assumptions. At w./2m
=6 GHz and T=170 mK we have 7=0.06. The coupling
between qubits and cavity mode is capacitive and mediated
by the electric part of the cavity field [19,20]. In a second
quantization picture, the interaction Hamiltonian can be cast

in the form of a Jaynes-Cummings model so that }ElsyS in Eq.
(1) can naturally be embodied by the present setup. A Liou-
villian description of SQUID-cavity open systems has been
proven to be rigorous up to temperatures well above those
assumed in this work. Indeed, for two qubits in a stripline
resonator, the optical master equation (Al) can be derived
from the Bloch-Redfield formalism, when the secular ap-
proximation is relaxed and a large number of elements of the
Redfield tensor are considered [24].

Two SQUID qubits (size ~um) can easily be accommo-
dated in the cavity far enough away from each other to
achieve negligible cross talk (in principle due to direct ca-
pacitive and inductive coupling). Lithographic techniques al-
low us to control, within a few percent, the geometric char-
acteristics and the resulting parameters of the device. The
two qubits can therefore be manipulated both simultaneously
or independently with two separate coils. Due to charged
impurities in the vicinity of the devices, separate calibration
at the degeneracy points would be required for each qubit.
This may be achieved with several adjustments to the design
of the setup. For instance, by splitting the ground plate and
attaching a gate to each part [19].

Let us now turn briefly to the description of possible ways
of implementing the conditional detection scheme described
in Sec. IV. In principle, a measurement of the qubits’ state
can be performed by setting a large qubit-cavity field detun-
ing, attaching a detector at the output capacitive gap of the
stripline resonator and measuring the shifts induced in the
resonance spectrum of a probe beam sent into the cavity
through the input capacitive gap. The dispersive nature of the
qubit-cavity coupling, which changes the refractive index of
the cavity field mode, determines qubit-state-dependent
shifts in the resonance peak of the probe beam. This allows
for the nondemolition detection of the qubit state, following
the strategy depicted in Ref. [20]. However, in order for
these shifts to be detectable, the change of the refractive
index must be larger than the cavity linewidth, a condition
which is hard to match if the bad cavity regime is invoked.
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However, a second strategy is possible, which is more suit-
able for conditions of large detunings between the cavity and
register and a large cavity decay rate. This involves driving a
cavity field mode with a coherent state |a) (a e C). In the
situation of a large qubit-cavity detuning, the dispersive dy-
namics the system undergoes is such that the globally unex-
cited state | | );, becomes correlated with the field state |ae’®)
[20,25]. That is, in phase space the coherent state acquires an
additional phase dependent in general on the ratio 2g>/A. On
the other hand, the symmetric and antisymmetric component
of the density matrix leave the coherent state unchanged
[25]. A homodyne measurement of the cavity field provides a
distinction between the states of the register and therefore the
implementation of the POVM we have described.

As an additional remark, we stress that in this setup, at the
charge degeneracy point, decoherence due to low-frequency
modes vanishes at the first order. This allows the minimiza-
tion of the effects of noise sources represented by switching
charged impurities in the proximity of the SQUIDs’ islands,
which constitute a system of bistable fluctuators giving rise
to 1/f noise [26]. Finally, it is worth stressing that due to the
qubit-resonator interaction, the energy levels of our qubits
are much less sensitive to these charge fluctuations than iso-
lated qubits at the optimal working point [19]. This allows us
to neglect any resulting dephasing effects.

Finally, it is worth mentioning that the example consid-
ered in this section is just one of the possible physical setups
where our proposal could be implemented. Indeed, the for-
malism we have used in order to describe the main features
of our protocol is general enough to be adapted to various
situations. For instance, the case of two trapped ions, in the
Lamb-Dicke regime and placed inside an optical cavity can
be taken into consideration [28]. The extension of our analy-
sis to the case of multilevel systems composing the register,
on the other hand, will pave the way to the use of two closely
spaced ensembles of cold two-level atoms (confined in vapor
cells or magneto-optical traps). The free-space interaction of
a laser with the ensembles, each treated as an effective N/2
spin (where N is the number of atoms in each ensemble) and
within the rotating wave approximation, provides an interac-
tion Hamiltonian which is the generalization of our model to
N+1 systems [29].
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APPENDIX: MASTER EQUATION
Single-qubit detuning

In this appendix we briefly describe the steps taken in
order to derive the Bloch equations (2). The last part of the
Appendix is dedicated to the case of a double detuning, as
studied in Sec. III. In an open-system perspective, the dy-
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namics of the cavity field-qubit system is described by the
master equation

2

(?IPCIZ == i[Hsys’pCIZ] + ﬁf(Pclz) + E ‘c}/(pcn)a
J=1

(A1)

where Hsys is defined by Eq. (1). Here, we have
introduced the Liouvillian superoperators describing the
cavity decay  L(p.p)=k(ii+1)[2dp.pata’ ~{ata. p,1n}]
+ ki 24" p,,d—{aa’, p.i}] and the single-qubit spontaneous

emission [Aijy(pm), which has the same structure as ﬁf(pclz)
for n=0,k— 1, and d—»é';.

As we are interested in the qubits’ evolution, we now
adiabatically eliminate the degrees of freedom of the field
mode. This can be done using a procedure valid in the weak-
coupling regime g<<k. In this case, the dynamics of the
mode interacting with the bath is much faster than its inter-
action with the qubits. The qubits see the cavity mode in a
steady state p,, not affected by the qubit-mode dynamics and
determined by the statistical properties of the environmental
bath. In the case at hand, p,, is a thermal state with average
photon number 7. By using, standard techniques of quantum
optics based on second-order perturbation theory and the first
Born-Markov approximation [27] (see also Ref. [6]), the qu-
bit master equation in the interaction picture reads

90 = E[ag (o) + L)1+ LEN0),  (A2)
j=1
with
2
£5"%(0) = L+ V(267067 - {A+A,Q}]+—ﬁ[20 067
~{576%.0}1, (A3)
£504(0) = g”(ml)[zole —{6367.0}]
VLW o
n|:20'2Qa'1 —-{d,65,0}] +Hec.,
(A4)

and g(r)=ge~"»20_ Here, we have considered the case of
E(l’(t)>wC with Eg(t) EEgsz [so that A,(r)=0 always] and
A, (t)=A(z) for ease of notation. Equation (A3) is the Liou-
villian describing the single-qubit decay rate induced by the
coupling to the external thermal bath mediated by the bus. In
general, the cavity-induced decay rate of atom j depends on
the corresponding detuning. Within the range of validity of
our approximations, however, the bare decay rates can be
used. It is worth stressing that as the adiabatic elimination
procedure does not affect the qubits degrees of freedom, the
form of ﬁ;/(e) is left unchanged. However, the adiabatic
elimination of the cavity gives rise to an effective qubit-qubit
interaction term. The structures of Egs. (A3) and (A4) result
from the assumption that the detuning A(7) is modulated
within a time scale slower than the one set by the cavity
decay rate k.
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Two-qubit detuning

The introduction of the second-qubit detuning proceeds as
described in Sec. III and by reconsidering Eq. (A2). By re-
vising the adiabatic elimination procedure, the form of the
single-qubit decaying terms in Eq. (A3) remain unaltered,

A2
while the interqubit correlation term is changed into £5,"(0)
with g(r)=ge 20 A(r)=A(r)-A,(7), and A(7) the detun-
ing of qubit j. Evidently, the form of the master equation is
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invariant after the introduction of the two-qubit detuning and
the dynamics depend only on the relative detuning between
the qubits. This is due to the strucgure of Eq. (Al) in the
adiabatically eliminated form. In EA%/ (o), the presence of a
lowering ladder operator (i.e., 6';) is accompanied by the
rising ladder operator of the other qubit. As a lowering op-
erator is associated with the time-dependent term 810 the
accompanying rising operator will introduce ¢™*2”) so that

they always combine to give the relative detuning A(z).
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