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We present multiparty entanglement purification protocols that are capable of purifying arbitrary graph states
directly. We develop recurrence and breeding protocols and compare our methods with strategies based on
bipartite entanglement purification in static and communication scenarios. We find that direct multiparty puri-
fication is of advantage with respect to achievable yields and minimal required fidelity in static scenarios, and
with respect to obtainable fidelity in the case of noisy operations in both scenarios.
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I. INTRODUCTION

Entanglement purification �distillation� is an important
primitive in quantum-information processing. It allows one
to overcome the influence of noise in quantum communica-
tion �1–3�, and enables one to obtain provable secure quan-
tum key distribution even in the context of noisy channels
�4� and over arbitrary distances �5�. The applications of en-
tanglement purification are, however, not limited to bipartite
communication scenarios. First, it has been extended to cer-
tain multiparty scenarios �6–10�, leading, e.g., to novel quan-
tum primitives such as multiparty secure state distribution
�11�. Second, in the context of fault-tolerant quantum com-
putation, entanglement purification is a key ingredient to ob-
tain improved error thresholds �12,13�. Applications in quan-
tum error correction �14� and quantum simulation �15� have
also been discussed.

The basic idea of entanglement purification is to use sev-
eral copies of a noisy entangled state to generate, by means
of local operations and classical communication �LOCC�, a
few copies with improved fidelity. So far, entanglement pu-
rification protocols have been developed that are capable of
purifying Bell states �1–3� in the bipartite case, and all two-
colorable graph states �8,9� as well as W states �16� in the
multiparty case. They also have been generalized to higher-
dimensional systems �17�. Graph states �14,18� are a family
of multiparty entangled states with interesting entanglement
properties. Two-colorable graph states are subfamily associ-
ated with two-colorable graphs and include a number of
interesting states, such as Greenberger-Horne-Zeilinger
�GHZ� states, cluster states, and codewords of
Calderbank-Shor-Steane �CSS� error-correction codes. Graph
states appear, for instance, in the context of measurement-
based quantum computation, where a given graph state rep-
resents an algorithmic-specific resource that allows one to
realize a specific unitary operation on several qubits by local
measurements. Typically, these graphs are not two-colorable,
but one may wish to purify this resource, e.g., to realize
one-way quantum computation in a fault-tolerant manner.

In this paper, we present entanglement purification proto-
cols �EPPs� that are capable of purifying arbitrary graph

states. To be precise, we develop for each graph state a direct
multiparty recurrence protocol and a multiparty breeding
protocol. Our key ideas are twofold. First, we show that if
auxiliary �even noisy� two-colorable graph states are avail-
able, the fidelity of the noisy graph states can be improved.
Second, we show how to get a single copy of the auxiliary
two-colorable graph state from two identical copies of the
k-colorable graph state by LOCC. Thus, unlike the known
two-colorable graph state entanglement purification protocol
�8,9�, our protocol utilizes different shapes of graphs.

The protocols are applicable both in �i� a static �LOCC�
scenario, where the parties attempt to purify by LOCC sev-
eral copies of given noisy multiparty entangled states, as
well as in �ii� a communication scenario where the parties are
allowed to generate �arbitrary� multiparty states locally, dis-
tribute them through noisy quantum channels, and attempt to
end up with high-fidelity target graph states. Our first idea is
commonly utilized in both scenarios. The second idea is cru-
cial in the static �LOCC� scenario, while in the communica-
tion scenario we may prepare separately auxiliary two-
colorable graph states through noisy channels in an effective
way.

In both cases, we show that the direct multiparty EPPs are
superior to alternative approaches based on bipartite en-
tanglement purification. In particular, we find that in the
static scenario �i� the yield of direct multiparty breeding pro-
tocols is higher than for any strategy based on bipartite pu-
rification, and also the purification regime is larger. When
also considering noisy local control operations, we show that
for both scenarios �i� and �ii�, the multiparty recurrence pro-
tocol allows one to reach higher fidelities. We first review the
concept of graph states in Sec. II A, and then present our
recurrence and breeding protocols in Secs. IV A and IV B.
We present an alternative strategy based on purification of
two-colorable subgraph states in Sec. V. A comparison with
bipartite strategies for noiseless �Sec. VI A� and noisy
�Sec. VI B� local control operations finally demonstrates the
advantage of our protocols.

II. GRAPH STATES AND MANIPULATION

In this section, we summarize the basics concerning graph
states and their manipulations.*Electronic address: caroline.kruszynski@uibk.ac.at
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A. Definition and notation for graph states

Graph states are a family of multiparty entangled states
associated with mathematical graphs �14�. A graph G
= �V ,E� is given by a set V= �1,2 , . . . ,N� of N vertices con-
nected in a specific way by edges E. To every such graph
there corresponds a basis of N-qubit states ����G�, where
each of the basis states ���G ��=�1�2 . . .�N� is the common
eigenstate of N commuting correlation operators Ka

G with
eigenvalues �−1��a such that �a=0,1. That is, they satisfy
the set of eigenvalue equations Ka

G���G= �−1��a���G, a
=1, . . . ,N. The correlation operators are uniquely determined
by the graph G and are given by

Ka
G = �x

�a� 	
�a,b��E

�z
�b�, �1�

where ��
�a� denotes the application of the corresponding Pauli

operator ��=x ,y ,z� by the party a. Equivalently, any graph
state ���G can be written in the following manner:

���G = 	
a=1

N

��z
�a���a
 	

�b,c��E

�Z�bc��� + ��N �2�

where �Z=diag�1,1 ,1 ,−1� in the computational basis is the
controlled-phase gate, and �± �= 1

�2
��0�± �1��.

We will use the concept of k-coloration in the following.
A graph is called k-colorable if there exist k sets of vertices
A1 ,A2 , . . . ,Ak�V such that there are no edges within each of
the groups Aj for all j, i.e., for all a ,b�Aj, and for all j, we
have �a ,b��E. Two-colorable graphs are a special instance
with k=2, where multiparty entanglement purification proto-
cols are known �8,9�. However, only a subset of graphs is
two-colorable and, in principle, a graph may be N-colorable.
We remark that local-unitary equivalent graph states �18�
may correspond to graphs with different coloring, and the
minimum k within the local equivalence class is not known.
Under local Clifford operation, we have, however, that gen-
erally k�2, i.e., not all graph states are locally equivalent to
two-colorable graphs.

Associated with a given k-colorable graph G with color-
ing �A1 ,A2 , . . . ,Ak�, we define two-colorable graphs
�g1 ,g2 , . . . ,gk� �see Fig. 1 for an illustration�, where gj con-
tains only the edges between the set Aj and the remaining
sets �Ai , i� j�, but where edges between the remaining sets
are erased. That is, the sets �Ai , i� j� form a new set Aj̄

=V /Aj. The set of indices �a corresponding to the set Aj̄ will
be denoted by � j̄. Note that � j=1

k gj =G.
In this paper, we consider mixed states diagonal in the

graph-state basis,

�G = 

�

��1�2. . .�k
��1�2 . . . �k�G��1�2 . . . �k� , �3�

where we have grouped the multi-index � into k
multi-indices � j =� j1

. . .� jm
�m= �Aj � � corresponding to the

sets Aj defined by a chosen k-coloration of the graph G. Note
that mixed states resulting from any noise models can be
brought into this form by means of local depolarization, i.e.,
by applying randomly the local operations corresponding to
the correlation operators �Ka

G�. Diagonal elements in the

graph-state basis, i.e., the coefficients ��1�2. . .�k
remain un-

changed by this procedure, and any mixed state can be as-
sumed to be of the form �3� without loss of generality. Hence
we can interpret the mixed state as an ensemble of graph
states ���G, where ���G appears with probability ��. We can
therefore restrict our attention to the transfer of these indices
between unknown pure states as presented in the next sub-
section.

B. Operations on graph states

We briefly mention two operations that play key roles in
entanglement purification protocols. One is the multilateral
controlled-NOT �CNOT� operation, which enables one to trans-
fer the stabilizer eigenvalues � between two states. The
other are Pauli measurements which allow one to evaluate �
with the help of classical communication.

Let us first describe the action of a CNOT gate on a product
of two �possibly different� N-qubit graph states ���G1

and
���G2

. We apply the CNOT gate from a1 �ath qubit of the first
state� to a2 �ath qubit of the second state�. We deduce the
expression for the resulting state from �2�. As �+ � � �+ � is an
eigenvector of the CNOT operation associated with the eigen-
value 1, the difference between the initial and final states is
due to the commutation relation between the CNOT gate, the
�z operators, and the controlled-phase gates. A straightfor-
ward calculation yields

CNOT�a1→a2����G1
���G2

= ��z
�a1���a2 	

a2��Na2

�Z�a1a2�����G1
���G2

,

�4�

where Na2
are the neighbors of vertex a2. The final state is

related to a graph of 2N vertices which is composed of the

FIG. 1. �Color online� A three-colorable graph G and the three
corresponding two-colorable sub-graphs g1, g2, and g3. g1 corre-
sponds to the red color �vertices 2, 4, and 6�, g2 to the green �vertex
7�, and g3 to the blue �vertices 1,3, and 5�.
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two initial graphs with addition of all edges between vertex
a1 and the neighbors of vertex a2. See Fig. 2 for an illustra-
tion. In addition, bit �a1

is flipped if bit �a2
=1, which corre-

sponds to a transfer of information from the second state to
the first one. Note, however, that this parity information can-
not be evaluated without disturbing the first state.

To read out the information transferred between two
states, one uses Pauli measurements in directions that corre-
spond to the correlation operators �Ka

G�. Suppose we want to
determine the bit string � j corresponding to a color Aj for a
given graph state �� j ,� j̄�G. Then, the parties belonging to
color Aj measure their qubit a in the eigenbasis ��± �
= 1	�2 ��0�± �1��� of �x, obtaining results 
a� �0,1�, while
all the other parties make their measurement in the eigenba-
sis ��0� , �1�� of �z, obtaining results �b� �0,1�. According to
Eq. �1�, each stabilizer eigenvalue �a of Ka

G�a�Aj� can be
evaluated via classical communication of these measurement
results as

�a = 
a �
b�Na

�b. �5�

Note that all indices corresponding to color Aj are measured
simultaneously.

III. STATIC SCENARIO AND COMMUNICATION
SCENARIO

In this paper, we are interested in the generation of high-
fidelity graph states shared among N spatially separated par-
ties. We consider two cases �i� a static LOCC scenario, and
�ii� a communication scenario, since both situations are of
practical relevance in quantum information processing.

In �i�, the static LOCC scenario, the parties share M cop-
ies of a mixed state �. They can manipulate the states by
means of LOCC in order to generate a high-fidelity approxi-
mation of the target state �0�G. No quantum communication
between the parties is allowed. The efficiency of this proce-
dure is measured by the yield, i.e., the ratio of high-fidelity
output state per input state. In �ii�, the communication sce-
nario, the parties are connected by noisy quantum channels
and are allowed to distribute any locally generated entangled
state through the noisy quantum channels, in addition to se-
quences of LOCC. The efficiency of this procedure is mea-
sured by the �inverse of the� quantum-communication cost
�19�, i.e., the number of channel usages required to generate
a desired multiparty entangled state with sufficiently high
fidelity.

The scenario �i� deals with entanglement properties of a
given mixed state �, i.e., whether high-fidelity multiparty

entangled states can be distilled from several copies of � by
LOCC. The scenario �ii�, on the other hand, has a certain
physical setup �a communication setup� in mind, and hence
deals with the question of whether in such a context high-
fidelity entangled states can be generated. For our purposes,
the most relevant difference between the two scenarios is
that in case of �ii� noisy entangled states of any kind can be
generated by distributing them through noisy quantum chan-
nels, which can be used to generate the desired target state.
In �i�, only copies of � are given, which should be manipu-
lated by LOCC. If different states are needed, this has to be
prepared by manipulating several copies of � by LOCC.

IV. DIRECT MULTIPARTITE ENTANGLEMENT
PURIFICATION PROTOCOL

A. Recurrence protocol

We now present a recurrence protocol that allows one to
purify directly any k-colorable graph state, provided auxil-
iary two-colorable graph states corresponding to the k differ-
ent colors are available. The subprotocol is applicable in both
scenarios, and we describe later on how to construct the aux-
iliary two-colorable graph states in each scenario. Note that,
if the target graph state is two-colorable, the auxiliary graphs
g1 and g2 are nothing but G. Thus our protocol covers known
protocols for two-colorable graph states. The total protocol
consists of k subprotocols �P j� �j=1, . . . ,k�, each of which
serves to purify a state partially, i.e., with respect to the index
vector � j corresponding to a group Aj �i.e., a certain color�.
We outline the protocol in the following. Each subprotocol
has two stages: �1− i� purification stage preceded by �0− i�
auxiliary state preparation stage.

1. Subprotocol Pj

Assume that auxiliary �possibly noisy� two-colorable
graph-states �gj

are available in addition to an ensemble of
k-colorable graph states �G. We purify the k-colorable graph
states �G with respect to bit string � j.

�1-1� The parties take two noisy states in such a way that
the first state is �G and the second one is �gj

. The parties in
the group Aj apply CNOT gates from the second �control�
state �gj

to the first �target� state �G, while the parties in the
group Aj̄ apply the CNOT gate in the opposite direction.

�1-2� The parties measure the second state �gj
locally in

the eigenbasis of �x for the group Aj and in the eigenbasis of
�z for the group Aj̄. Using classical communication, they
decide to keep the first state �G if all eigenvalues correspond-
ing to the correlation operators �Ka

G ,a�Aj� of the group Aj

�determined by Eq. �5�� are 0, or to discard it otherwise.
Let us take a close look at the subprotocol P j. In �1-1�, the

multilateral CNOT operation

	
�a1,a2��Aj

CNOT�a2→a1� 	
�b1,b2��Aj̄

CNOT�b1→b2�, �6�

is applied between a first state corresponding to the graph G
and a second state corresponding to the graph gj �from now
on, we use al for the vertex of the lth state in the group Aj

FIG. 2. �Color online� Effect of a CNOT gate on a product of two
graph states. The final state is associated with a graph composed of
the two initial graphs with additional edges between the control
qubit b1 and all neighbors of the target qubit b2.
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and bl for the one in the group Aj̄�. A straightforward calcu-
lation using Eq. �4� gives the following map:

�� j,� j̄�G�� j,� j̄�gj
→ �� j,� j̄ � � j̄�G�� j � � j,� j̄�gj

, �7�

where � means bitwise addition modulo 2, which shows the
transfer of information about the stabilizer eigenvalues be-
tween the two states. Note that the final states correspond to
the same graphs as the input states. After that, one measures
the second state in order to determine the indices � j � � j
corresponding to color Aj, using the procedure described in
�1-2�, where each bit � j � � j is determined using Eq. �5�. If
all the parities � j � � j are 0, it is expected that �a=0 and
�a=0 for a�Aj are probable since �0�G and �0�gj

have been
assumed to be the majority in their ensembles. That is why
then the first state is kept and otherwise discarded. As con-
sequence, in the expansion �3� of the density matrix, ele-
ments of the form �0,� j̄

are increased. One finds that the new

matrix elements of �G� are given by

��j,� j̄
� =

1

�



��� j̄,� j̄��� j̄�� j̄=� j̄�
��j,� j̄

�̃�j,� j̄
�8�

where � is a normalization constant guaranteeing that

tr����=1, and �̃ are the coefficients for the two-colorable
graph state �gj

written in the form �3�. We remark that here
we do not address the question of the unfavorable scaling
behavior of the efficiency of the proposed protocol with the
total number of particles N; for recent developments on this
subject in the context of two-colorable graph state purifica-
tion see �20�.

We illustrate how the protocol works by looking at the
simple toy case where noise acts only on one color. Let us
consider G as the five-qubit ring and g1 as the five-qubit
cluster, and study the effect of P1 on mixed states of the form

�G = 

�1

��1,0,0��1,0,0�G��1,0,0� , �9�

�g1
= 


�1

�̃�1,0,0��1,0,0�g1
��1,0,0� . �10�

Note that, even though g1 is two-colorable, we group the
vertices in three distinct sets corresponding to the colors of
the ring. As only the qubits in A1 are noisy, a sequence of
applications of subprotocol P1 is sufficient to purify the
state. A straightforward calculation gives the new coefficient
of the purified ring state:

��1,0,0� = ��1,0,0�̃�1,0,0/
�1
���1,0,0�̃�1,0,0� ,

meaning that the dominant coefficients are increased.
The whole purification protocol consists of a sequence of

applications of the subprotocols P j corresponding to all col-
ors j=1, . . . ,k. Even though there is a back action of noise
for the colors that are not purified for the step j, one obtains
an overall increase of the fidelity �0 if the fidelity of the
initial state is sufficiently high. In fact, �0=1 is an attractive
fixed point of the protocol under the ideal local operations.

2. Preparation of the auxiliary state �gj
in the static scenario

Next we describe how to obtain the auxiliary two-
colorable graph states �gj

required for subprotocol P j. In the
communication scenario, these states can be generated di-
rectly by distributing them through �noisy� quantum chan-
nels. In the static scenario, the situation is slightly more com-
plicated and a preprocessing to the purification subprotocol
P j is needed, which we will describe in the following.

Assume that an ensemble of noisy k-colorable graph
states �G is available. We supply an ensemble of the auxiliary
two-colorable graph state �gj

by LOCC.
�0-1� The parties take two identical noisy copies of �G.

The parties in the group Aj apply a CNOT gate from the
second �control� copy to the first �target� copy, the parties in
the group Aj̄ apply the CNOT gate in the opposite direction.

�0-2� The parties measure the second state in the eigenba-
sis of �z. By this, they erase all the edges between the two
states and they are left with a state corresponding to the
two-colorable graph gj after a suitable change of local basis
depending on the measurement outcome.

A straightforward calculation using Eq. �4� shows that the
multilateral CNOT gate applied in step �0-1� results in the
following map when applied to a product of two k-colorable
graph states:

�� j,� j̄�G�� j,� j̄�G

� 	
b1�Aj̄

b2��Nb2
�Aj̄

�Z�b1b2���� j,� j̄ � � j̄�gj
�� j � � j,� j̄�G,

�11�

which is a product of a graph state associated with gj �state
1� and a graph state associated with G �state 2�, with addi-
tional edges between the two graphs. The local �z measure-
ments on the second state �step �0-2�� erase the correspond-
ing vertices and all edges associated to them in the graph.
This ensures that after the measurement the first state is a
two-colorable graph state corresponding to the graph gj as
desired.

Note that the multilateral CNOT gate does not only creates
the desired two-colorable graph-state, it also results in a
transfer of information between the two states. In particular,
the part of the index bit of state 2 corresponding to color Aj
is given by � j � � j, where � and � correspond to the states
before the CNOT operation. We are therefore able not only to
create the two-colorable graph state but also to perform at the
same time a first step of purification. To this end, we replace
the measurement in the eigenbasis of �z by a measurement of
the correlation operators Ka

G with a�Aj, where we keep the
state only if the expectation values of all these correlation
operators are zero. That is, step �0-2� can be replaced by the
following.

�0-2�� The parties measure the second state locally in the
eigenbasis of �x for the group Aj and in the eigenbasis of �z
for the group Aj̄. The first state is kept if all eigenvalues
corresponding to correlation operators �Ka

G ,a�Aj� of the
group Aj �determined by Eq. �5�� are 0, and discarded
otherwise.
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Note that, depending on the measurement outcomes a lo-
cal unitary operation on the remaining copy is required to
ensure that �0�gi

is the dominant component of the resulting
state �gj

. To be precise, the parties should apply a local uni-

tary operation 	b1�Aj̄,b2��Nb2
�Aj̄

��z
�b1���b2� depending on their

measurement pattern �b2�
after either �0-2� or �0-2��.

B. Breeding and hashing protocols

Hashing and breeding protocols were introduced for the
bipartite Bell state in Refs. �1,2�, for the GHZ state in Ref.
�7�, and generalized to all two-colorable graph states in Refs.
�8–10,22�. We will now show that the multilateral CNOT op-
eration together with the use of different states allow one to
construct hashing and breeding protocols for any graph state.
In both cases, we are given an ensemble of M imperfect
k-colorable graph states, with M→
. One then transfers in-
formation from randomly chosen subsets of m states to per-
fect states �breeding� or imperfect states �hashing�, which are
then measured. At each round our knowledge about the re-
maining states is increased.

We propose here a generalization of the breeding protocol
to all graph states. A hashing protocol can be obtained in a
similar manner with the additional requirement of taking into
account the back action due to the imperfection of the states
used to read out the information. One is given M copies of an
N-qubit graph state corresponding to graph G, where G is
k-colorable. We consider M→
. In addition, one is also
given k ensembles Ej, j=1, . . . ,k, which one needs to give
back at the end, where ensemble Ej contains perfect copies
of the two-colorable graph state corresponding to graph gj.
Let us call Bi, i�1, . . . ,N the binary vector which contains
the value of bit i for a sequence of m states. It is possible to
determine the parity of all Bi belonging to a given colour Aj
simultaneously by measuring only one state. This is done by
performing CNOT gates from one state of Ej to the m
k-colorable graph states for all qubits in Aj and in the oppo-
site direction for the other qubits. To recover the parity of Bi,
one measures the two-colorable graph state using the method
described in Sec. II B. By this, one determines the eigenval-
ues of all correlation operators corresponding to set Aj,
which are given by �5�. One needs to repeat the procedure at
most M S�ai

�0� ,ai
�1�� times to obtain perfect knowledge of Bi,

where S�ai
�0� ,ai

�1��=−ai
�0� log2 ai

�0�−ai
�1� log2 ai

�1� is the en-
tropy and ai

��i�=
�k��i
��1�2,. . .,�i,. . .,�N

.
For each of the k colors, one performs the sequence of

operations described above maxi�Aj
�M S�ai

�0� ,ai
�1��� times in

order to obtain the parity of all Bi belonging to this color.
Given this information, one ends up with a pure state corre-
sponding �up to local unitary operations� to M� copies of
�0�G. The last step consists in reconstituting the pool of per-
fect two-colorable graph states we were given at the begin-
ning. This is done by performing the multilateral CNOT op-
eration given by �6� on two copies, using by this 2
maxi�Aj

�M S�ai
�0� ,ai

�1��� k-colorable graph states for each
color. A lower bound Y of the yield is therefore given by

Y = 1 − 2

j=1

k

maxi�Aj
S�ai� . �12�

We remark that this construction might not be optimal, and a
significant improvement of the yield could be achieved by an
optimal procedure that generates M� copies ��gj

� from M
copies of ��G�. To illustrate our protocol, we calculated the
yield for a five-qubit ring state of the form

� = f �0�G�0� + �1 − f�/�25 − 1��1 − �0�G�0�� . �13�

Note that this state is a three-colorable graph state. The en-
tropy S�ai

�0� ,ai
�1�� is identical for all bits. It is given by

S�a1
�0�,a1

�1�� = − 
 f + �24 − 1�
1 − f

25 − 1
�log2
 f + �24 − 1�

1 − f

25 − 1
�

− 
24 1 − f

25 − 1
�log2
24 1 − f

25 − 1
� . �14�

The yield, given by �1−6S�a1
�0� ,a1

�1��� is plotted as function
of f in Fig. 3. One sees that the yield is approaching 1 for a
state of fidelity close to 1.

V. ALTERNATIVE PURIFICATION PROTOCOLS
VIA CUTTING INTO AND RECONNECTING

TWO-COLORABLE GRAPH STATES

Until now we have considered strategies where the
k-colorable graph state was directly purified. Another possi-
bility is to purify smaller parts of the graph state correspond-
ing to two-colorable subgraphs and connect them at the end.
The advantage of this strategy is to make possible the usage
of known two-colorable graph state purification protocols.
Different intermediate strategies can be designed depending
on the chosen subgraphs. We use an iterative method to con-
struct a set of subgraphs with no overlapping edges, such that
their union is the graph G. Step j of the procedure consists of
choosing color Aj out of the k− j remaining colors and con-
structing subgraph g̃j, such that g̃j is a further subgraph gj of
Sec. II A where all vertices a�Ai, i=1, . . ., j−1, have been
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FIG. 3. �Color online� Yield as function of fidelity for the breed-
ing protocol applied to the five-qubit ring state.
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erased �see Fig. 4�. At each step, one checks if the graph
G \ ��i=1

j g̃i� is two-colorable. If this is the case, one stops the
procedure. The states corresponding to the subgraphs are dis-
tributed from the beginning in a communication scenario,
while they are generated from two copies using the multilat-
eral CNOT operation described in Sec. IV A in a static sce-
nario, followed by a measurement in the �z basis of the ver-
tices one wants to erase. Once the states are distributed, the
multipartite purification protocol for two-colorable graph
states �8,9� is applied. To conclude the protocol, one merges
the different graph states together in order to create the final
k-colorable graph state. Given two vertices a1 and a2 belong-
ing to different graphs, the corresponding party merges them
by applying a projective measurement given by P0= �0��00�
+ �1��11� and P1= �0��01�+ �1��10� �with outcomes 0 and 1�. A
local correction given by 	b�Na2

�z
�b� is applied to the state

when the measurement result is 1.

VI. COMPARISON WITH BIPARTITE STRATEGIES

A. Performance under ideal local operations in static scenario

1. Yield

We show in this section that in a static scenario, direct
multipartite purification is more efficient than strategies
based on bipartite purification. This is due to the fact that any
strategy based on bipartite entanglement purification requires
that at a certain stage Bell pairs shared among pairs of parties
are generated. After the entanglement purification protocol,
another sequence of LOCC must be applied to recover the
multiparty entangled states. We show here that these two
sequences of operations necessarily generate losses even
when applied to pure states. We illustrate this by considering
as example the five-qubit ring state to which we apply the
method introduced in Ref. �9� to quantify the loss. We start
with an ensemble of M perfect ring states �0�G�0�, which are
then transformed to an ensemble of Bell pairs �0�G2

�kl��0�,
shared between the different parties, by means of LOCC.
Another sequence of LOCC brings the pairs to an ensemble

of M̃ ring states. The total procedure can be summarized as
follows:

�0�G�0��M → �
�k,l�;k�l

�0�G2

�kl��0��mkl → �0�G�0��M̃ . �15�

We now calculate a bound on the yield M̃ /M for this proce-
dure. To do it, we apply the following conditions which were
used in Ref. �23� to show the irreversibility of entanglement
transformation between singlets and GHZ states, �a� The en-
tropy can only decrease on average under LOCC operations.
�b� The average increase of relative entropy of system B
=V \A is smaller than the average decrease of entropy in
system A. If we consider a density operator �AB describing a
pure state which is transformed to an ensemble �pk , �̃AB

�k�� by
LOCC operations we have that �a�

S��A� � 

k

pkS��̃k
A� , �16�

where S��A� is the von Neumann entropy of the reduced
density operator for system A, � is the initial state, and �̃ the
final state. We consider the bipartition of the system of qubits
into system A and system B=V \A. Then, we have �b�



k

pkEr��̃k
B� − Er��B� � S��A� − 


k

pkS��̃k
A� , �17�

where Er��A� is the relative entropy of entanglement for �A

Er��A� = min
�A separable

S��A��A� , �18�

with

S��A��A� ª Tr��A log2 �A� − Tr��A log2 �A� �19�

being the relative entropy. Let us now apply these results to
our example. We first calculate �16� for the second part of
process �15� with A= �a1 ,a2� and B=V \A. We have for the
state describing the ensemble of pairs S��A�=
b;b�B�ma1b

+ma2b�. This comes from the fact that the entropy of a pure
state is zero and that TrB� is not a pure state if and only if a
one of the two qubits belonging to set A is part of an en-
tangled pair. In this case, the entropy is equal to unity for a
single state. As there are mab states containing a fully en-
tangled pair between qubits a and b, the contribution of this

states to the total entropy is mab. For the M̃ ring states we

find S��̃A�=2M̃, as TrB��0�G�0�� can be written as a sum of
four projectors with equal weights �see below�, and hence for
a single copy of the ring state, the entropy of entanglement
with respect to the bipartition in question is two. Summing
up the contributions of all bipartitions of two and three qu-
bits, we obtain

6 

a,b;a�b

mab � 20M̃ . �20�

We now apply inequality �17� to the first part of process �15�,
with A= �a1 ,a2� and B=V \A, to have a bound on M. We
distinguish two kinds of bipartitions: �i� qubits a1 and a2 are
neighbors, �ii� they are not neighbors. Let us study the en-
tanglement properties of the state �0�G�0� obtained by tracing

FIG. 4. �Color online� A three-colorable graph G with colors
A1= �7�, A2= �2,4 ,6�, and A3= �1,3 ,5�. g̃1 and g̃2 are two-colorable
subgraphs which can be obtained from G and which give G when
they are merged together. We use the method described in Sec. V to
construct the subgraphs. For example, to obtain g̃1, we choose A1 as
the first color and erase all edges between A2 and A3 using the
procedure described in Sec. IV A 2. The subgraph g̃2 is obtained by
erasing the vertex A1 via a �z measurement, and no further process-
ing is required since this graph is already two-colorable.
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out A. In case �i�, TrA��0�G�0��= �1/4���000�G��000�
+ �001�G��001�+ �100�G��100�+ �101�G��101��, where G�
stands for the graph corresponding to the three-qubit GHZ
state. A straightforward calculation shows that this state is
separable as it can be written as TrA��0�G�0��= �Had � 1
� Had�†���Had � 1 � Had�, with ��=1/4��+ + + ��++ + �+ �−
−+ ��−−+ �+ �−+−��−+−�+ �+−−��+−−��. Similarly, in case
�ii� we find �1/4�(1 � �1+ i�z� � �1+ i�z�)†TrA��0�G�0��(1 � �1
+ i�z� � �1+ i�z�)= �1 � Had � Had�†���1 � Had � Had�.
Hence the state obtained after tracing out two qubits is al-
ways separable, which implies that the relative entropy Er
vanishes. In addition, we have S��A�=S��B� and using the
decomposition above we obtain S(TrB��0�G�0��)=2. The rela-
tive entropy of entanglement of the ensemble of pairs is
given by Er��̃B�=
�b,c��Bmbc as Er=1 for a fully entangled
pair and Er=0 for a separable state. We sum up the contri-
butions of the � 5

2
� possible bipartitions to obtain

9 

a,b;a�b

mab � 20M . �21�

Joining the two inequalities we get

M̃ �
2

3
M , �22�

and hence the procedure �15� generates losses. On the other
hand, the breeding presented in Sec. IV B �or equivalently
hashing� gives yield 1 for states of fidelity 1, and for a state
of the form �13� with f �0.9877 we have Y �2/3. Hence,
any five-qubit ring state arising from the application of glo-
bal depolarizing noise and with fidelity f �0.9877 can be
purified more efficiently using the direct protocol.

2. Minimal required fidelity

In this section, we illustrate the process consisting in gen-
erating one entangled pair from a five-qubit ring state. We
see that the minimal required fidelity is higher for the bipar-
tite strategy. We start with a state resulting from the applica-
tion of global white noise to the five-qubit ring state, given
by Eq. �13�. We define x= f − 1−f

25−1
and rewrite the state as

� = x�0�G�0� +
�1 − x�

25 1 , �23�

where G stands for the ring. To create a two-qubit entangled
pair from the initial state, we measure three consecutive qu-
bits in the eigenbasis of �z. We remark that this is in fact an
optimal strategy for states of the form Eq. �23� when operat-
ing on a single copy. The resulting state of the remaining two
qubits, after some local correction if the measurement result
is 1, is given by

� = x�0�G2
�0� +

�1 − x�
22 1 , �24�

where G2 is the graph consisting in two vertices connected
by an edge. This state is equivalent up to local unitary op-
erations to a Werner state with fidelity F= �3x+1� /4. For x
�1/3 the state is distillable since bipartite entanglement pu-

rification protocols can be successfully applied. The state has
positive partial transpose for x�1/3 which implies that it is
not distillable. We thus have the condition x�1/3 such that
the state is distillable via a bipartite entanglement purifica-
tion strategy. For the direct multiparty entanglement purifi-
cation protocol proposed in this article, we �numerically� find
a threshold x�0.2 for states of the form Eq. �23�. Thus the
minimum required fidelity for the multiparty strategy is sig-
nificantly lower than for the bipartite strategy. Although here
we illustrate the advantage of our method by the five-qubit
ring state, such advantages are expected for other graph
states as well.

B. Performance under imperfect local operations

After having shown the advantage of multipartite purifi-
cation with respect to bipartite purification in the static sce-
nario, we turn to a more general setting including noisy local
operations. We show here that when local operations are im-
perfect, multipartite purification can be advantageous also in
the communication scenario.

We model noise in the communication channels and in the
local operations as follows. We study typical noise models,
where the Kraus representation of the superoperators is diag-
onal in the Pauli basis. This is a common and usually suffi-
ciently general model �21� �in particular, any noisy channel
can be brought to such a form by means of �probabilistic�
local operations�. We consider the depolarizing channel

Ep
�a���� = p� +

1 − p

4
�� + �x

�a���x
�a� + �y

�a���y
�a� + �z

�a���z
�a��

�25�

where p is the reliability. As part of the purification protocol,
local one- and two-qubit unitary operations, are employed
which may be noisy. An imperfect operation is modeled by
preceding the perfect operation U�a1a2� with the application of
the noise superoperators E from Eq. �26� with parameter pl,
i.e., the state is transformed as

� � U�a1a2�
„Epl

�a1�Epl

�a2����…U†�a1a2�. �26�

We assume that the protocols are executed with the least
possible number of operations to keep accumulated noise
low. Hence, if a local two-qubit gate U12

�a1a2� is preceded by
one-qubit gates U1

�a1� and U2
�a2� we apply one combined uni-

tary U�a1a2�=U1
�a1�U2

�a2�U12
�a1a2� which is subjected to noise

only once.
We compare a strategy using direct multiparty entangle-

ment purification �MEPP strategy� with a strategy using bi-
partite entanglement purification �BEPP strategy� in the par-
ticular example of the five-qubit ring state, which is
genuinely three-colorable and hence can be purified directly
only by means of the present protocol. To compare BEPP
and MEPP strategies, we computed the maximal reachable
fidelity Fmax, and the minimum required fidelity Fmin. Fmax is
the maximum value of fidelity to which a state of fidelity
F�Fmin can be brought using the purification protocol. Note
that Fmax is the same in a communication and in a static
scenario. This comes from the fact that the maximal reach-
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able fidelity does not depend on the initial state. That is, if
the initial state is distillable, it is always possible to go to a
state of fidelity Fmax.

1. Communication scenario

Let us describe the MEPP and BEPP strategies in the
communication scenario. The initial states are different in
both strategies which renders the comparison nonobvious.
We use the local noise equivalent �LNE�, which is, for a state
of fidelity F, the level of local depolarizing noise defined as
in Eq. �25�, which has to be applied to the perfect state to
obtain fidelity F.

In the MEPP strategy, the setting is the following. Five
parties A, B, C, D, and E are connected by depolarizing
channels; the party A creates states locally and distributes
them to the four other parties. To use direct purification, in
addition to the five-qubit ring states, the party A needs to
distribute five-qubit cluster states in three different ways, al-
lowing the purification with respect to the three different
colors. The purification is done in two steps. The parties first
purify the three different cluster states up to their maximum
reachable fidelity, before using them to purify the ring states
up to Fmax

MEPP�pl�, where pl gives the amount of local noise.
The fact that Fmax

MEPP�pl� is always reached for a state with
F�Fmin

MEPP�pl� is then used to compute Fmin
MEPP�pl�. For a

given amount of local noise pl, we vary the channel noise q
to find the threshold value qmin above which the state can be
purified up to Fmax

MEPP�pl�. Fmin
MEPP�pl� is obtained by applying

the depolarizing channel with noise parameter qmin to four of
the qubits of the ring state.

In the BEPP strategy, the party A creates Bell pairs and
distributes them to the other parties. The pairs are purified
and then used to teleport locally created five-qubit ring
states. We adopted a conservative scenario where one of the
five parties creates the ring states, decreasing by this the
number of Bell pairs needed to teleport the states from 5 to 4.
In addition, we assume that the teleportation process itself
does not add additional imperfections or noise. Hence the
actual value of Fmax

BEPP is lower than our conservative esti-
mate. To obtain the maximal reachable fidelity of multiparty
entangled states Fmax

BEPP�pl�, we purify the Bell pairs up to
Fmax

Bell�pl� and use N−1 of them to teleport a locally created
ring state. The results presented in Fig. 5 show that, in a
communication scenario, the minimum required fidelity as
well as the threshold value pl, under which no purification is
possible is always lower in the BEPP strategy. However, the
maximal reachable fidelity is higher in the MEPP scenario
allowing us to get states of higher fidelity.

We also studied the alternative strategy consisting in dis-
tributing two-colorable subgraph states which are purified
and connected at the end. There are two different possibili-
ties depending on the choice of the first color in the construc-
tion of the subgraphs. If one chooses an ensemble of two
qubits as the first color, one gets a five-qubit cluster state and
a two-qubit cluster state �5-2 strategy�, while if the first color
contains only one qubit, one gets a three-qubit cluster state
plus a four-qubit one �4-3 strategy�. The classification of the
different strategies by decreasing value of the maximal
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FIG. 5. �Color online� Local noise equivalent �LNE� corre-
sponding to the maximal reachable fidelity and to the minimal re-
quired fidelity as function of the amount of local noise pl for the
five-qubit ring state in the communication scenario. Given a state of
fidelity F, the LNE is the level of local depolarizing noise which
has to be applied to the perfect state to obtain fidelity F. The red
solid line and the green dashed line stand for the LNE of the maxi-
mal reachable fidelity and the minimal required fidelity respectively
for the MEPP strategy. The same values are plotted for the BEPP
strategy. The blue small-dashed line is the LNE of a ring state
teleported using four purified pairs and the pink dotted line is the
LNE corresponding to the minimal required fidelity of a pair ob-
tained by sending one of its qubits through a depolarizing channel.
Note that the maximal reachable fidelity is the same in a commu-
nication and a static scenario. We also plotted the maximal reach-
able fidelity for the alternative strategy where a five-qubit cluster
state and a Bell pair are purified before being connected. This value
is given by the light-blue dot-dashed line.
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FIG. 6. �Color online� Maximal reachable fidelity and minimal
required fidelity as function of the amount of local noise for the
five-qubit ring state in the static scenario. The red solid line and the
green dashed line stand for the maximal reachable fidelity and the
minimal required fidelity respectively, for the MEPP strategy, while
the blue small-dashed line and the pink dotted line stand for the
same quantities in the BEPP scenario. The value of Fmin plotted for
the BEPP scenario is the minimum value of fidelity of the ring state,
so that the pairs we extract from the ensemble of rings can be
purified.
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reachable fidelity is as follows: direct purification, 5-2 strat-
egy, 4-3 strategy, and finally BEPP strategy. The order is
inverted for the value of minimal required fidelity.

2. Static scenario

A similar calculation can be done for the static scenario.
In this case, one is given an ensemble of distributed five-
qubit ring states described by �=	a=1

4 Ep
�a��0�G�0�. As noted in

the previous subsection, the maximal reachable fidelity is the
same as in the communication scenario. In the MEPP strat-
egy, the minimum required fidelity is similar in both sce-
narios. Indeed, the creation of the three different cluster
states can be done together with a first purification with re-
spect to one of the colors. The behavior of the protocol in the
static scenario therefore does not differ much from the one in
the communication scenario if one begins the purification of
the two-colorable graph state corresponding to graph gj by
subprotocol P j. However, the minimum required fidelity is
different in the BEPP strategy. It is defined as the minimum
value of fidelity of the ring state, such that at least one dis-
tillable pair can be extracted from it. The results are pre-
sented in Fig. 6. The MEPP strategy clearly presents an ad-
vantage in terms of fidelity. The minimum required fidelity is
lower and the maximal reachable fidelity larger for any value
of reliability pl.

VII. CONCLUSION

In this paper, we have proposed multipartite entanglement
purification �recurrence and breeding� protocols by which

parties can distill arbitrary graph states directly. The work
not only gives a complete systematic package for the con-
struction of entanglement purification protocols for graph
states, but also clarifies the special role of two-colorable
graph states in reading out the parity information of the sta-
bilizer eigenvalues of any graph state. The latter property
might open an avenue to the “patchwork” purification of
decohered qubits in resource-entangled states for quantum-
information processing. We remark that very recently a simi-
lar idea, i.e., the usage of different shapes of graphs, has been
utilized by Goyal, McCauley, and Raussendorf to obtain pu-
rification protocols for two-colorable graph states with im-
proved yield and scaling behavior �20�.

We have considered two scenarios, namely, �i� the static
LOCC scenario and �ii� the communication scenario. Under
ideal local operations, we have showed in the static scenario
that our protocol gives a higher yield and a wider distillable
regime �i.e., a smaller required fidelity for distillability�,
compared with any bipartite strategy. Also, under noisy local
operations, our protocol allows one to distill mixed states up
to a higher achievable fidelity in both scenarios.
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