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Steady-state entanglement in open and noisy quantum systems
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We show that quantum mechanical entanglement can prevail in noisy open quantum systems at high tem-
perature and far from thermodynamical equilibrium, despite the deteriorating effect of decoherence. The
system consists of a number N of interacting quantum particles, and can interact and exchange particles with
some environments. The effect of decoherence is counteracted by a simple mechanism, where system particles
are randomly reset to some standard initial state, e.g., by replacing them with particles from the environment.
We present a master equation that describes this process, which we can solve analytically for small N. If we
vary the interaction strength and the reset against decoherence rate, we find a threshold below which the
equilibrium state is classically correlated and above which there is a parameter region with genuine

entanglement.
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I. INTRODUCTION

Although in quantum computation and communication
the relevance of entanglement is undisputable and a number
of existing protocols use specific entangled states as re-
sources, the situation is not so clear in less controlled, mac-
roscopic systems, such as solids or fluids, consisting of a
large number of particles, which interact with each other and
with the environment. Theoretical studies of so-called spin
chains and lattices [1,2] show that (bipartite and multipartite)
entanglement is present in these systems, at least at low tem-
peratures when they are close to their energetic ground state
[3]. This can be qualitatively understood from the fact that
the ground state of most interacting systems is entangled
with respect to their interacting constituents. By a continuity
argument, then, one expects this to be true also for small
temperatures. The situation is different, however, for gas-
type systems and systems at higher temperatures, or, more
generally, systems that are also allowed to exchange particles
with the environment and that may be far from thermody-
namical equilibrium. Examples of such systems include
man-made devices, such as the laser [4,5], but also, e.g.,
biomolecular processes in cells.

We study gas-type quantum systems from the perspective
of quantum information. The main question is whether in
interacting systems, where the individual constituents are
subjected to decoherence and where the particle numbers
may fluctuate, entanglement can exist in steady state. Except
in situations with very special decoherence mechanisms or in
strongly interacting systems at sufficiently low temperature,
one expects that decoherence diminishes and inevitably de-
stroys entanglement. Here, we consider a system of N inter-
acting quantum particles (qubits, for simplicity) and ask
whether entanglement can exist under the following condi-
tions: (i) The interaction between the particles is capable of
creating entanglement within the system. (ii) There is an in-
teraction between the particles and an environment, which
will lead to decoherence on the state space of the system. (iii)
The environment is not allowed to introduce entanglement,
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i.e., it is supposed to interact only locally with the system
particles, leading to individual decoherence. Furthermore, it
cannot “import” any entanglement into the system (e.g., by
exchanging two system particles with a pair of entangled
particles from the environment, nor by some other external
control as it is, e.g., assumed in quantum error correction).
(iv) The system may exchange particles with the environ-
ment, in which case the number N may fluctuate around

some average value N. An example for a system fulfilling
(i-iv) is a spin gas [6], where particles carrying a spin degree
of freedom move freely and interact for a short time on col-
lision. The particles are subjected to individual decoherence
between two collisional events, and also the number of sys-
tem particles may fluctuate. We remark that condition (iii)
may not be fulfilled in certain situations, e.g., for strongly
interacting systems coupled to a thermal bath. In this situa-
tion, interactions between the compound system and the en-
vironment may drive transitions to entangled states, allowing
for entanglement of the thermal state at low temperatures.
However, a local decoherence mechanism as demanded in
(iii) (which especially takes account of gas-type scenarios
where system particles move in a background gas of other
molecules with which they collide), makes it much more
difficult to obtain steady-state entanglement.

In this paper, we identify a simple mechanism that satis-
fies the criteria given above and can still lead to entangle-
ment in a steady state not necessarily close to the ground
state or thermal state of the interaction Hamiltonian. The
mechanism corresponds to replacing randomly (and at a
given rate r) system particles with particles from the envi-
ronment in some standard, sufficiently pure, single-particle
state. The main purpose of this mechanism is that it locally
extracts entropy from the system. Thereby, existing entangle-
ment between the to-be-replaced particle and the rest of the
system is destroyed, but the “fresh” particle is ready to be-
come entangled with the system via the interaction Hamil-
tonian. This simple mechanism is equivalent to a situation
where each particle is measured with the rate r and then reset
to a standard state (ignoring the correlations with the other
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particles). This mechanism, taken alone, certainly cannot in-
troduce entanglement into the system, as it acts locally on the
individual particles. However, in combination with the inter-
action between system particles, it is able to create fresh
entanglement on an appropriate coarse-grained time scale,
and thus to counteract the effect of decoherence. The mecha-
nism bears some analogy with driven systems, such as an
atomic-beam laser, where excited atoms are injected into a
laser cavity, providing a resource of energy in the form of via
stimulated emission of photons, thereby maintaining the state
of the laser field. Similar as in laser theory, we find a thresh-
old: If, for a given decoherence and interaction strength, and
at some sufficiently high temperature, we increase the reset
rate r, we find a threshold value below which the steady state
of the spins is always classically correlated, while for larger
values of r the system shows quantum correlations (i.e., en-
tanglement).

In the language of reservoir theory [4], such a system is
coupled to two different reservoirs: one at high temperature
being responsible for decoherence, and a second at low tem-
perature providing fresh particles with low entropy. The sys-
tem is thus far away from thermodynamical equilibrium. An
example of such a situation has been studied in Ref. [7] in a
cavity QED setup with only incoherent sources, where
steady-state entanglement was observed and linked to a sto-
chastic resonance phenomenon. We remark that we refer to
the temperature of the hot bath responsible for decoherence
when talking about temperature in the following (and not to
temperature of the system). Remarkably, our proposed local
reset mechanism allows one to obtain steady-state entangle-
ment quite generically, independent of the specific interac-
tion Hamiltonian and of the details of system-environment
coupling, and also in the case of fluctuating particle numbers.

In Sec. Il we capture the essential features of such open
and noisy systems in a toy model consisting of only two
qubits. We give the master equation describing the quantum-
mechanical interaction, individual noise channels, and the
reset mechanism, satisfying conditions (i—iii). We solve the
master equation and obtain fully analytic expressions for the
entanglement in the system. In Sec. III, we show that the
properties of the toy model carry over to larger systems, even
with fluctuating particle numbers. Finally, we give a short
summary of the results.

II. MODEL

The system consists of N qubits that interact with each
other, and we describe the interaction on a coarse-grained
time scale by an effective Hamiltonian H. In this paper, we
concentrate on gas-type scenarios with short-time interac-
tions, but systems with continuous couplings between system
components show a similar behavior. Additionally, the par-
ticles are subject to decoherence described by a noise chan-
nel and to a reset channel, modeling the system’s interaction
with the environment. We describe the noise channel £, ;.
by the Lindblad operator [8]
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where o,=(0,+i0,)/2 and the os are Pauli operators. Pa-
rameters B and C give the decay rate of inversion <—> and

polarization (o), and s= <—> €[0,1] depends on tem-
perature 7, where s=1/2 corresponds to T=o. This form of
the noise channel is based on certain approximations, e.g.,
the Markov approximation. Note, however, that this is not an
essential assumption in the present context, but it simplifies
the analytic treatment. The reset channel corresponds to an
additional term specified by the Liouville operator L .,
which we model as follows:

‘Cresetp =r 2 (|Xi>i<Xi|trip - P) .
i=1,2
The expression means that with some probability rd¢ particle
i, i=1,...,N, is reset during the time interval Jr to some
specific state |x;);, while the other qubits are left in the state
tr;p. The total master equation is then given by

N

- i[H,P] + ‘cnoisep + 2 r(lXi>i<Xi|trip - P)- (1)
i=1
We have checked that this equation is of Lindblad form [9],
and hence, it generates a time evolution of p described by a
completely positive map.

A. Ising Hamiltonian and dephasing channel

For N=2, we have analytically solved the equation for
Heisenberg and Ising Hamiltonians, Hy=ga'"-¢?, H,
—ga(l)(r(z) where g=0 is the coupling strength. In the fol-
lowing, we will illustrate the essential features for the Ising
Hamiltonian H,;, and decoherence by a purely dephasing
channel. This amounts to setting B=0 (then s is arbitrary)
and C=1y, leading t0 Lpyise=¥/25i; 2(0" pa’~p). Finally,
we consider the case |X, =|+);, where x|+)—|+> is an
eigenstate of o,. The choice of the reset state |x;); depends on
the Hamiltonian H, which should be able to create entangle-
ment from the resulting product state. The Ising Hamiltonian
could, e.g., not create any entanglement if |y,);=|0).

The two-qubit master equation now takes the following
form:

. . 7 1 1
p=—i[H,pl+ > 2<a<>pcr“ p) + (| + )+ [trp = p).

i=1,2
2)
For r=0, the steady state of this master equation is diagonal

in the product basis |s,)|s,), with s,,s, €{0,1}, and cr(’)|s)
=(- 1)f|s) (z basis), and there is no entanglement. The
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dephasing channel, described by the 7y part, eventually de-
stroys all entanglement that may initially exist or may be
created for a short period of time (small compared to y!).

For r—, we can neglect the Hamiltonian and decoher-
ence parts, and the density matrix will be quasi-permanently
projected into the product of two |+)-states, and again there
will be no entanglement between the qubits. The question is
this: Between these two extremes—a pure product state on
the one hand and a classically correlated state on the other
hand—is there a combination of parameters g (Hamiltonian),
v (decoherence), and r (reset) such that the steady state will
be entangled? Now we show that this is indeed the case.

To solve the master equation (2), we expand the
density operator in the z basis: p(1)
:Ei;,sé,s1,s2=0CS{,S§;sl,sZ(t) | s1,55)(s1,55|. In this basis, the mas-
ter equation takes the form of the following 16 coupled, lin-
ear, differential equations for the coefficients:

Csi,sé;sl,xz = {— ig[(= 1)%1%%2 = (= 1)*1%%2]

Y 51+ S
+ 5[(— 14 (= )22 - 2] - 2’} Ctostisysy
+ V/Z{Co,sé;o,sz + Cl,sé;l,s2 + Csi,O;sl,O
+ Cs{,l;sl,l}~

Since the solutions are lengthy, we only present the coef-
ficients in steady state: for »>0 the diagonal elements are

L r2(r+y/2)
1/4, the antidiagonals are R )]’ and Cygg
i * r(—ig+r+y/2 .
=C0010:C0111=C1011:m' All other matrix ele-

ments are fixed by the Hermiticity of the density matrix. All
coefficients approach the steady state exponentially fast with
their own characteristic exponents determined by the spec-
trum of the total Liouville operator £ defined by p=Lp with
values: {0,-r,—2r,=2(r+7),-(3r/2+ y=2i\g?—r*/16)} and
multiplicities {1,2,1,4,4+4}.

As a measure for the entanglement between the two qu-
bits, we use the negativity [10], which is defined with respect

to a bipartition A-A of the set of qubits as N,=(|p™|,
—1)/2, where T, means the partial transpose with respect to
A. For two qubits, the negativity can assume values between
zero (separable state) and 1/2 (maximally entangled state).

In steady state, we compute from the above expressions
for the density matrix the following analytic expression for
the negativity in terms of the parameters g (Hamiltonian in-
teraction), y (strength of the dephasing channel), and r (reset
rate):

2(r+ Y28+ (r+ y12)(r+ 9]

Equation (3) contains the full information about the en-
tanglement properties of the two qubits and is one of the
main results of this paper. Note that N'=N(g,7) depends only
on two parameters, g=g/vy and 7=r/7y.

In Fig. 1, we see a contour plot of the negativity function.
The key feature is the color-coded region in the r-g plane

2 2
N:max{o,— Wr+y2) +8°(r+vy) —rglr+ 7)}_ 3)

PHYSICAL REVIEW A 74, 052304 (2006)

5 10 15 20
/v

FIG. 1. (Color online) Separable states (white area) and en-
tangled states (shaded area) in the r-g plane, where r is the rate of
our reset process and g is the coupling strength in the Ising Hamil-
tonian; we use y~'=1 as unit time scale. The shading encodes the
amount of entanglement measured by the negativity: the darker the
area, the more entanglement is present. Three lines are marked in
the entangled region: The upper white line is the maximum in g
direction (at constant r), the lower white line is the maximum in r
direction (at constant g), and the middle line is the straight g
=r/(1+ V’g). This middle line is approached by the upper and lower
one, asymptotically, for large g,r. The global maximum of the
negativity is on this middle line at infinity with a value of ~0.092,
~20% of the maximal value. The darkest, most entangled area in
our plot has negativity 0.068. The inlet shows a cut for constant g
=2.5%.

with steady-state entanglement, where a darker shade of gray
indicates higher entanglement. The entangled region is
bounded by the gray line given by one of the roots of the
nontrivial part of Eq. (3). Outside of this region, the state is
separable (white area). The entangled region approaches as-
ymptotically the straights g=v and g=r plotted black in
Fig. 1. The asymptotic line g=7 is independent of r and
indicates the border between the weak coupling and the
strong coupling regime. For weak coupling, g <1y, decoher-
ence will always triumph over the Hamiltonian part that tries
to create entanglement. That is, as a necessary condition, we
need to be in the strong coupling limit to observe entangle-
ment. The inlet in Fig. 1 shows a cut at g=2.57y through the
color plot. Most notable is the existence of a threshold value
for r/7y above which entanglement is present in the steady
state.

We also simulated the system on a computer, where we
use a microscopic decoherence model rather than a master
equation description. Decoherence is thereby induced by in-
teractions of system particles with an environment, modeled
as a background spin gas [6], and we consider interactions of
Ising type, which leads to dephasing noise. Since the spin
gas exhibits memory, the decoherence process is non-
Markovian and possibly nonlocal. Also in this case, the re-
sults qualitatively agree with the analytic solution of our toy
model. We remark that the system itself may also be de-
scribed as a spin gas, even with fluctuating particle number.

All these results support the following conclusion: En-
tanglement can persist even in open noisy quantum-
mechanical systems that are far from thermodynamic equi-
librium. It is true that even for r=0, i.e., without reset
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FIG. 2. (Color online) (a) Negativity for two-qubit system w1th
XYZ interaction and magnetic field, H=g[0. 70'(1)0'(2 +0.30 (1 oy @)
(1) (2)+O 5(0'(1)+a'(2))] as a function of the reset rate r at g
—10)/ The noise is described by £, of Eq. (1) with C=B/2 and
y=C/4. The upper curve corresponds to zero temperature (s=0),
the lower one to infinite temperature (s=1/2) of the bath. Curves

for any finite temperature lie in between.

mechanism, one can obtain entangled steady states, e.g., for
a decay channel (s=1, B/2=C=y) and an interaction Hamil-
tonian H= go-i”o-iz). However, this phenomenon is restricted
to specific Hamiltonians and noise channels, where a steady
state of the noise channel with sufficiently low temperature is
a necessary condition for steady-state entanglement. In par-
ticular, entanglement vanishes for high temperatures of the
bath, s— 1/2. In contrast, we show in Sec. III that steady-
state entanglement appears generically in systems that fea-
ture some kind of (appropriate) reset mechanism.

III. BEYOND TOY MODEL: MANY-PARTICLE SYSTEMS

To demonstrate that we have identified a generic feature,
we will generalize the system in various directions.

A. Generic Hamiltonians and imperfect reset mechanism

Although the details will change, the qualitative behavior
of the two-qubit model does not depend on the particular
choice of the interaction Hamiltonian or the decoherence
model. Figure 2 shows, e.g., steady-state entanglement for an
XYZ Hamiltonian as a function of reset rate r, and decoher-
ence described by a noise operator L, With different pa-
rameters. The qualitative behavior is similar to the inlet of
Fig. 1, and we observe steady-state entanglement even for
infinite temperature of the bath.

Second, the idealized reset mechanism we consider can be
replaced by a more realistic imperfect reset mechanism. In
this case, fresh particles come in mixed states with suffi-
ciently low entropy rather than in pure states (with entropy
0). Still, the steady state turns out to be entangled.

B. Many-particle systems

We have also considered systems consisting of N par-
ticles. In this case, we are interested in (i) multiparticle en-
tanglement and (ii) entanglement of reduced states of two
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FIG. 3. (Color online) Average negativity of (i) five qubits that
have all pairwise interacted with each other (dashed line), (ii) the
reduced density matrix for any two qubits in a five-qubit setting
(dashed-dotted line), and (iii) Poissonian mixture of reduced density
matrices corresponding to fluctuating particle number (see text)
(solid line) as a function of the reset rate r for Ising interaction and
dephasing, with g=57.
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qubits. In case (i), we use the average negativity N, which is
the negativity averaged over all possible bipartitions of the
system [6] to measure multiparticle entanglement, Nonzero
average negativity ensures the presence of some form of en-
tanglement in the system. To compute this quantity is a for-
midable task. The system size, and hence, the number of
differential equations and relevant bipartitions, scales expo-
nentially. To simplify computation, we consider a symmetric
situation, where all qubits interact pairwise via Ising interac-

tions, and compute N of up to seven qubits. Regarding (ii),
we consider pairwise entanglement between two particles in
N-qubit systems, where the state of the two qubits is given
by the reduced density matrix that is obtained by tracing out
the remaining particles. Although typically such reduced-
state entanglement is rather unstable in multiparticle en-
tangled systems (since entanglement with other system par-
ticles acts as additional noise source), we find even in this
case a parameter regime with entanglement in steady state.
However, the region in r-g diagram, where one finds en-
tanglement, becomes smaller for an increasing number of
particles N. Figure 3 shows the plot of the average negativity
and negativity of reduced states for systems of N=5 qubits.

Finally, we have considered systems with a fluctuating
number of particles N. To be precise, we consider systems of
N qubits that interact pairwise in a symmetric way, and N
fluctuates between 2 <N <6 following a Poissonian distribu-
tion in this interval. The state of two qubits, pAB=ENprX\g,
is given by a mixture of reduced density operators p,, (ob-
tained from the steady state of the N-qubit system) with mix-
ing probabilities py given by the probability that the system
size is N. We find that entanglement between pairs of qubits
remains finite (see Fig. 3).

Generally, for any interacting system subjected to some
kind of noise or decoherence (not necessarily local or Mar-
kovian), one can expect that an appropriate local reset
mechanism leads to entangled steady states, as long as the
system is capable of creating entanglement from (slightly
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mixed) input states at some point in time. For reset rates that
are slow enough that entanglement may be built up in the
system, but fast enough that decoherence (or other noise pro-
cesses) will not destroy all the entanglement, one typically
expects steady-state entanglement on an appropriate coarse-
grained time scale.

Note that various physical processes are conceivable for
the reset mechanisms, including active processes, such a
measurement or “optical pumping” of randomly selected par-
ticles in a spin gas, as well as simply replacing a qubit by a
fresh one (e.g., spin-dependent tunneling of electrons in
charge-controlled quantum dots). A process of the latter type
may also be conceivable in more natural scenarios such as
biomolecular interactions in a cell. These systems are far
away from the thermodynamical equilibrium, and there the
fluctuation of particles may, at the same time, act as reset
mechanism.

IV. SUMMARY

We have shown that entanglement can be present in open
noisy quantum systems far from thermodynamic equilibrium.
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For a two-qubit toy model, we could analytically solve the
master equation consisting of a Hamiltonian part, a noise
channel, and a proposed reset mechanism, which is respon-
sible for the nonvanishing entanglement in the steady state.
We were able to give a closed expression for the entangle-
ment as a function of the parameters of the master equation.
We extended the analysis to similar models with other inter-
action Hamiltonians and decoherence models (including
non-Markovian decoherence), systems consisting of more
particles, and also systems with a fluctuating particle num-
ber. In all cases, we found that steady-state entanglement can
prevail. This demonstrates the possibility of stable steady-
state entanglement in natural systems consisting of many
particles that are far away from thermodynamical equilib-
rium.
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