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Estimating the fidelity of state preparation in multiqubit systems is generally a time-consuming task. Nev-
ertheless, this complexity can be reduced if the desired state can be characterized by certain symmetries
measurable with the corresponding experimental setup. In this paper we give simple expressions to estimate the
fidelity of multiqubit state preparation for rotational-invariant, stabilizer, and generalized coherent states. We
specifically discuss the GHZ-type and W-type states, and obtain efficiently measurable lower bounds for the
fidelity. We use these techniques to estimate the fidelity of a quantum simulation of an Ising-like interaction
model using two trapped ions. These results are directly applicable to experiments using fidelity-based en-
tanglement witnesses, such as quantum simulations and quantum computation.
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I. INTRODUCTION

Highly entangled states provide required resources for
quantum information processing �QIP�, a developing field
advancing both the fundamental understanding of quantum
systems and novel technologies. Entangled states are used to
encode qubits for fault-tolerant quantum computation �1� and
for more efficient quantum state readout �2�. Such states are
also used for quantum communication over long distances
and teleportation protocols �3�. Finally, highly entangled
states are central to many-body quantum simulations, whose
power lies in their ability to coherently manipulate such
states for later analysis �4–7�. Entangled-state preparation in
any QIP system and its verification is thus of paramount
importance.

One successful architecture for QIP is the trapped-ion sys-
tem, in which qubits are encoded in the internal electronic
states of ions, and laser fields can control the collective in-
ternal and external states of the ions. Recently �8,9�, multi-
qubit entanglement has been experimentally demonstrated in
these devices. In Ref. �9�, quantum state tomography �QST�
�10,11� was employed to verify that W-type states for up to
N=8 ions �qubits� were produced. Since the dimension of the
Hilbert space H associated with a quantum system increases
exponentially with the system size �as does the dimension of
the density matrix�, performing full QST is, in general, ex-
tremely inefficient for large systems. For example, realizing
QST in an ion trap device requires on the order of O�3N�
measurements, where N is the number of qubits, each
measured in the x, y, and z bases. In Ref. �9� the full QST
process for N=8 ions required 656,100 measurements
over ten hours. This extremely large data set reduced errors
due to quantum projection noise �12�, until other sources
of error �such as imperfect optical pumping, ion addressing
errors, nonresonant excitations, and optical decoherence�
were dominant. Such examples illustrate a potential road-
block to practical implementation of large-scale QIP: it is
impossible to exploit the speedups associated with QIP if an
exponentially large amount of processing must be performed
to verify the creation of the desired states.

It is important then to investigate efficient methods to
estimate the reliability of experimental quantum state prepa-
ration. Here we point out that many useful entangled states
have certain symmetries which allow fidelity determination
without full QST. For these states, an efficient number �poly-
nomial in N� of measurements is sufficient to obtain lower
bounds for the fidelity. A similar technique has been used to
determine a lower bound on the fidelity of several-particle
quantum superposition �Schrödinger cat� states �8�; we de-
scribe and generalize such methods.

We then use the quantum fidelity as a measure related to
the distance between quantum states �1�. Specifically, the
quantum fidelity F between the actual state �l prepared in the
laboratory, which is in general mixed �i.e., Tr��l

2��1�, and
the desired pure state ��� to be prepared is defined by

F��l,��� = �����l��� = �Tr��l����1/2. �1�

Equation �1� can be evaluated by measuring the expectation
value of the density operator ��= ������ over the state �l. For
example, if ��� is a product state, then �� has only one non-
zero matrix element �in the right basis� that is along its di-
agonal. The fidelity F��l ,��� can be simply obtained by re-
peatedly preparing �l and then measuring the population of
the state ���.

More generally, the density matrix of an N-qubit system is
a linear combination of operators belonging to the u�2N�
algebra:

� = 	
�1,. . .,�N

c�1,. . .,�N

� ���1

1
� ¯ � ��N

N � , �2�

where the subscripts � j =0,1 ,2 ,3 correspond to the Pauli
operators 1, �x, �y, and �z, respectively. �The symbol � rep-
resents the matrix tensor product.� These operators are given
by

1 = 
1 0

0 1
�, �x = 
0 1

1 0
� ,
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�y = 
0 − i

i 0
�, �z = 
1 0

0 − 1
� . �3�

In particular, ��j

j =11 � ¯ � 1 j−1 � ��j

j
� 1 j+1

¯ � 1N, with the
Pauli matrix ��j

being located at the jth position in the de-
composition. From now on, we remove the symbol � from
the products of Pauli operators. We also adopt the convention

�Â��l
�Tr��lÂ�.

The real coefficients c�1,�2,. . .,�N

� are given by

c0,. . .,0
� = 2−N,

c�1,. . .,�N

� = 2−NTr�����1

1
¯ ��N

N �� �otherwise� . �4�

Then,

F2��l,��� = 	
�1,. . .,�N

c�1,. . .,�N

�l c�1,. . .,�N

�� , �5�

and full QST is generally needed to estimate the coefficients
c�1,. . .,�N

�l required to evaluate Eq. �5�. However, if the state
��� can be uniquely characterized by certain symmetries,
some of the coefficients c�1,. . .,�N

�� will vanish and the corre-
sponding c�1,. . .,�N

�l need not be measured. Full QST over �l is
then no longer required, and the complexity of evaluating
Eq. �5� or of setting a lower bound on F2��l ,��� can be
greatly reduced.

A straightforward example of using symmetry to simplify
fidelity estimation can be seen in previous work with
N-qubit cat states �GHZ�N= 1

�2
��0102¯0N�+ �1112¯1N��

in trapped ion systems �13,14�. The �GHZ�N state is
uniquely defined by the symmetry operators
�x

1�x
2
¯�x

N ,�z
1�z

2 ,�z
2�z

3 , . . . ,�z
N−1�z

N�, that leave the state un-
changed after their action. As we will show, the fidelity of
having prepared �GHZ�N can be estimated by measuring the
expectation values of the symmetry operators. In an ion trap
setup, for example, repeated simultaneous measurements of
the projections of all of the ion spins along the x axis, and of
all of the ion spins along the z axis, gives the fidelity of
having prepared the �GHZ�N state �15�.

In Sec. II we expand this idea to study certain cases in
which the desired state can be characterized by different
types of symmetries. First, we focus on the class of
rotational-invariant states �i.e., eigenstates of the total angu-
lar momentum operator� since some interesting entangled
states for QIP tasks are in this class �16�. Second, we study
the family of stabilizer states �SSs�, which provide the foun-
dation of the stabilizer formalism used in different quantum
error-correcting procedures �17�. Third, we study the case of
generalized coherent states �GCSs�, which provide a natural
framework to study certain quantum simulations of many-
body problems �18,19�. In Sec. III we apply the obtained
results to �numerically� estimate the fidelity of the evolution
of the internal states of two trapped ions with an Ising-like
Hamiltonian, using the methods described in Ref. �7�. Fi-
nally, in Sec. IV we discuss the estimation of the fidelity of
state preparation due to the statistics of a finite number of
experiments, and in Sec. V we present our conclusions.

II. QUANTUM FIDELITY AND HIGHLY SYMMETRIC
STATES

The density operator of a pure state ��� that can be
uniquely characterized by its symmetry operators

Ô1 , . . . , ÔL� can be written in terms of these operators only.
Thus, the fidelity of having prepared ��� �Eq. �1�� can be
estimated by measuring observables, over the actual pre-
pared state �l, that solely involve correlations between the

Ôk’s. In other words, measurements in bases not related to
the symmetry operators are not required because they do not
provide any information when evaluating the fidelity of state
preparation. The purpose of this section is then to give lower
bounds for estimating the fidelity of state preparation for
three classes of highly-symmetric N-qubit quantum states,
and to show that these can be efficiently obtained.

A. Rotational-invariant states

For a system of N qubits, the rotational-invariant pure
states are completely specified by the equations

J2��� = j�j + 2��j, jz� , �6�

Jz��� = jz�j, jz� , �7�

where J2=Jx
2+Jy

2+Jz
2 is the �squared� total angular momen-

tum operator, J�=��
1 +��

2 + ¯ +��
N ��=x ,y ,z�, and ��

j is the
corresponding Pauli operator acting on the jth qubit. The
factor 2 in Eq. �6� is due to our use of Pauli operators instead
of the actual spin-1 /2 operators. Then, the quantum numbers
j and jz satisfy the following properties: jmax= jz

max=N,
��j��2, ��jz��2, and −N	 jz	N �the symbol � indicates
the difference between different eigenvalues�. In particular, if
−N+2	 jz	N−2, the state �j , jz� is entangled. For j=N,
jz=N−2, then �N ,N−2�= �WN�, with

�WN� =
1

�N
��1102 ¯ 0N� + �0112 ¯ 0N� + ¯ + �0102 ¯ 1N�� .

�8�

Although the �WN� states are not maximally entangled for
N
2, they are particularly useful for processes such as tele-
portation �20� and quantum secure communication �21�.
Their usefulness is due to the robustness of entanglement in
W type states under the loss of one of the qubits, and to the
existence of qubit-qubit quantum correlations for any pair of
qubits. The former property can be seen by constructing the
density operator of N−1 qubits by tracing out the other one.
For example, when N=3, we obtain

�W3�1̂� = Tr1̂��W3��W3�� =
2

3
�Bell��Bell� +

1

3
�0203��0203� ,

�9�

where 1̂ refers to the loss of qubit 1 and �Bell�= 1
�2

��0213�
+ �1203�� is a Bell state �i.e., maximally entangled state� of
qubits 2 and 3. This Bell state can then be used, for example,
to perform quantum teleportation. Similar results are ob-
tained when losing qubit 2 or 3.
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The density operator � j,jz
of an N-qubit rotational-

invariant state with quantum numbers j=N and −N	 jz	N,
in terms of the symmetry operators J and Jz, is

� j,jz
= �−1��−j	jz�	j

ˆ
�̂ jz����0	j�	N

ˆ
�̂ j�� , �10�

where �̂ jz�
= �Jz− jz�� and �̂ j�= �J2− j��j�+2��. The symbols �̂

denotes that the terms �̂ j and �̂ jz have been excluded from
the product. The normalization constant � is given by

� = �−j	jz�	j

ˆ
�jz − jz���0	j�	N

ˆ
�j�j + 2� − j��j� + 2�� .

�11�

To evaluate the fidelity of Eq. �1�, that is F��l ,� j,jz
�

= �Tr��l� j,jz
��1/2, it suffices to obtain the expectation values of

the correlations between the operators J2 and Jz appearing in
Eq. �10� only. Although this procedure is still inefficient and
an exponentially large amount �with respect to N� of observ-
ables �i.e., products of Pauli operators� must be measured, it
is more resource efficient than performing full QST to obtain
F��l ,� j,jz

�.
For example, if one is interested in preparing the Bell

state �Bell�= �j=2, jz=0�= 1
�2

��1102�+ �0112�� using an ion trap
device, the fidelity of state preparation could be determined
by measuring over three different bases only, corresponding
to the expectation values ��x

1�x
2��l

, ��y
1�y

2��l
, ��z

1��l
, ��z

2��l
, and

��z
1�z

2��l
, respectively.

To obtain a lower bound on the fidelity of rotational-
invariant state preparation for j=N, we first define the opera-
tors SJz

=− 1
4 �Jz− jz�2 and SJ2 =− 1

64�J2−N�N+2��. These
satisfy

�SJz
+ SJ2��j�, jz�� = ej�,jz�

�j�, jz�� , �12�

where ej�,jz�
	−1 for �j� , jz��� �j , jz� and ej,jz

=0. Therefore,
for a general pure state ��=	 j�,jz�

cj�,jz�
�j� , jz��, we obtain

��SJz
+ SJ2 + 1�� = 	

j�,jz�

�ej�,jz�
+ 1��cj�,jz�

2 � 	 �cj,jz
�2,

�13�

where �cj,jz
�2 is the probability of projecting �� onto the

state �j=N , jz� �i.e., the squared fidelity between the states�.
Since the actual prepared state �l is in general a convex
combination of pure states, Eq. �13� yields

F2��l,� j,jz
� � �SJz

+ SJ2��l
+ 1. �14�

This lower bound can be efficiently estimated by measuring
only the observables Jz, Jz

2, and J2 a large amount of times
over the state �l. Therefore, only a polynomial �in N� amount
of expectation values of different products of Pauli operators
must be measured �3N2−2N in this case�.

When j�N, the subspace with quantum numbers j, jz is
degenerate and Eqs. �6� and �7� do not specify the state
uniquely. Then, Eq. �10� becomes the projector onto the cor-
responding subspace. Nevertheless, the squared fidelity
F2��l ,� j,jz

� will still equal the probability of having created a
pure or mixed quantum rotational-invariant state with quan-

tum numbers j, jz. This equality is due to the fact that the
operator � j,jz

takes into account a sum over the probabilities
of being in any eigenstate of J and Jz with eigenvalues j and
jz, respectively. When j�N, the operator SJ2 must be
redefined as SJ2 =− 1

64�J2− j�j+2��2, so the properties for the
coefficients ej�,jz�

in Eq. �12� still hold. In this case, a
lower bound on F2��l ,� j,jz

� can be obtained by measuring
N4 /4−N3+11N2 /4−N �for N even� expectation values of
different products of Pauli operators.

B. Stabilizer states

Another interesting family of states are the stabilizer
states �17�, which are defined by

Ôs��� = + 1���; s � �1,S� . �15�

The stabilizer operators Ôs�u�2N� are products of Pauli op-
erators �22� and have ±1 as possible eigenvalues. �Note that

Ô1=1 is the trivial stabilzer.� An immediate consequence of

Eq. �15� is that the operators Ôs commute with each other:

�Ôs , Ôs��=0. Here, we focus on the case in which the state
��� is uniquely defined by Eq. �15�; that is, the dimension of

the stabilized space is one. The set GS= Ô1 , . . . , ÔS� forms
the so called stabilizer group for ���. For practical purposes,
we define GS in a compact way by its L linear independent
generators �17�: GS��ĝ1 , . . . , ĝL�, satisfying

ĝi��� = + 1���; i � �1,L� . �16�

Without loss of generality we can write �����g1=1 , . . . ,gL
=1�.

The eigenstates of the stabilizer operators �associated with
the stabilizer state� form a complete set of the 2N dimen-
sional Hilbert space H. Therefore, the density operator ��

can be written within this formalism as

�� = �g1 = 1, . . . ,gL = 1��g1 = 1, . . . ,gL = 1� =
1

2L�
i=1

L

�ĝi + 1� ,

�17�

where 1�11 � ¯ � 1N. The fidelity �Eq. �1�� can then be
estimated by measuring, over the actual state �l, the expec-
tation values of operators appearing in Eq. �17�.

A lower bound on the fidelity can be obtained in this case
by defining the operator SGS

= 1
2 ��	i=1

L ĝi�− �L−2�1�. Then,

SGS
�g1, . . . ,gL� = eg1,. . .,gL

�g1, . . . ,gL� , gi = ± 1, �18�

with e1,. . .,1=1 and eg1,. . .,gL
	0 otherwise. Following the

same procedure used for rotational-invariant states, we arrive
at the inequality

F2��l,��� � �SGS
��l

, �19�

which can be efficiently estimated by measuring the expec-
tation values �ĝi��l

∀ i� �1,L�.
As an example we consider the the Bell state

�Bell�= 1
�2

��0112�− �1102��. For this state, the stabilizer group
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is defined by the generators GS��−�z
1�z

2 ,−�x
1�x

2�. Then, L
=2 and SGS

= 1
2 �−�z

1�z
2−�x

1�x
2�. Another example is the set of

maximally entangled N-qubit states �GHZ�N= 1
�2

��0102¯0N�
+ �1112¯1N��. For these states, the generators of the
corresponding stabilizer group are given by
GS���x

1�x
2
¯�x

N ,�z
1�z

2 ,�z
2�z

3 , . . . ,�z
N−1�z

N�, as pointed out in
Sec. I. For N=3, we have L=3, and SGS

= 1
2 ��x

1�x
2�x

3+�z
1�z

2

+�z
2�z

3−1�. Such Schrödinger cat states can be used for pre-
cision spectroscopy �8,14� and angle or displacement mea-
surements �23� beyond the standard quantum limit. These
Heisenberg-limited techniques can be used to obtain in-
creased experimental sensitivity by utilizing the N-fold en-
hancement in phase sensitivity of cat states relative to
product states.

For an arbitrary N-qubit pure state ���=V�01 , . . . ,0N�,
with V unitary, the corresponding stabilizer group is given by
the operators �̃z

j =V�z
jV†; that is, �̃z

j���= +1���. To obtain a
lower bound on the fidelity of preparation of ��� it suffices
then to measure the expectation values ��̃z

j��l
. However, these

arbitrary symmetries will be, in the most general case, an
exponentially large linear combination of products of Pauli
operators. Therefore, if the stabilizer group does not take a
simple form as in Eq. �15�, the efficiency of estimating a
lower bound on the fidelity can be lost.

C. Generalized coherent states

The last class of states we consider is the class of gener-
alized coherent states �GCSs� �24�. This class is a generali-
zation of the well-known class of bosonic coherent states to
the case of finite dimensional Hilbert spaces, and, in particu-
lar, to N-qubit systems. As coherent states, GCSs possess
many interesting properties. First, they are minimum uncer-
tainty states with respect to a preferred set of observables.
Second, the expectation values of the observables in this pre-
ferred set uniquely define the GCS, and they can be consid-
ered as the generalized unentangled states with respect to
this set �25�. They are constructed by the action of a dis-
placement operator �i.e., a certain group unitary operation� to
a reference state such as �01¯0N�. If the displacement op-
erator can be related to a time-evolution operator, GCSs are
then the states prepared during a quantum simulation. Below,
we explain this in more detail and show that, when the set of
generators of the time evolution operator is low in dimen-
sion, many interesting properties of the corresponding GCSs
can be efficiently obtained.

For a semisimple, compact, M-dimensional Lie algebra

h= Q̂1 , Q̂2 , . . . , Q̂M�, with Q̂j = �Q̂j�† the N-qubit operators
acting on the 2N dimensional Hilbert space H, the GCSs are
defined via

�GCS� � eih�hw� . �20�

Here, eih denotes a unitary group operation �specifically, a

displacement� induced by h: eih�exp�i�	 j� jQ̂j��, � j �R.
The state �hw� is the highest-weight state of h. To define
it, one needs to assume a Cartan-Weyl decomposition

h=hD � h+ � h− �26,27�. The set hD= ĥ1 , . . . , ĥr� is the Car-
tan subalgebra of h constructed from the largest set of

commuting operators �observables� in h. The weight states
�i�, which form a basis of states for H, are the eigenstates of
hD:

ĥk�i� = uk
i �i�, k � �1,r�, i � �0,2N − 1� . �21�

The sets h+= ê�1

+ , . . . , ê�l

+ � and h−= ê�1

− , . . . , ê�l

− � are built
from raising and lowering operators �ê�j

+ = ê�j

−†�, and either
map weight states into orthogonal weight states or annihilate
them. �The subscripts � j �Rr are the roots of h and are con-
sidered to be positive.� Then, �hw� is defined by

ĥk�hw� = vk�hw�, k � �1,r� , �22�

ê�j

+ �hw� = 0, j � �1,l� , �23�

with vk=uk
0 �i.e., we have assumed �hw���0��. Note that

M =r+2l. In many cases, �hw�= �0102 . . .0N�, where �0i� rep-
resents an eigenstate of �z

i .
As shown in Refs. �18,19,25�, when the dimension of h

satisfies M 	poly�N�, the corresponding GCSs play a deci-
sive role in the theory of entanglement and quantum and
classical simulations of many-body systems. An example is
given by the GCSs defined via

��I�t�� = e−iHIt�0102 ¯ 0N� , �24�

where HI is the Hamiltonian corresponding to the exactly
solvable one-dimensional anisotropic Ising model in a trans-
verse magnetic field and periodic boundary conditions

HI = 	
j=1

N

��x�x
j�x

j+1 + �y�y
j�y

j+1 + B�z
j� . �25�

In Sec. III we will discuss this system in more detail.
Any GCS is uniquely determined �up to a global phase�

by the expectation values of the operators in h. The state
�hw�t��=e−iHt�hw�, with H�h, is the highest-weight state of
h in a rotated Cartan-Weyl basis, and satisfies

ĥk�t��hw�t�� = vk�hw�t��, k � �1,r� , �26�

where ĥk�t�=e−iHtĥke
iHt= ĥk+ i�ĥk ,H�+ ¯ �h. Thus,

�hw�t� = �hw�t���hw�t�� = �−1 �
k,i�0

�ĥk�t� − uk
i 1� , �27�

where �=�k,i�0�vk−uk
i � is a constant for normalization

purposes. For a particular value of t, the operators

ĥk�t�=	 j=1
M � j�t�Q̂j can be obtained on a classical computer

�i.e., the coefficients � j�t�� in time polynomial in M �see
theorem 1 in Ref. �19��. To see this, note first that

� j�t��Tr�ĥk�t�Q̂j�. Such a trace can be efficiently evaluated
by working in the �M �M�-dimensional matrix representa-
tion �or any other faithful representation� of h rather than
working in the �2N�2N�-dimensional original representation.
Therefore, the fidelity of having prepared �hw�t�� can be ob-
tained by measuring, over the actual prepared state �l, the
expectation values of the observables appearing in Eq. �27�.

In analogy to the previously discussed cases, a
lower bound for the fidelity can be obtained by defining the
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operator ShD
�t�= −��	kĥk�t�−vk1�2�+1, with �
0 a

constant determined by the spacing between the eigenvalues
uk

i �see below�. If uk
i �vk∀ i� �1,2N−1�, it is more simple to

consider ShD
�t�= �−��	kĥk�t�−vk1��+1. Then,

ShD
�t��i�t�� = wi�i�t�� , �28�

where �i�t��=e−iHt�i� are the weight states in the rotated
Cartan-Weyl basis �e.g., �hw�t����0�t���, wi�R, and
w0=1. Thus, � is chosen such that wi= �−��	kuk

i −vk�2+1� ,

when ShD
�t�= −��	kĥk�t�−vk1�2�+1, or wi= �−��	kuk

i −vk�
+1�, when ShD

�t�= −��	kĥk�t�−vk1��+1, satisfies

wi 	 0 ∀ i � 0. �29�

Then, for any t, we obtain

F�l,�hw�t�
2 � �ShD

�t���l
. �30�

This lower bound can be obtained experimentally by mea-

suring the expectation values of the operators ĥk�t�ĥk��t� and

�or� ĥk�t�, which are directly induced from the expectation

values �Q̂j��l
and �Q̂jQ̂j���l

∀ j , j�� �1,M� �assumed to be
measurable with our quantum device�. If M =poly�N� �e.g.,
an evolution due to the Ising Hamiltonian HI�, Eq. �30� can
be efficiently estimated with O�poly�N�� measurements.

III. QUANTUM SIMULATIONS WITH TWO TRAPPED
IONS

In this section we use some of the results obtained in Sec.
II C to estimate the fidelity of evolving two trapped-ion
qubits with the Ising-like interaction

HI = J�x
1�x

2 + B��z
1 + �z

2� , �31�

where J is the spin-spin coupling and B is a transverse mag-
netic field. Here, each qubit is described by two of the elec-
tronic levels of each trapped ion. We model the system of
two identical ions confined in a linear Paul trap and interact-
ing with resonant and nonresonant laser fields as described in
Ref. �7�. Below, we estimate the reliability of having pre-
pared the state ���t��= �hw�t��=e−iHIt�0102� �for a particular
t�.

In this case, the interaction Hamiltonian for the ions in the
trap is given by

Htrap = Hphonon + Hl-ion 1 + Hl-ion 2 + Hm, �32�

Hphonon = �c.m.ac.m.
† ac.m. + �brabr

† abr,

Hl-ion 1 = − ��c.m.�c.m.�ac.m.
† + ac.m.� + �br�br�abr

† + abr���x
1,

Hl-ion 2 = − ��c.m.�c.m.�ac.m.
† + ac.m.� − �br�br�abr

† + abr���x
2,

Hm = B��z
1 + �z

2� .

Here, the operators ac.m.
† �ac.m.� and abr

† �abr� create �annihi-
late� an excitation in the center of mass and breathing modes,

respectively. The coupling interactions Hl−ion1 and Hl−ion2 are
due to the action of state-dependent dipole forces, which are
generated by the interaction of nonresonant laser beams with
the electronic levels of the ions �see Ref. �7��. Hm is due to
the action of an effective magnetic field that can be external
or generated by resonant laser beams. Hphonon is the energy of
the normal modes with frequency �c.m. for the center-of-
mass mode, and �br for the breathing mode. In the case of a
single-well potential in one dimension, �br=�3�c.m.. The
couplings �displacements� �c.m. and �br are assumed to be
small: �i�1. They depend on the intensity gradients of the
laser beams and are given by

�i =
F

�2��i

� �

2m�i
, �33�

with i= �c.m.,br�, F the dipole force acting on each ion, and
m the mass of the ion.

For a fixed value of t, the actual two-qubit state prepared
in the ion trap device is

�l�t� = Trphonon�e−iHtrapt��ion-phonon�e
iHtrapt� , �34�

where we have traced out the vibrational modes. Here, the
initial state is ��ion−phonon�= �0102��0102 � � �phonon, and �phonon

�e−Hphonon/kBT is the density operator for the initial state of the
phonons, with the ion motion in a thermal distribution cor-
responding to temperature T �kB is the Boltzmann constant�.
The fidelity of having prepared the state �hw�t�� is then given
by

F2��l�t�,�hw�t�� = Tr��l�t��hw�t�� , �35�

where the trace is over the internal degrees of freedom.
Following the results of Sec. II C, we first identify the set

hD= �z
1 ,�z

2� as the largest set of commuting observables in h

�i.e., the Cartan subalgebra�. This subalgebra determines
�hw�= �0102� according to Eq. �22�. A bound on the fidelity of
Eq. �35� can be obtained by using the time dependent sym-
metry operators

�̃z
j�t� = e−iHIt�z

jeiHIt �j = 1,2� , �36�

to uniquely define the state �hw�t�� through the equations

�̃z
j�t��hw�t�� = + 1�hw�t�� . �37�

Choosing �=1/2 �see Sec. II� and considering that
v1=v2=1, we obtain ShD

�t�= 1
2 ��̃z

1�t�+ �̃z
2�t��, which satisfies

�Eq. �30��

F2��l�t�,�hw�t�� � �ShD
�t���l�t�

. �38�

The �̃z
j�t�= ��z

j − it�HI ,�z
j�+ ¯ � are linear combinations

of operators belonging to the Lie algebra
so�4�= �z

1 ,�z
2 ,�x

1�x
2 ,�x

1�y
2 ,�y

1�x
2 ,�y

1�y
2�. To obtain the coeffi-

cients involved in these combinations one needs to find the
trace between the corresponding operators. For example, to
obtain the coefficient �1�t� that accompanies the operator �z

1

in the decomposition of �̃z
1�t�, one needs to compute

1 � 4Tr��z
1�̃z

1�t��. Remarkably, such a trace can be efficiently
computed by working in the �2N�2N�-dimensional funda-
mental matrix representation of so�2N� rather than in the
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�2N�2N�-dimensional original representation �see Ref. �19�
for details�.

In brief, only six correlations �i.e., the elements of so�4��
need to be measured to evaluate the inequality of Eq. �38�.
The complexity of estimating the fidelity is then reduced
since a naive approach to fidelity estimation would involve
the measurement of fifteen correlations �i.e., the elements of
the algebra su�4��. Of course, the complexity of the problem
is slightly reduced in this case but the difference is much
greater for larger systems.

In Fig. 1 we plot F2��l�t� ,�hw�t�� �Eq. �35�� as a function
of time and for certain values of F, �i, and B that could be
attained experimentally. For these parameters the fidelity re-
mains close to one, implying that the ion trap device can be
used to perform a quantum simulation governed by the Ising-
like Hamiltonian of Eq. �31�. We also plot �ShD

�t���l�t� and
we observe that this lower bound on the �squared� fidelity is

an excellent indicator of the accuracy of the simulation. For
the sake of comparison, we also plot the expectation values
��z

1��hw�t� and ��z
1��l�t�. Finally, in Fig. 2 we plot the coeffi-

cients � j�t�, j� �1,6�, that determine the weighting of the six
correlation measurements that contribute to the estimate of
�ShD

�t���l�t�.

IV. STATISTICAL CONTRIBUTIONS TO MEASURED
LOWER BOUND ON THE FIDELITY

In an actual experiment, expectation values can never be
obtained exactly due to quantum projection noise. Thus, they
must be estimated after a �typically large� sequence of pro-
jective measurements performed on identically prepared cop-
ies of the system. Commonly, maximum-likelihood methods
�MLMs� �28,29� are used to estimate the most probable den-
sity matrix �̄l from these measurements. As with full QST,
these methods are usually inefficient, and they require input
data concerning every correlation in the system. For ex-
ample, if a MLM is used to estimate the density operator �l

of an N-qubit system, the estimation �̄�l
of the expectation

value of a particular operator �=��1

1
¯��N

N will require
O(�4N−1�X) identically prepared copies of �l, where X is the
number of copies used to measure a particular correlation
�product of Pauli operators� �30�. Such a complexity would
then be translated to the estimation of the lower bounds of
Eqs. �13�, �19�, and �30�. In this section we argue that the
exponential complexity can still be avoided when estimating
these lower bounds with a certain �fixed� level of confidence.

For this purpose, we use results regarding the binomial
distribution �31�. Observe that the operator �, as defined
above, has ±1 as possible eigenvalues. Then if we perform
projective measurements of � over X identical copies of �l,
we obtain

����l
= �̄�l

± � , �39�

where �̄�l
=

X+−X−

X is the estimated expectation value �i.e., X±

is the number of times we measured �= ±1, respectively�,

FIG. 1. Numerical simulation of the quantum evolution of two
trapped ions interacting with laser fields. The parameters used are
�c.m.=2� 100 kHz, �c.m.�0.063, B=2� 560 Hz, −J=2�540 Hz,
F=25�10−23 N, and T=0, and these are expected to be attained
experimentally. �a� Squared fidelity �probability� of having prepared
the state �hw�t��=e−iHIt�0102�, if the dynamics of the trapped ions
are dominated by the trap Hamiltonian Htrap �Eq. �32��, and the
corresponding lower bound �ShD

�t���l�t�, as given by Eq. �38�, as a
function of time. �b� Expectation values of the Pauli operator �z

1 as
a function of time, if the evolution is governed by HI and Htrap,
respectively.

FIG. 2. Coefficients � j�t�, where �̃z
1�t�=�1

1�t��z
1+�1

2�t��z
2

+�1
3�t��x

1�x
2+�1

4�t��x
1�y

1+�1
5�t��y

1�x
2+�1

6�t��y
1�y

2�so�4�, used to ob-
tain �ShD

��l�t� in Fig. 1. Note that, because of the symmetry under
ion permutation, the same coefficients are obtained in the decom-
position of �̃z

2�t�.
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and � is the corresponding standard deviation. The latter is
given by

� = 2�p+p−

X
, �40�

where p± are the �unknown� probabilities of measuring
�= ±1, respectively. Then �	�1/X.

For sufficiently large X, the binomial distribution can be
well-approximated by the normal distribution. In this con-

text, Eq. �39� guarantees that �̄�l
differs by at most �1/X

from the actual expectation value with �at least� 68% confi-
dence �32�. For example, if � is estimated from ten thousand

identical copies of �l, then ����l
= �̄�l

±0.01 with �at least�
68% confidence.

With no loss of generality, the bounds of Eqs. �13�, �19�,
and �30� can be rewritten as

F2 � a0 + 	
m=1

R

am��m��l
, a0,am � R , �41�

where each �m involves a particular product of Pauli
operators �R=poly�N��. If each ��m��l

is estimated from X

identical copies of �l, then ��m��l
= �̄�l

m ±�1/X with 68%
confidence, and

F2 � a0 + 	
m=1

R

am��m��l
� a0 + 	

m=1

R

am�̄�l

m − R/�X , �42�

with the same confidence. Of course, Eq. �42� provides

relevant information if �̄�l

m �1/�X. For example, if one is
interested in preparing the state �GHZN�, then R=N and

�̄�l

m � +1. Choosing X=104N2, a good estimation �with error
0.01� for the lower bound of the fidelity may be obtained.
The method is then efficient: lower bounds on fidelity of
state preparation can be obtained, with certain confidence, in
poly�N� identical preparations of �l.

We have not considered any source of error other than the
one given by the statistics of projective measurements in
the quantum world. Otherwise, the results obtained in the
previous sections must be modified according to the specific
sources of error or decoherence that can affect the state
preparation.

V. CONCLUSIONS

We have studied the fidelity of state preparation for three
different classes of states: the rotational-invariant states, sta-
bilizer states, and generalized coherent states. Many interest-
ing multipartite entangled states, such as Schrödinger cat or
W-type states, belong to these classes. In particular, general-
ized coherent states are natural in the framework of quantum
simulations. We have discussed the quantum simulation of
the two-qubit Ising model using an ion trap device. In this
case we observe that a lower bound of the fidelity of the
simulation can be simply obtained and accurately estimates
the reliability of the experiment. Such a bound can also be
efficiently estimated for other multiple-qubit systems having
Ising-like interactions. Similar approaches can be considered
to study the fidelity of state preparation in general qudit or
fermionic systems.

Our results provide an efficient method to estimate, with
certain confidence, lower bounds on the fidelity of state
preparation based on symmetries. Many of the states de-
scribed contain N-particle entanglement, so the lower bounds
can also be used to verify entanglement using entanglement
witnesses �33,34�. These bounds are most accurate when the
actual prepared state is not too far from the desired one, as in
Fig. 1. Therefore, a consequence of our results is that instead
of measuring every possible quantum correlation of a system
a large number of times �as for QST�, one should focus on
having good estimations of certain relevant expectation
values.

Note added. Recently, after this manuscript was submit-
ted, we were alerted to the presence of some previous work
that is relevant for a subset of the entangled states considered
here. Efficient methods for lower bounds on the fidelity of
GHZ-type state and Bell states have been pointed out before
�35,36� in the entanglement witness formalism. However, the
present work is more general in terms of a large class of
states particularly useful for large-scale quantum information
processing and quantum simulations, and the present ap-
proach is a complimentary one in terms of the general sym-
metries of certain types of quantum states.
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