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We present a simple method to obtain an upper bound on the achievable secret key rate in quantum key
distribution �QKD� protocols that use only unidirectional classical communication during the public-discussion
phase. This method is based on a necessary precondition for one-way secret key distillation; the legitimate
users need to prove that there exists no quantum state having a symmetric extension that is compatible with the
available measurements results. The main advantage of the obtained upper bound is that it can be formulated
as a semidefinite program, which can be efficiently solved. We illustrate our results by analyzing two well-
known qubit-based QKD protocols: the four-state protocol and the six-state protocol.
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I. INTRODUCTION

Quantum key distribution �QKD� �1,2� allows two parties
�Alice and Bob� to generate a secret key despite the compu-
tational and technological power of an eavesdropper �Eve�
who interferes with the signals. This secret key is the essen-
tial ingredient of the one-time-pad or Vernam cipher �3�,
which can provide information-theoretic secure communica-
tions.

Practical QKD protocols distinguish two phases in order
to generate a secret key: a quantum phase and a classical
phase. In the quantum phase a physical apparatus generates
classical data for Alice and Bob distributed according to a
joint probability distribution p�ai ,bj�� pij. In the classical
phase, Alice and Bob try to distill a secret key from pij by
means of a public discussion over an authenticated classical
channel.

Two types of QKD schemes are used to create the corre-
lated data pij. In entanglement based �EB� schemes, a source,
which is assumed to be under Eve’s control, produces a bi-
partite quantum state �AB that is distributed to Alice and Bob.
Eve could even have a third system entangled with those
given to the legitimate users. Alice and Bob measure each
incoming signal by means of two positive operator valued
measures �POVM� �4� �Ai� and �Bj�, respectively, and they
obtain pij =Tr�Ai � Bj�AB�.

In an ideal prepare and measure �PM� scheme, Alice pre-
pares a pure state ��i	 with probability pi and sends it to Bob.
On the receiving side, Bob measures each received signal
with a POVM �Bj�. The signal preparation process in PM
schemes can be also thought of as follows �5�: First, Alice
produces the bipartite state ��source	AB=
i

�pi ��i	A ��i	B and,
afterwards, she measures the first subsystem in the orthogo-
nal basis ��i	A corresponding to the measurements Ai
= ��i	A��i�. This action generates the �nonorthogonal� signal
states ��i	 with probabilities pi. In PM schemes the reduced
density matrix of Alice, �A=TrB���source	AB��source � �, is fixed
and cannot be modified by Eve. To include this information
in the measurement process one can add to the observables
�Ai � Bj�, measured by Alice and Bob, other observables
�Ck � 1� such that they form a tomographic complete set of

Alice’s Hilbert space �6,7�. In the most general PM scheme
Alice is free to prepare arbitrary states �i instead of only pure
states ��i	. One can apply the same framework as for the
ideal PM scheme, as reviewed in Appendix A. However, in
the rest of this paper we only consider the case of an ideal
PM scheme, as described above.

From now on, we will consider that pij and �Ai � Bj� refer
always to the complete set of measurements, i.e., they in-
clude also the observables �Ck � 1� for PM schemes.

The public discussion performed by Alice and Bob during
the classical phase of QKD can involve either one-way or
two-way classical communication. Two-way classical com-
munication is more robust than one-way in terms of the
amount of errors that the QKD protocol can tolerate in order
to distill a secret key �8�. However, the first security proof of
QKD by Mayers �9�, and the most commonly known proof
by Shor and Presskill �10� are based on one-way communi-
cations, and many other security proofs of QKD belong also
to this last paradigm �11,12�. Moreover, any two-way com-
munication protocol includes a final nontrivial step that is
necessarily only one-way, so that the study of one-way com-
munication is also useful for the study of two-way commu-
nication.

In this paper we concentrate on one-way classical com-
munication protocols during the public discussion phase.
Typically, these schemes consist of three steps: local prepro-
cessing of the data, information reconciliation to correct the
data, and privacy amplification to decouple the data from
Eve �13�. Depending on the allowed direction of communi-
cation, two different cases must be considered. Direct com-
munication refers to communication from Alice to Bob, re-
verse reconciliation allows communication from Bob to
Alice only. �See, for instance, Refs. �14,15�.� We will con-
sider only the case of direct communication. Expressions for
the opposite scenario, i.e., reverse reconciliation, can be di-
rectly obtained simply by renaming Alice and Bob. Note that
for typical experiments, the joint probability distribution pij
is not symmetric, so that the qualitative statements for both
cases will differ.

We address the question of how much secret key can be
obtained from the knowledge of pij and �Ai � Bj�. This is one
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of the most important figures of merit in order to compare
the performance of different QKD schemes. We consider the
so-called trusted device scenario, where Eve cannot modify
the actual detection devices employed by Alice and Bob.
�See Refs. �7,16�.� We assume that the legitimate users have
complete knowledge about their detection devices, which are
fixed by the actual experiment.

In the last years, several lower and upper bounds on the
secret key rate for particular one-way QKD schemes have
been proposed. The lower bounds come from protocols that
have been proven to be secure �10–12,17–19�. The upper
bounds are generally derived by considering some particular
eavesdropping attack and by determining when this attack
can defeat QKD �18–22�. Unfortunately, to evaluate these
known bounds for general QKD protocols is not always a
trivial task. Typically, it demands to solve difficult optimiza-
tion problems, which can be done only for some particular
QKD protocols �19�.

In this paper we present a simple method to obtain an
upper bound on the secret key rate for general one-way QKD
protocols. The obtained upper bound will not be tight for all
QKD schemes, but it has the advantage that it is straightfor-
ward to evaluate in general since it can be formulated as a
semidefinite program �23,24�. Such instances of convex op-
timization problems can be efficiently solved, for example,
by means of interior-point methods �23,24�. Our analysis is
based on a necessary precondition for one-way QKD: The
legitimate users need to prove that there exists no quantum
state having a symmetric extension that is compatible with
the available measurement results �25�. This kind of states
�with symmetric extensions� have been recently analyzed in
Refs. �26–28�.

The paper is organized as follows. In Sec. II we review
some known upper bounds on the secret key rate using one-
way post-processing techniques. Section III includes the
main result of the paper. Here we introduce a straightforward
method to obtain an upper bound on the secret key rate for
one-way QKD. This result is then illustrated in Sec. IV for
two well-known qubit-based QKD protocols: the four-state
�2� and the six-state �29� QKD schemes. We select these two
particular QKD schemes because they allow us to compare
our results with already known upper bounds in the literature
�18–22�. Then in Sec. V we present our conclusions. The
paper includes also two Appendixes. In Appendix A we con-
sider very briefly the case of QKD based on mixed signal
states instead of pure states and translate the necessary pre-
condition into this more general framework. Finally, Appen-
dix B contains the semidefinite program needed to actually
solve the upper bound derived in Sec. III.

II. KNOWN UPPER BOUNDS

Different upper bounds on the secret key rate for one-way
QKD have been proposed in the last years. These results
either apply to a specific QKD protocol �20–22�, or they are
derived for different starting scenarios of the QKD scheme
�17–19�, e.g., one where Alice and Bob are still free to de-
sign suitable measurements.

Once Alice and Bob have performed their measurements
during the quantum phase of the protocol, they are left with

two classical random variables A and B, respectively, satis-
fying an observed joint probability distribution p�ai ,bj�
� pij. On the other hand, Eve can keep her quantum state
untouched and delay her measurement until the public-
discussion phase, realized by Alice and Bob, has finished.

In order to provide an upper bound on the secret key rate
it is sufficient to consider only a particular eavesdropping
attack. For instance, we can restrict ourselves to collective
attacks �18,19�. This situation can be modelled by assuming
that Alice and Bob have access to independent realizations of
two classical random variables A and B, respectively, distrib-
uted according to the observed probability distribution pij.
On the other hand, Eve has access to a quantum state �E

i,j

which is conditioned on Alice and Bob’s values of their vari-
ables. In Refs. �18,19� Renner et al. obtain an upper bound
for the one-way secret key rate that applies exactly to this
scenario, see also Ref. �30�.

In particular the authors of Refs. �18,19� let Alice further
process her classical random variable A by two classical to
quantum channels, denoted by �U←A and �V←A. This kind
of channel, �←A, defines a map between the values ai of the
random variable A to the corresponding quantum states �i.
The information which is encoded in the quantum state of
system U represents the final secret key, while the informa-
tion encoded in system V contains the broadcasted informa-
tion. Once this preprocessing operation has been done, we
can assume that Alice, Bob, and Eve share an unlimited
number of copies of the quantum

�UVBE = 

i,j

pij�U
i

� �V
i

� �j	B�j� � �E
i , �1�

with �E
i =
 jp�bj �ai��E

i,j and ��j	B� j forming an orthonormal
basis. Note that Eve’s information is encoded in system E
and V, while Bob’s information is stored in system B and V.

Let us recall some definitions and notations from informa-
tion theory. The von Neumann entropy S��A��S�A� of a
quantum state �A defined on the Hilbert space HA is given by
S�A�=−Tr��A ln �A�. The capital letter identifies the system
of the quantum state. The von Neumann entropy S�A ,B� of a
bipartite quantum state �AB is in a similar way, S�A ,B�
=−Tr��AB ln �AB�, while S�A� would now correspond to the
entropy of the reduced quantum state �A=TrB��AB�. The con-
ditional von Neumann entropy S�A �B� is defined as the dif-
ference of von Neumann entropies S�A �B�=S�A ,B�−S�B�.

From Refs. �18,19� we learn that the one-way secret key
rate K→ is bounded from above by

K→ � sup
�U←A

�V←A

S�U�E,V� − S�U�B,V� , �2�

where the supremum runs over all possible classical to quan-
tum channels �U←A and �V←A. The conditional von Neu-
mann entropies in Eq. �2� are evaluated on the quantum state
�UVBE by partial tracing out the remaining systems. Unfortu-
nately, in order to evaluate the upper bound given by Eq. �2�
one must solve the optimization over the two classical to
quantum channels; a task which is hard to evaluate even for
the simplest QKD protocols.
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Another upper bound that applies to the QKD scenario
that we consider here is the Csiszár and Körner’s secret key
rate for the one-way classical key-agreement scenario �31�.
Suppose that Alice, Bob, and Eve have access to many inde-
pendent realizations of three random variables A, B, and E,
respectively, that are distributed according to the joint prob-
ability distribution p�ai ,bj ,ek�. Csiszár and Körner showed
that the one-way secret key rate is given by �31�

R→�A;B�E� = sup
U←A
V←U

H�U�E,V� − H�U�B,V� . �3�

The single letter optimization ranges over two classical chan-
nels characterized by the transition probabilities Q�ul �ai� and
R�vm �ul�, and where the conditional Shannon entropy is de-
fined as H�U �E ,V�=−
p�ul ,ek ,vm�ln p�ul �ek ,vm�. The first
channel produces the secret key U, while the second channel
creates the broadcasted information V.

Note that Eq. �3� provides also an upper bound on K→.
Eve can always measure her quantum state �E

i,j by a POVM
�Ek�. As a result, Alice, Bob, and Eve share the tripartite
probability distribution p�ai ,bj ,ek�= pij Tr�Ek�E

i,j�. Unfortu-
nately, the optimization problem that one must solve in order
to obtain R→�A ;B �E� is also nontrivial, and its solution is
only known for particular examples. �See Ref. �32�.�

Finally, an easy computable upper bound on K→ is given
by the classical mutual information I�A ;B� between Alice
and Bob �33�. This quantity is defined in terms of the Shan-
non entropy H�A�=−
p�ai�ln p�ai� and the Shannon joint
entropy H�A ,B�=−
p�ai ,bj�ln p�ai ,bj� as

I�A;B� = H�A� + H�B� − H�A,B� . �4�

The mutual information represents an upper bound on the
secret key rate for arbitrary public communication protocols,
hence in particular for one-way communication protocols
�33�, i.e.,

K→ � R→�A;B�E� � I�A;B� . �5�

To evaluate I�A ;B� for the case of QKD, we only need to use
as p�ai ,bj� the correlated data pij.

III. UPPER BOUND ON K\

Our starting point is again the observed joint probability
distribution pij obtained by Alice and Bob after their mea-
surements. This probability distribution defines an equiva-
lence class S of quantum states that are compatible with it,

S = ��AB�Tr�Ai � Bj�AB� = pij, ∀ i, j� . �6�

By definition, every state �AB�S can represent the state
shared by Alice and Bob before their measurements �34�.

Now the idea is simple: just impose some particular
eavesdropping strategy for Eve, and then use one of the al-
ready known upper bounds. �See also Ref. �35�.� The upper
bound obtained represents an upper bound for any possible
eavesdropping strategy. The method can be described with
the following three steps.

�1� Select a particular eavesdropping strategy for Eve.
This strategy is given by the choice of a tripartite quantum

state �ABE and a POVM �Ek� to measure Eve’s signals. The
only restriction here is that the chosen strategy must not alter
the observed data, i.e., TrE��ABE��S.

�2� Calculate the joint probability distribution pijk=Tr�Ai

� Bj � Ek�ABE�.
�3� Use an upper bound for K→ given the probability dis-

tribution pijk. Here we can use, for instance, the classical
one-way secret key rate R→�A ;B �E� or just the mutual infor-
mation between Alice and Bob I�A ;B� which is straightfor-
ward to calculate.

This method can be improved by performing an optimi-
zation over all possible measurements on Eve’s system and
over all possible tripartite states that Eve can access �36�.
This gives rise to a set of possible extensions P of the ob-
served bipartite probability distribution pij for the random
variables A and B to a tripartite probability distribution pijk
for the random variables A, B, and E. Now the upper bound
is given by

K→ � inf
P

B→, �7�

with B→ representing the chosen quantity in step �3�.
In Sec. III A we present a necessary precondition for one-

way QKD. In particular, Alice and Bob need to prove that
there exists no quantum state having a symmetric extension
that is compatible with the available measurements results
�25�. Motivated by this necessary precondition, we introduce
a special class of eavesdropping strategies for Eve in Sec.
III B. These strategies are based on a decomposition of quan-
tum states similar to the best separability approximation
�37,38�, but now for states with symmetric extensions. The
general idea followed here is similar to that presented in Ref.
�35� for two-way upper bounds on QKD.

A. States with symmetric extensions and one-way QKD

A quantum state �AB is said to have a symmetric extension
to two copies of system B if and only if there exists a tripar-
tite state �ABB� with HB=HB� which fulfills the following
two properties �26�:

TrB���ABB�� = �AB, �8�

P�ABB�P = �ABB�, �9�

where the operator P satisfies P � ijk	ABB�= �ikj	ABB�. This
definition can be easily extended to cover also the case of
symmetric extensions of �AB to two copies of system A, and
also of extensions of �AB to more than two copies of system
A or of system B.

States with symmetric extension play an important role in
quantum information theory, as noted recently. They can de-
liver a complete family of separability criteria for the bipar-
tite �26,27� and for the multipartite case �28�, and they pro-
vide a constructive way to create local hidden variable
theories for quantum states �39�. Moreover, they are related
to the capacity of quantum channels �40�. Most important, a
connection to one-way QKD has also been noticed.

Observation 1 �25�. If the observed data pij originate from
a quantum state �AB which has a symmetric extension to two
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copies of system B, then the secret key rate for unidirectional
communication K→ from Alice to Bob vanishes.

Proof. Suppose that the observed data pij originate from a
state �AB which has a symmetric extension to two copies of
system B. Suppose as well that the third subsystem of the
extended tripartite state �ABB� is in Eve’s hands, i.e., �ABE
=�ABB�. This results in equal marginal states for Alice-Bob
and Alice-Eve, i.e., �AB=�AE. From Alice’s perspective the
secret key distillation task is then completely symmetric un-
der interchanging Bob and Eve. Since we restrict ourselves
to unidirectional classical communication from Alice to Bob
only, we find that it is impossible for Bob to break this sym-
metry. That is, if Alice tries to generate a secret key with Bob
her actions would automatically create exactly the same se-
cret key with Eve. To complete the proof we need to verify
that Eve can access the symmetric extension �ABB� of �AB in
both kinds of QKD schemes, EB schemes and PM schemes.
It was demonstrated in Ref. �6� that Eve can always create a
purification of the original state �AB, which means that Eve
can have access to the symmetric extension. �

Remark 1. A quantum state �AB has a symmetric extension
to two copies of system B if and only if there exists a tripar-
tite state �ABE with equal marginal states for Alice-Bob and
Alice-Eve, i.e., �AB=�AE.

Proof. If a quantum state �AB has a symmetric extension
this automatically implies equal marginal states for Alice-
Bob and Alice-Eve. For the other direction, suppose that
there exists a tripartite state �̃ABE with equal marginals, but
which is not symmetric under interchange of subsystems B
and E. Then the state P�̃ABEP is also a possible tripartite state
with equal marginals. This allows to construct the symmetric
extension of the state �AB as �ABE=1/2��̃ABE+ P�̃ABEP�. �

There exists entangled states which do have symmetric
extensions �26,27�. Hence, accordingly to Observation 1, al-
though these states are entangled and therefore potentially
useful for two-way QKD �6�, they are nevertheless useless
for one-way QKD in the corresponding direction.

We define the best extendibility approximation of a given
state �AB as the decomposition of �AB into a state with sym-
metric extension, that we denote as �ext, and a state without
symmetric extension �ne, while maximizing the weight of the
extendible part �ext �41�, i.e.,

�AB = max
�

��ext + �1 − ���ne. �10�

This definition follows the same spirit as the best separability
approximation introduced in Refs. �37,38�. Since the set of
all extendible quantum states forms a closed and convex set
�27�, the maximum in Eq. �10� always exists. We denote the
maximum weight of extendibility of �AB as �max��AB�, where
0��max��AB��1 is satisfied.

Given an equivalence class S of quantum states, we define
the maximum weight of extendibility within the equivalence
class, denoted as �max

S , as

�max
S = max��max��AB���AB � S� . �11�

This parameter is related to the necessary precondition for
one-way secret key distillation by the following observation.

Observation 2. Assume that Alice and Bob can perform

local measurements with POVM elements Ai and Bj, respec-
tively, to obtain the joint probability distribution of the out-
comes pij on the distributed quantum state �AB. Then the
following two statements are equivalent: �1� The correlations
pij can originate from an extendible state. �2� The maximum
weight of extendibility �max

S within the equivalence class of
quantum states S compatible with the observed data pij sat-
isfies �max

S =1.
Proof. If pij can originate from an extendible state, then

there exists a �ext such as �ext�S. Moreover, we have that
any extendible state satisfies �max��ext�=1. The other direc-
tion is trivial. �

Let us define Smax as the equivalence class of quantum
states composed of those states �AB�S that have maximum
weight of extendibility. It is given by

Smax = ��AB � S��max��AB� = �max
S � . �12�

B. Eavesdropping model

An eavesdropping strategy for our purpose is completely
characterized by selecting the overall tripartite quantum state
�ABE and the measurement operators �Ek�. Again, the only
restriction here is that TrE��ABE��S. We consider that Eve
chooses a purification �ABE= ��	ABE��� of a state �AB taken
from the equivalence class Smax.

The quantum states �ext and �ne of the best extendibility
approximation of �AB can be written in terms of their spectral
decomposition as �42�

�ext = 

i

qi�	i	AB�	i� , �13�

�ne = 

i

pi��i	AB��i� , �14�

with �	i �	 j	= ��i �� j	=0 for all i� j. A possible purification
of the state �AB is given by

��	ABE = 

i

��max
S qi�	i	AB�ei	E + 


j

��1 − �max
S �pj�� j	AB�f j	E,

�15�

where the states ��ei	E , �f j	E� form an orthogonal bases on
Eve’s subsystem.

It is important to note that in both kinds of QKD schemes,
EB schemes and PM schemes, Eve can always have access
to the state ��	ABE given by Eq. �15�. This has been shown in
Ref. �6�. In an EB scheme this is clear since Eve is the one
who prepares the state �AB and who distributes it to Alice and
Bob. In the case of PM schemes we need to show addition-
ally that Eve can obtain the state ��	ABE by interaction with
Bob’s system only. In the Schmidt decomposition the state
prepared by Alice, ��source	AB, can be written as ��source	
=
ici �ui	A �vi	B. Then the Schmidt decomposition of ��	ABE,
with respect to system A and the composite system BE, is of
the form ��	ABE=
ici �ui	A � ẽi	BE since ci and �ui	A are fixed
by the known reduced density matrix �A to the corresponding
values of ��source	AB. Then one can find a suitable unitary
operator UBE such that �ẽi	BE=UBE �vi	B �0	E where �0	E is an
initial state of an auxiliary system.

MORODER, CURTY, AND LÜTKENHAUS PHYSICAL REVIEW A 74, 052301 �2006�

052301-4



For simplicity, we consider a special class of measure-
ment strategies for Eve. This class of measurements can be
thought of as a two step procedure.

�1� First, Eve distinguishes contributions coming from the
part with symmetric extension and from the part without
symmetric extension of �AB. The corresponding measure-
ments are projections of Eve’s subsystem onto the orthogo-
nal subspaces 
ext=
i �ei	E�ei� and 
ne=
 j � f j	E�f j�.

�2� Afterwards, Eve performs a refined measurement strat-
egy on each subspace separately. As we will see, only the
nonextendible part �ne might allow Alice and Bob to distill a
secret key by direct communication; from the extendible part
no secret key can be obtained.

This special measurement class determines Eve’s random
variable E. Because of the special design of the measurement
strategy, it is convenient to associate an own random variable
for each measurement step. Therefore, we consider Eve’s
random variable E as a pair of two different random vari-

ables E= �T , Ẽ�. The variable T corresponds to the outcome

of the projection measurement, while Ẽ corresponds to the
outcome arising from the second step in the strategy. With
probability 1−�max

S Eve finds that Alice and Bob share the
nonextendible part of �AB. After this first measurement step,
the conditional quantum state shared by Alice, Bob, and Eve,
denoted as �ABE

ne = ��ne	ABE��ne�, corresponds to a purification
of �ne, i.e.,

��ne	ABE = 

j

�pj�� j	AB�f j	E. �16�

Next we provide an upper bound for K→ that arises from
this special eavesdropping strategy. Moreover, as we will
see, the obtained upper bound is straightforward to calculate.

C. Resulting upper bound

For the special eavesdropping strategy considered in Sec.
III B, we will show that we can restrict ourselves to the non-
extendible part �ne of a given �AB only. As a consequence, the
resulting upper bound will only depend on this nonextend-
ible part. This motivates the definition of a new equivalence
class of quantum states Smax

ne , defined as

Smax
ne = ��ne��AB���AB � Smax� , �17�

where �ne��AB� represents the nonextendible part in a valid
best extendibility approximation of �AB�Smax given by Eq.
�10�. To simplify the notation, from now on we will write �ne
instead of �ne��AB�. The possibility to concentrate on the non-
extendible parts only is given by the following theorem.

Theorem 1. Suppose Alice’s and Bob’s systems are sub-
jected to measurements described by the POVMs �Ai� and
�Bj�, respectively, and their outcomes follow the probability
distribution pij. They try to distill a secret key by unidirec-
tional classical communication from Alice to Bob only. The
secret key rate, denoted as K→, is bounded from above by

K→ � �1 − �max
S �inf

P*
R→�A;B�E� , �18�

where R→�A ;B �E� denotes the classical one-way secret key
rate given by Eq. �3� for a tripartite probability distribution

p̃ijk�P*. The set P* considers all possible POVMs �Ek�
which Eve can perform on a purification ��ne	ABE of the non-
extendible part �ne�Smax

ne only, i.e., p̃ijk=Tr�Ai � Bj

� Ek���ne	ABE��ne � ��.
Proof. In order to derive Eq. �18� we have considered only

a particular class of eavesdropping strategies for Eve as de-
scribed in Sec. III B. This class defines a subset P� of the set
of all possible extensions P of the observed data pij to a
general tripartite probability distribution pijk, which are con-
sidered in the upper bound given by Eq. �7�. We have, there-
fore, that

K→ � inf
P

R→�A;B�E� � inf
P�

R→�A;B�E� . �19�

As introduced in Sec. III B, Eve’s random variable E

= �T , Ẽ� is modelled as a pair of two random variables T and

Ẽ, corresponding to the special designed measurement strat-
egy. The variable T identifies the projection measurement,

while Ẽ corresponds to the refined measurement. We denote

the secret key rate for this case by K→�A ;B � Ẽ ,T�.
For this one-way secret key rate K→�A ;B � Ẽ ,T� we get

K→�A;B�Ẽ,T� = sup
U←A
V←U

H�U�V,Ẽ,T� − H�U�V,B�

� sup
U←A
V←U

H�U�V,Ẽ,T� − H�U�V,B,T�

� sup
U←�A,T�

V←U

H�U�V,Ẽ,T� − H�U�V,B,T� .

�20�

In the first line we just use the definition of the classical
secret key rate given by Eq. �3�. The first inequality comes
from the fact that conditioning can only decrease the entropy,
i.e., H�U �V ,B��H�U �V ,B ,T�. For the last inequality, we
give Alice also access to the random variable T, additionally
to her variable A, over which she can perform the post-
processing with the classical channels. Altogether Eq. �20�
tells that if Eve announces publicly the value of the variable
T, containing the information whether Alice and Bob share
the extendible or nonextendible part, this action can only
enhance the ability of Alice and Bob to create a secret key.

Next, we have that

sup
U←�A,T�

V←U

H�U�V,Ẽ,T� − H�U�V,B,T�

= sup
U←�A,T�

V←U



k

p�tk��H�U�V,Ẽ,tk� − H�U�V,B,tk��

= 

k

p�tk� sup
U←�A,tk�

V←U

�H�U�V,Ẽ,tk� − H�U�V,B,tk��

= 

k

p�tk�R→�A;B�Ẽ,tk� . �21�

First we rewrite the conditional entropies in terms of an ex-
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pectation value over the different values tk of the random
variable T. The classical channel U← �A ,T� acts now inde-
pendent on each term of the sum. Therefore the supremum
can be set into the sum, where the random variable T takes
now the specific value tk. Since supU←�A,tk� is equal to
supU←A for tk fixed, we find on the right-hand side the one-
way secret key rate for the conditional three party correlation

p�ai ,bj , ẽl � tk�, which we denoted as R→�A ;B � Ẽ , tk�.
Combining Eq. �20� and Eq. �21� we have, therefore, that

R→�A;B�Ẽ,T� � 

k

p�tk�R→�A;B�Ẽ,tk� . �22�

The random variable T can take only two possible values,
which indicates whether Alice and Bob share the extendible
or the nonextendible part. From Observation 1 we learn that
Alice and Bob cannot draw a secret key out of the extendible
part �ext. Therefore, only the nonextendible part �ne can con-
tribute to a positive secret key rate. The corresponding non-
extendible probability distribution is given by measurements
on the quantum state after this first measurement. As shown
in the Sec. III B, this state is exactly the purification of the
nonextendible part, which defines exactly the considered ex-
tensions P*. This concludes the proof. �

The upper bound given by Eq. �18� requires to solve the
infimum over all possible extensions P*. Instead of this op-
timization, one can just pick a particular state in Smax

ne and
calculate the infimum over all possible measurements �Ek�
employed by Eve.

Corollary 1. Given a state �ne�Smax
ne , the secret key rate

K→ is bounded from above by

K→ � �1 − �max
S �inf

Ek

R→
Ek�A;B�E� , �23�

with R→
Ek�A ;B �E� being the classical one-way secret key rate

of the tripartite probability distribution p̃ijk=Tr�Ai � Bj

� Ek���ne	��ne � ��, and where ��ne	 denotes a purification of
�ne.

Proof. The right-hand side of Eq. �23� is an upper bound
of the right-hand side of Eq. �18�, because in Eq. �23� we
take only a particular state �ne�Smax

ne , whereas in Eq. �18� we
perform the infimum over all possible states �ne�Smax

ne . �
The upper bounds provided by Theorem 1 and Corollary 1

still demand solving a difficult optimization problem. Next,
we present a simple upper bound on K→ that is straightfor-
ward to calculate. Then, in Sec. IV, we illustrate the perfor-
mance of this upper bound for two well-known QKD proto-
cols: the four-state �2� and the six-state �29� QKD schemes.
We compare our results to other well-known upper bounds
on K→ for these two QKD schemes �18–22�.

Corollary 2. The secret key rate K→ is upper bounded by

K→ � �1 − �max
S �Ine�A;B� , �24�

where Ine�A ;B� denotes the classical mutual information cal-
culated on the probability distribution p̃ij =Tr�Ai � Bj�ne�
with �ne�Smax

ne .
Proof. According to Eq. �5�, the one-way secret key rate

R→�A ;B �E� is bounded from above by the mutual informa-
tion I�A ;B�. Note that the mutual information I�A ;B� is an

upper bound on the secret key rate for arbitrary communi-
cation protocols �33�. �

The main difficulty when evaluating the upper bound
given by Eq. �24� for a particular realization of QKD relies
on obtaining the parameter �max

S and the nonextendible state
�ne. In Appendix B we show how this problem can be cast as
a convex optimization problem known as semidefinite pro-
gram �43�. Such instances of convex optimization problems
can be efficiently solved, for example, by means of interior-
point methods �23,24�.

IV. EVALUATION

In this section we evaluate the upper bound on K→ given
by Eq. �24� for two well-known qubit-based QKD protocols:
the four-state �2� and the six-state �29� QKD schemes. We
select these two particular QKD schemes because they allow
us to compare our results with already known upper bounds
on K→ �18–22�. Let us emphasize, however, that our method
can also be used straightforwardly to obtain an upper bound
for higher dimensional, more complicated QKD protocols,
for which no upper bounds have been calculated yet. By
means of semidefinite programming one can easily obtain
the maximum weight of extendibility �max

S and the corre-
sponding nonextendible part �ne which suffice for the com-
putation of the upper bound. �See Appendix B.�

In the case of the four-state EB protocol, Alice and Bob
perform projection measurements onto two mutually unbi-
ased bases, say the ones given by the eigenvectors of the two
Pauli operators �x and �z. In the corresponding PM scheme,
Alice can use as well the same set of measurements but now
on a maximally entangled state. Note that here we are not
using the general approach introduced previously,
��source	AB=
i

�pi ��i	A ��i	B, to model PM schemes, since for
these two protocols it is sufficient to consider that the effec-
tively distributed quantum states consist only of two qubits.
For the case of the six-state EB protocol, Alice and Bob
perform projection measurements onto the eigenvectors of
the three Pauli operators �x ,�y, and �z on the bipartite qubit
states distributed by Eve. In the corresponding PM scheme
Alice prepares the eigenvectors of those operators by per-
forming the same measurements on a maximally entangled
two-qubit state.

We model the transmission channel as a depolarizing
channel with error probability e. This defines one possible
eavesdropping interaction. In particular, the observed prob-
ability distribution pij is obtained in both protocols by mea-
suring the quantum state �AB�e�= �1−2e� ��+	AB��+ �
+e /21AB, where the state ��+	AB represents a maximally en-
tangled two-qubit state as ��+	AB=1/�2��00	AB+ �11	AB�, and
1AB denotes the identity operator. The state �AB�e� provides a
probability distribution pij that is invariant under interchang-
ing Alice and Bob. This means that for this particular ex-
ample there is no difference whether we consider direct com-
munication �extension of �AB�e� to two copies of system B�
or reverse reconciliation �extension of �AB�e� to two copies
of system A�. The quantum bit error rate �QBER�, i.e., the
fraction of signals where Alice and Bob’s measurements re-
sults differ, is given by QBER=e.
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The resulting upper bounds on K→ are illustrated in Fig.
1. These results do not include the sifting factor of 1 /2 for
the four-state protocol �1/3 for the six-state protocol�, since
this effect can be avoided by an asymmetric basis choice for
Alice and Bob �44�. In Fig. 1 we include as well lower
bounds for the secret key rate obtained in Ref. �19�.

Let us consider in more detail the cutoff points for K→,
i.e., the values of QBER for which the secret key rate drops
down to zero in Fig. 1. We find that in the four-state protocol
�six-state protocol� one-way secret key distillation might
only be possible for a QBER�14.6 �QBER�1/6�. These
results reproduce the well-known upper bounds on both pro-
tocols from Refs. �20–22�. More recently, a new threshold
point for the six-state protocol was obtained in Refs. �18,19�,
QBER�16.3. This result indicates that the upper bound
given by Eq. �24� is not tight, since it fails to reproduce this
last value.

One could think that this example from Refs. �18,19� con-
cludes that Observation 1 might be only a necessary but not
sufficient condition for one-way secret key distillation: there
exist bipartite states which are nonextendible, nevertheless
no secret key can be obtained from them via one-way post-
processing. However, the example does not include the pos-
sibility for Alice and Bob to perform arbitrary one-way
LOCC operations onto the quantum state. Therefore the
complete characterization of useful quantum states for one-
way QKD is still an open problem.

V. CONCLUSION

In this paper we address the fundamental question of how
much secret key can be obtained from the classical data that
become available once the first phase of QKD is completed.
In particular, we restrict ourselves to one-way public com-

munication protocols between the legitimate users. This
question has been extensively studied in the literature and
analytic expressions for upper and lower bounds on the one-
way secret key rate are already known. Unfortunately, to
evaluate these expressions for particular QKD protocols is,
in general, a nontrivial task. It demands to solve difficult
optimization problems for which no general solution is
known so far.

Here we provide a simple method to obtain an upper
bound on the one-way secret key rate for QKD. It is based on
a necessary precondition for one-way secret key distillation:
The legitimate users need to prove that there exists no quan-
tum state having a symmetric extension that is compatible
with the available measurements results. The main advantage
of the method is that it is straightforward to calculate, since it
can be formulated as a semidefinite program. Such instances
of convex optimization problems can be solved very effi-
ciently. More importantly, the method applies both to prepare
and measure schemes and to entanglement based schemes,
and it can reproduce most of the already known cutoff points
for particular QKD protocols. It is so far unclear whether the
precondition that no symmetric extension exists is also suf-
ficient.
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APPENDIX A: QKD WITH MIXED SIGNAL STATES

In this appendix we describe very briefly the case of QKD
based on mixed quantum states instead of pure states. In
particular, we analyze PM schemes, since in EB schemes it is
clear that Eve can always distribute mixed states to Alice and
Bob, and this situation is already contained in the results
included in the preceding sections. More specifically, we
translate the necessary precondition for secret key generation
by unidirectional communication to the PM mixed state sce-
nario.

In the most general PM scheme, Alice prepares mixed
signal states �B

i following a given probability distribution pi
and sends them to Bob. Equivalently, we can think of the
preparation process as follows. Suppose that the spectral de-
composition of the signal state �B

i is given by �B
i

=
 j� j
i �� j

i	B�� j
i�. This can be interpreted as producing with

probability � j
i the pure state �� j

i	. Alternatively, �B
i can as well

originate from a pure state in a higher dimensional Hilbert
space. That is, from a possible purification �	i	A�B of the state
�B

i in the composite Hilbert space HA� � HB which reads as

�	i	A�B = 

j

�� j
i�j	A��� j

i	B. �A1�

Now we can use the same formalism as the one for PM
schemes based on pure signal states. We can assume that first
Alice prepares the tripartite quantum state
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FIG. 1. Upper bound on the one-way secret key rate K→ given
by Eq. �24� for the four-state �solid� and the six-state �dotted� QKD
protocols in comparison to known lower bounds on the secret key
rate given in Ref. �19�. The equivalence class of states S is fixed by
the observed data pij, which are generated via measurements onto
the state �AB�e�= �1−2e� ��+	AB��+ � +e /21AB. The quantum bit error
rate is given by QBER=e. Here we assume an asymmetric basis
choice to suppress the sifting effect �44�.
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��source	AA�B = 

ij

�pi� j
i�i	A�j	A��� j

i	B. �A2�

Afterwards, in order to produce the actual signal state in
system B, Alice performs a measurement onto the standard
basis of system A only, and completely ignores system A�.
Her measurement operators are given by Ai= �i	A�i � � 1A�.
The produced signal states are sent to Bob who measures
them by means of the POVM �Bj�. Since Eve can only inter-
act with system B, the reduced density matrix of �AA�
=TrB���source	AA�B��source � � is fixed by the actual preparation
scheme. This information can be included in the measure-
ment process by adding to the observables measured by Al-
ice and Bob other observables �Ck,AA� � 1B� such that they
provide complete information on the bipartite Hilbert space
of Alice HAA�=HA � HA�. �See also �45�.�

The relevant equivalence class of quantum states SAA�B
contains all tripartite quantum states �AA�B consistent with
the available information during the measurement process.
Obviously, Eve can always access every purification
�
AA�BE	 of a state in SAA�B. Note that the situation is com-
pletely equivalent to the case of pure signal states �6�.

Now we are ready to rephrase the necessary precondition
for one-way secret key distillation for the case of QKD based
on mixed states. For direct communication we need to search
for symmetric extensions to two copies of system B. That is,

if we denote with Ā the bipartite system on Alice’s side Ā
�AA�, we must search for quantum states in the equivalence
class SAA�B=SĀB which are extendible to �ĀBB�. In the case
of reverse reconciliation, Eve needs to possess only a copy of
system A. Note that the final key is created only from mea-
surements onto this system. Therefore, in order to determine
the cutoff points for the key distillation process, one must
examine the question whether a four-partite quantum state
�AA�BE with TrE��AA�BE��SAA�B exists such that TrA���AA�BE�
is exactly the desired symmetric extension to two copies of
system A.

APPENDIX B: SEMIDEFINITE PROGRAMS AND
SEARCHING FOR �max

S AND �ne

In this appendix we provide a method to obtain the pa-
rameter �max

S and the corresponding nonextendible state �ne.
In particular, we show how one can cast this problem as a
convex optimization problem known as semidefinite pro-
gramming. Such instances of convex optimization problems
appear frequently in quantum information theory and they
can be solved very efficiently. There are freely available in-
put tools like, for instance, YALMIP �46�, and standard
semidefinite programming solvers, see SeDuMi �47� and
SDPT3-3.02 �48�.

A typical semidefinite problem, also known as primal
problem, has the following form:

minimize cTx ,

subject to F�x� = F0 + 

i

xiFi � 0, �B1�

where the vector x= �x1 , . . . ,xt�T represents the objective
variable, the vector c is fixed by the particular optimization

problem, and the matrices F0 and Fi are Hermitian matrices.
The goal is to minimize the linear objective function cTx
subject to a linear matrix inequality constraint F�x��0
�23,24�. �See also �54�.�

Any bounded Hermitian operator �A=�A
† acting on a

n-dimensional Hilbert space S can be written in terms of an
operator basis, which we shall denote by �Sk�, satisfying the
following three conditions: Tr�Sj�=n� j1, Sj =Sj

†, and
Tr�SjSj��=n� j j�. A possible choice is given by the SU�n� gen-
erators. Using this representation, a general bipartite state
�AB in a dAB-dimensional Hilbert space can be written as

�AB =
1

dAB


kl

rklSk
ASl

B, �B2�

where the coefficients rkl are given by rkl=Tr�Sk
ASl

B�AB�. Note
that in order to simplicity the notation, in this appendix we
omit the tensor product signs � between the operators. The
representation given by Eq. �B2� allows us to describe any
bipartite density operator in terms of a fixed number of pa-
rameters rkl which can serve as the free parameters in the
program.

The knowledge of the Alice and Bob POVMs �Ai� and
�Bj�, respectively, and the observed probability distribution
pij determines the equivalence class of compatible states S.
Since every POVM element is a Hermitian operator itself,
every element can as well be expanded in the appropriate
operator basis Ai=
maimSm

A and Bj =
nbjnSn
B.

An arbitrary operator �AB=1/dAB
rklSk
ASj

B belongs to the
equivalence class S if and only if it fulfills the following
constraints: In order to guarantee that the operator �AB rep-
resents a valid quantum state, it must be normalized
Tr��AB�=r11=1, and it must be a semidefinite positive opera-
tor �AB�0. In addition, it must reproduce the observed data
of Alice and Bob. This last requirement imposes the follow-
ing constraints:

Pr�ai,bj� = 

kl

aikbjl rkl = pij ∀ i, j , �B3�

which are linear on the state coefficients rkl. Note that every
equality constraint Pr�ai ,bj�= pij can be represented by two
inequality constraints as Pr�ai ,bj�− pij �0 and −�Pr�ai ,bj�
− pij��0.

In order to find the decomposition of a given state �AB
=1/dAB
klrklSk

ASl
B into an extendible part �ext and a nonex-

tendible part �ne, with maximum weight �max��AB� of extend-
ibility, we can proceed as follows. First we rewrite the prob-
lem in terms of unnormalized states �̃ext���ext and �̃ne
��1−���ne as

�AB = min
Tr��̃ne�

�̃ext + �̃ne. �B4�

Now assume that the unnormalized, extendible state is writ-
ten as �̃ext=1/dAB
 ẽklSk

ASl
B, which must form a semidefinite

positive operator �̃ext�0. In the case of direct communica-
tion we must impose that �̃ext has a symmetric extension
�ABB� to two copies of system B. That is, �ABB� remains
invariant under permutation of the systems B and B�. This is
only possible if the state �ABB� can be written as

MORODER, CURTY, AND LÜTKENHAUS PHYSICAL REVIEW A 74, 052301 �2006�

052301-8



�ABB� =
1

dABB�



k
l�m

fklm�Sk
ASl

BSm
B� + Sk

ASm
BSl

B�� + 

kl

fkllSk
ASl

BSl
B�

�B5�

with appropriate state coefficients fklm∀k, ∀l�m. The ex-
tension must as well reproduce the original state
TrB���ABB��= �̃ext, which implies that the state coefficients of
�̃ext and �ABB� are related by

fkl1 = ẽkl ∀ k,l . �B6�

Hence, some of the state parameters of �ABB� are already
fixed by the coefficients of �̃ext. In addition, the coefficients
fklm must form a semidefinite positive operator �ABB��0.

Once the states �AB=
rklSk
ASl

B and the unnormalized ex-
tendible part �̃ext=
ẽklSk

ASl
B are fixed, the remaining nonex-

tendible state �̃ne is determined by the decomposition given
by Eq. �B4�, and is equal to

�̃ne = 
 �rkl − ẽkl�Sk
ASl

B. �B7�

This operator must be semidefinite positive �̃ne�0.
In total, the state coefficients of the states in the equiva-

lence class �AB, the unnormalized, extendible part in the best
extendibility decomposition �̃ext and the symmetric exten-
sion itself �ABB� will constitute the objective variables of the
SDP program

x = �rkl, ẽkl, fklm�T. �B8�

This requires a fixed ordering of the set of coefficients. The
function to be minimized is the weight on the unnormalized,
nonextendible part, Tr��̃ne�=r11− ẽ11. Hence the vector c is
given by

�B9�

All the semidefinite constraints introduced previously on the
state coefficients can be collected into a single linear matrix
inequality constraint given by Eq. �B1�. The final F�x� col-
lects all these constraints as block matrices on the diagonal.
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