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The search for particle electric dipole moments �EDM’s� represents a most promising way to search for
physics beyond the standard model. A number of groups are planning a new generation of experiments using
stored gases of various kinds. In order to achieve the target sensitivities it will be necessary to deal with the

systematic error resulting from the interaction of the well-known v� �E� field with magnetic field gradients
which is often referred to as the geometric phase effect �E. D. Commins, Am. J. Phys. 59, 1077 �1991�; J. M.
Pendlebury et al., Phys. Rev. A 70, 032102 �2004��. This interaction produces a frequency shift linear in the
electric field, mimicking an EDM. In this work we introduce an analytic form for the velocity autocorrelation
function which determines the velocity-position correlation function which in turn determines the behavior of
the frequency shift �S. K. Lamoreaux and R. Golub, Phys. Rev A 71, 032104 �2005�� and show how it depends
on the operating conditions of the experiment. We also discuss some additional issues.
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INTRODUCTION

The proposition that the search for particle electric dipole
moments �EDM’s� represents a reasonable method to look
for physics beyond the standard model �1� is inspiring many
groups to search for EDM’s in a variety of systems �see Ref.
�2� for a recent review�. Experiments on several systems in-
cluding the neutron �3� and several species of confined gases
�4� including radium �5�, radon �6�, and xenon �7� are in
various stages of preparation. These experiments are all hop-
ing to reach sensitivities in the range of 10−27−10−28e cm.
Sensitivity in this range has already been achieved in the
case of Hg �8�. The experiments proposed represent a broad
range of operating conditions, from room temperature gases
with buffer gas to laser cooled atoms in a magneto-optical
trap �MOT�.

In order to achieve the target sensitivities it will be nec-
essary to deal with the systematic error resulting from the

interaction of the well-known v� �E� field with magnetic field
gradients. Often referred to as the geometric phase effect
�9,10� this interaction produces a frequency shift linear in the
electric field, mimicking an EDM. This systematic effect is
highly dependent on the operating conditions of the experi-
ment. While experiments in small vessels and with high pres-
sure buffer gas are expected to be relatively insensitive to the
systematic effect, each of the proposed experiments will
have to be analyzed in detail to judge its sensitivity to the
effect and to find methods of dealing with it.

In this work we introduce an analytic form of the corre-
lation function which determines the behavior of the fre-
quency shift �11� and show in detail how it depends on the
operating conditions of the experiment. For clarity we spe-
cialize the discussion to the Los Alamos proposal for a neu-
tron EDM search using ultracold neutrons �UCN� and 3He
atoms diffusing in superfluid 4He as a comagnetometer �12�
but the generalization to other cases is straightforward.

First analyzed by Commins �9� in the context of a beam
experiment, the frequency shift has been discussed in some
detail by Pendlebury et al. �10� in connection with experi-
ments involving stored particle gases. Additional discussion
and calculations have been given in Ref. �11�.

Our present understanding of the effect can best be sum-
marized by Fig. 1, which appeared as Fig. 3 in Ref. �11�.
This is a plot of the normalized �linear in E� frequency shift
�� vs normalized Larmor frequency �0 for various values of
collision mean free path � and wall specularity, calculated
for particles moving with fixed velocity v in a cylindrical
measurement cell of radius R. The horizontal scale is fixed
by the frequency of motion around the cell �v /R�. In general
the shift for UCN will be given by a value of �0 / �v /R��4
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FIG. 1. �Color online� Note the curves are for a single fixed
velocity. The velocity dependence is contained in the normalization
of the frequency scale �r=v /R.
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while comagnetometer atoms are characterized by
�0 / �v /R��1.

These results have been obtained by numerical simulation
of the position-velocity correlation function and taking the
Fourier transform. According to Ref. �11� �Eq. �26�� the fre-
quency shift is given by

�� =
ab

2
lim
�→�

�
0

�

R�t�cos��0t�dt , �1�

where a= 	
2 �Bz /�z, b=	E /c, 	 is the gyromagnetic ratio, and

R��� is the position-velocity correlation function for motion
in the plane perpendicular to the z axis, defined in Ref. �11�
�Eq. �27��:

R��� = �r�
��t� · v�

��t − �� − r�
��t − �� · v�

��t�� . �2�

From the experimental point of view it is very appealing to
try to make use of the zero crossing, apparent in Fig. 1, to
reduce the effect.

In this paper we present an analytic form for the velocity
correlation function from which R��� can be determined and
compare it to the results obtained previously by numerical
simulations. In the collision-free case we obtain the result
obtained in Ref. �10� �Eq. �78�� for a single trajectory. Using
the analytic function for the case with gas collisions, we
average over a Maxwell velocity distribution and calculate
the temperature dependence of the frequency shift for 3He
diffusing in superfluid 4He.

I. ANALYTICAL FORM FOR THE CORRELATION
FUNCTION R„�…

According to Ref. �11� the correlation function R��� is
determined by the velocity autocorrelation function


�t� � �v���t� · v���0�� , �3�

namely,

R��� = 2�
0

�


�t�dt . �4�

Notice, that

R��� → 0 when � → � . �5�

Thus we start by considering 
�t�.

A. Specular wall collisions, no gas collisions

1. Specification of trajectories

We consider particles moving ballistically in a cylindrical
storage cell with a fixed velocity v. As shown in Refs.
�10,11� the frequency shift depends only on the motion in the
x ,y plane. Referring to Fig. 2, the trajectory sweeps out an
angle 2�:

� = arccos	 r

R

 �6�

with respect to the center in a time

�w =
2R sin �

v
, �7�

where �w is the time between wall collisions. For specular
reflections the angle �, characterizing the trajectory and the
velocity, are unchanged by reflection.

The average angular velocity for a single trajectory is then

���� =
2�

�w
. �8�

Let F�r�dr be the probability that the trajectory of a particle
has a distance of closest approach to the center in the interval
�r ,r+dr�. According to Fig. 2,

F�r�dr =
2�R2 − r2dr

�R2/2
⇒ F�r� =

4�R2 − r2

�R2 . �9�

We will use the distribution P���d� of the trajectories over
the angle �, where

P����d�� = F�r��dr� ⇒ P��� = F�r�
 dr

d�



=
4 sin2 �

�
, �

0

�/2

P���d� = 1, �10�

a result obtained in Ref. �10�.

2. The velocity autocorrelation function

We now calculate the velocity autocorrelation function for
the particles moving along the trajectories with given � �or
the pericenter r=R cos ��,


��,t� = �v���t� · v���0��, 
��,0� = v�
2 . �11�

Here the averaging goes only over the initial position of the
particles. Let the velocity autocorrelation function be de-
noted by

f�x,�,t� �
v���t� · v���0�

v2 �12�

for a particle on a trajectory characterized by �, starting at
the position x, measured from the end of a chord, at t=0.
Thus,


��,t� =
v2

2R sin �
�

0

2R sin �

f�x,�,t�dx . �13�
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v

χ

α

x

FIG. 2. Trajectory of a particle in a cylindrical cell.
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As the speed �v� �=v is not changed by the collisions the
velocity correlation function is proportional to cos 
�t�,
where 
�t� is the angle between v���t� and v���0�. The starting
position x determines the exact times at which the collisions
occur, the time between collisions being given by Eq. �7� in
all cases.

As a result, for the time l�w� t� �l+1��w �l=0,1 ,2 . . . �
the function f is given by

f�x,�,t� = �cos�2�l + 1��� , 0 � x � v�t − l�w� ,

cos�2l�� , v�t − l�w� � x � 2R sin � .
�
�14�

Then performing the averaging �13� the autocorrelation func-
tion takes the form


��,t� = v2	Al + Bl
t

�w

 , �15�

where

Al = �l + 1�cos�2l�� − l cos�2�l + 1��� , �16�

Bl = cos�2�l + 1��� − cos�2l�� . �17�

3. Spectrum of the velocity correlation function

The autocorrelation function can be written as a Fourier
integral, valid for both closed, periodic orbits and general
open ones


��,t� = �
−�

+�

���,��cos��t�d� , �18�

where ��� ,��=�*�� ,�� and ��� ,��=��� ,−��, so that

���,�� =
1

�
�

0

�


��,t�cos��t�dt . �19�

Straightforward calculation �see Appendix A� gives

���,�� =
2v2 sin2 �

�2�w
2

� �
m=−�

� ��	� +
2� − 2�m

�w

 + �	� −

2� + 2�m

�w

�

=
2v2 sin2 �

�2�w
2 �

m=−�

�

��„� − �m
+ ���… + �„� − �m

− ���…� ,

�20�

where

�m
± ��� =

2��m ± ��
�w

. �21�

Notice that these frequencies are the resonant frequencies
found previously in the behavior of the frequency shift as
function of the angle � for particles moving inside a cylin-
drical cell without any damping—see Fig. 7 and Eq. �78� in
Ref. �10�. �Below we rederive this equation in the frame of
our approach and show how it can be generalized to account
for damping.�

4. Solution for the frequency shift in the absence
of gas collisions

Now the frequency shift ����� �see Eq. �40� of Ref.
�11��:

− ����� = ab�
−�

� ���,��
��0

2 − �2�
d� = 2abv2 sin2 � �

m=−�

� �
−�

� ��	� +
2� − 2�m

�w

 + �	� −

2� + 2�m

�w

�

��w��2��0
2 − �2�

d� = 2abv2 sin2 � �
m=−�

�

�w
2

� . . . � � 1

�2� − 2�m�2

1

��w
2 �0

2 − �2� − 2�m�2�
+

1

�2� + 2�m�2��w
2 �0

2 − �2� + 2�m�2�� . �22�

The sum is over all m, so terms with ±m are included twice.
Using �w=2R sin � /v and writing �0�w=2�0R sin � /v
=2�0� sin ��2�0 with �0�=�0R /v being the dimensionless
frequency we then find

− ����� = R2ab sin4 � �
m=−�

�
1

�� + �m�2

1

��0
2 − �� + �m�2�

�23�

=
1

2�0
R2ab sin4 � �

m=−�

�

� ¯ 	 1

���0 − �� − �m�

+
1

���0 + �� + �m�
 1

�� + �m�2 , �24�

− ����� = R2ab sin2 � �
m=−�

�
1

�� + �m�2

1

	�0�
2 −

�� + �m�2

sin2 �

 .

�25�
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We now evaluate Eq. �24� using Eq. �B3� derived in Ap-
pendix B:

�
n=−�

+�
1

��n − ��2��n − 
�
=

1

�� − 
�sin2 �
−

cot 
 − cot �

�� − 
�2 .

Rewriting Eq. �24�:

− ����� =
1

2�0
R2ab sin4 ��

with

� = �
m=−�

� 	 1

���0 − �� − �m�
+

1

���0 + �� + �m�
 1

�� + �m�2

=
1

�0 sin2 �
+

cot��0 − �� + cot �

�0
2

+
1

�0 sin2 �
+

cot��0 + �� − cot �

�0
2

=
2

�0 sin2 �
+

cot��0 − �� + cot��0 + ��
�0

2

=
2

�0 sin2 �
	1 +

sin2 � sin 2�0

2�0 sin��0 − ��sin��0 + ��

we find

− ����� = 	 v
�0


2

ab	1 +
sin2 � sin 2�0

2�0 sin��0 − ��sin��0 + ��
 .

�26�

This formula was originally derived in Ref. �10� �Eq. �78��
by direct solution of the classical Bloch equations and the
result shows the equivalence of the two methods.

B. Influence of gas collisions

1. The collision-free velocity correlation function as a sum
of harmonic oscillators

Substituting Eq. �20� into Eq. �18�, we obtain for the ve-
locity autocorrelation function


��,t� =
2v2 sin2 �

�w
2 �

n=−�

� � cos �n
+���t

��n
+����2 +

cos �n
−���t

��n
−����2 �

�27�

=
2 sin2 �

�w
2 �

n=−�

� � 
n
+��,t�

��n
+����2 +


n
−��,t�

��n
−����2� , �28�

i.e., a sum of oscillating terms �
n
±�� , t�=v2 cos �n

±���t� with
different frequencies. Each term obeys an equation

d2
n
±��,t�
dt2 + ��n

±����2
n
±��,t� = 0. �29�

Notice that the fundamental frequency �0
+��� coincides

with Eq. �8�. The corresponding term obviously dominates in
the decomposition �28�.

2. Velocity correlation function in the limit of short
gas-collision times

We consider a particle that moves among scattering cen-
ters. If �c is the average time between collisions the velocity
autocorrelation function will have the form �14,15�


�t� � �v��t� · v��0�� = v2e−t/�c. �30�

In other words, 
�t� obeys the equation

d
�t�
dt

+
1

�c

�t� = 0. �31�

3. Combined influence of gas and specular wall collisions

The velocity autocorrelation function in the absence of
collisions is given by the sum of the motions of a group of
harmonic oscillators �28�. In the presence of gas collisions
the individual oscillators 
n

±�� , t� will obey the equation for a
damped harmonic oscillator which is the combination of Eqs.
�31� and �29�, i.e.,

d2
n�t�
dt2 +

1

�c

d
n�t�
dt

+ �n
2
�t� = 0, �32�

with the initial condition


n
±��,0� = v2. �33�

The boundary conditions �4� and �5� satisfied by 
�t� mean
that

�
0

�


n��,t�dt → 0, when � → � . �34�

Generally, the equation for a damped harmonic oscillator
�32� has the general solution


�t� = c1e−�1t + c2e−�2t, �35�

where

�1 =
1

2�c
+� 1

4�c
2 − �2, �2 =

1

2�c
−� 1

4�c
2 − �2.

�36�

Taking into account boundary conditions �33� and �34�, we
get


n�t� =
v2�1

�1 − �2
	e−�1t −

�2

�1
e−�2t
 . �37�

The correlation function �4� takes the form �Eq. �36�, �11��

Rn��,�� = 2�
0

�


n��,t�dt =
2v2

�1 − �2
�1 − e−��1−�2���e−�2�.

The last expression can be rewritten in the form

Rn��,�� =
2�v

s��,�c�
e−t/2�c�es��,�c�t/2�c − e−s��,�c�t/2�c� �38�

with
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� = v�c, s��,�c� = �1 − 4�2�c
2. �39�

We then have for a single oscillator �see Eq. �1��

��n =
ab

2
lim
t→�

�
0

t

Rn���cos��0��d� = abSn,d��0� , �40�

Sn,d��0� = − v2 ��0
2 − �n

2�

���0
2 − �n

2�2 +
�0

2

�c
2 �

= − R2 ��0�
2 − �n�

2�
���0�

2 − �n�
2�2 + �0

2r0
2�

, �41�

where we again introduced �0�=�0R /v and r0=R /�c�v� with
�c�v� the velocity dependent mean free path. The frequency
shift will then be a sum of such terms for each of the oscil-
lators as in Eq. �25�.

Comparing to the collision-free case in Eq. �25� we see
that in the presence of damping the frequency shift will be
given by

− ����� = R2ab sin2 � �
m=−�

�
1

�� + �m�2

�� 	�0�
2 −

�� + �m�2

sin2 �



�	�0�
2 −

�� + �m�2

sin2 �

2

+ �0�
2r0

2�� , �42�

that is, we go from the collision-free case to the case of gas
collisions by replacing

f����� =
1

	�0�
2 −

�� + �m�2

sin2 �



in Eq. �25� by the large square brackets in Eq. �42� or by

replacing f����� by f�
����1+ i

r0

��
� and taking the real part.

Since we have evaluated the summation �25� we obtain the
frequency shift by making the equivalent transformation to
Eq. �26�

− ����� = R2ab sin2 � Re�FP	�,� = �0�1 +
i

�0�c

� ,

�43�

where

FP��,�� = 	1 +
sin2 � sin 2�

2� sin�� − ��sin�� + ��
 1

�2

�remember �0=�0�w /2�. For a fixed velocity we average
over �, according to Eq. �10�:

�� = �
0

�/2

d�P�������� . �44�

The results are shown in Fig. 3 in comparison with the re-
sults of the numerical simulations obtained in Ref. �11�.

We see the agreement is quite good, within the uncertain-
ties of the numerical simulations. The agreement in the re-
gion of the zero crossings is excellent.

II. FREQUENCY SHIFT AVERAGED OVER VELOCITY
DISTRIBUTION AND TEMPERATURE DEPENDENCE

In the neutron EDM experiment proposed by the EDM
collaboration �12� a dilute solution of 3He dissolved in su-
perfluid 4He will be used as a comagnetometer to monitor
magnetic field fluctuations. As such the 3He will see essen-
tially the same magnetic and electric fields as the neutrons
and will be subject to the linear E field systematic under
discussion.

Using the analytical form of the correlation function we
can average the E field proportional frequency shift over the
Maxwell velocity distribution for a gas in thermal equilib-
rium. We take the realistic case of the mean free path for
collisions proportional to velocity �collision time �c, inde-
pendent of velocity� corresponding to a cross section �1/v.
This applies to 3He in superfluid 4He. Since the velocity of
the 3He is much less than the phonon velocity �2.2
�104 cm/sec� the collision rate of phonons with the 3He
will be independent of the 3He velocity. Thus in a time �c a
3He with velocity v will move a distance �v�T�=v�c�T�. We
will obtain the collision time �c�T� from the measured values
of the diffusion constant for 3He in superfluid 4He �13�:

D�T� =
1.6

T7 cm2/s.

FIG. 3. �Color online� Normalized frequency shift for a constant
velocity as a function of normalized applied frequency ��=�0R /v,
for different values of the damping parameter r0=R /�. Solid
curves: results of the analytic function, Eqs. �43� and �44�. Dotted
lines: numerical simulations from Ref. �11�. Red: r0=0.2, green:
r0=0.5, cyan: r0=1, black: r0=2, blue: r0=4, magenta: r0=10.
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Then �c�T�=3D�T� / �v2�T, where �v2�T is the mean square
velocity in a volume of gas. r0 is defined as

r0 =
R

�v�T�
=

R

v�c�T�
=

R

y��T��c�T�
�

r̄0

y

with y=v /��T� and ��T� is the most probable velocity in a
volume. R the radius of the cylindrical vessel is taken as R
=25 cm in the numerical calculations. Both �v2�T and ��T�
are calculated using the effective mass of 3He in the super-
fluid m3=7.2 amu.

For a single velocity the frequency shift will be given by
Eqs. �42� and �43� averaged over �. Using Eq. �10�

− �� = �
0

�/2

d�P��������

= R2ab
4

�
�

0

�/2

d� sin4 ��
m

1

�� + �m�2

�� 	�0�
2 −

�� + �m�2

sin2 �



�	�0�
2 −

�� + �m�2

sin2 �

2

+ �0�
2r0

2�� . �45�

We now replace �0�=�0R /v=�0R /y��T�=�0
* /y, where �0

*

=�0R /��T�. Then

− ���y� = R2ab
4

�
�

0

�/2

d� sin4 ��
m

1

�� + �m�2

�� 	�0
*2 −

�� + �m�2

sin2 �
y2
y2

	�0
*2 −

�� + �m�2

sin2 �
y2
2

+ �0
*2r̄0

2� ,

where r̄0=r0y=R / �̄c. Averaging over the two-dimensional
velocity distribution �v��� we obtain for the normalized fre-
quency shift

���0
*,T� =

2

abR2 � ye−y2
���y�dy . �46�

The results are plotted in Fig. 4 which shows the frequency
shift as a function of reduced frequency �* for various tem-
peratures.

In Fig. 5 we show an expanded plot of the normalized
frequency shift in the region near the zero crossings as a
function of temperature for fixed �*�T�. It is evident that the
collisional damping can lead to large reductions in the effect
for 3He.

III. NONSPECULAR WALL COLLISIONS

In this section we give a brief description of how non-
specular wall collisions can be included in the calculation. A
detailed study of this problem will be left for a future work.
In the preceding sections we have shown that the velocity
autocorrelation function can be regarded as the result of the
sum of harmonic oscillators of different frequencies.

Considering one such oscillator during one traversal of
the cell the oscillator will undergo a phase change

� = ��w = 2� . �47�

A nonspecular reflection from the wall would result in a
change in the incident angle for the next collision � by a
random amount �� and hence a change in the accumulated
oscillator phase by

�� = 2�� , �48�

because �= �
2 −�.

Since the changes �� are random the phase � will make
a random walk so that after a time t we will have

�����2�t = 4�����2�
t

�w
�49�

in the case of small ���1. Averaging the amplitude of the
oscillator over the distribution of ��, assuming a Gaussian
distribution for ��, the amplitude will be reduced by

FIG. 4. �Color online� Normalized velocity-
averaged frequency shift vs reduced frequency
�*=�0R /��T� for various temperatures using the
temperature-dependent mean free path for 3He in
4He.
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�cos �� � e�−1/2�����2�t� � exp	−
t

2�NS

 , �50�

where

1

�NS
=

4�����2�
�w

. �51�

Thus nonspecular collisions can be taken into account by
the change of the damping term in Eq. �32�:

1

�c
→

1

�c
+

1

�NS
. �52�

Nonspecular wall collisions will thus have a different influ-
ence than the gas collisions because of the dependence of
�w�sin � on �.

IV. ARBITRARY MAGNETIC FIELD GEOMETRY

Our discussion has assumed a magnetic field configura-
tion with Gz=�Bz /�z const. Pendlebury et al. �10� have
shown, using a geometric phase argument, that regardless of
the field geometry the effect only depends on the volume
average of Gz in the high frequency �called by them the
adiabatic� limit. In a recent note, Harris and Pendlebury �16�
have shown that in the case of a field produced by a dipole
external to the measurement cell, this does not hold in the
low frequency �diffusion� limit. In this section we discuss
this problem using our correlation function approach in order
to give some physical insight into what is happening and
display details of the transition from one case to another.

A. Short time (high frequency, adiabatic) limit
of the correlation function

Reference �11� has shown that the systematic EDM is
given, in general, as the Fourier transform of a certain cor-
relation function of the time varying field seen by the neu-
trons as they move through the apparatus. Equation �23� of

that paper gives the frequency shift proportional to E as ��� �t�
lies in the �x ,y� plane�

��E�t� = −
1

2
�

0

t

d��cos �0���� �t� � �� �t − ���

+ sin �0���x�t��x�t − �� + �y�t − ���y�t��� .

�53�

It can be shown that the term multiplying sin �0� goes to
zero on averaging over a uniform velocity distribution

��vxvy�=0, vx
2=vy

2=v2 /2� and using �� �B� =0� . Then, for short
times �

���t� = −
1

2
�

0

t

d��cos �0���� �t�

�	�� �t� −
d��

dt
� +

1

2

d2��

d�2 �2 + ¯ 
��
= −

1

2
�

0

t

d��cos �0��− �� �t�

�	d��

dt
� −

1

2

d2��

d�2 �2 + ¯ 
�� . �54�

We are considering values of � so small that the velocity
does not change in that time interval ����coll�.

Then

�� �t� = 	�B� xy�t� + v�/c � E� � ,

d��

dt
= 	��BJ�x��t�� · v�� ,

d2��

d�2 = 	�
i,j

�2B�

�xi�xj
viv j ,

and

FIG. 5. �Color online� Normalized velocity-
averaged frequency shift ���* ,T� vs temperature
T for various reduced frequencies �*

=�0R /��T� using the temperature-dependent
mean free path for 3He in 4He.
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���t� = −
	

2c
�

0

t

d� cos �0��− �B� xy�t� + v� � E� �

�	 ���

�t
� −

1

2

�2��

��2 �2 + ¯ 
� . �55�

The term linear in E� and � is then

���t� = −
	2

2c
�

0

t

d� cos �0����BJ · v��� � �v� � E� ��

�
	E

2
�

0

t

d� cos �0����� �56�

defining

� =
	

c
��BJ · v�� · v� .

We have now calculated the correlation function for short
times. It starts at zero at �=0 and rises as ��. Eventually it
will reach a maximum. By concentrating on the high-
frequency ��0� behavior of �� the result will be independent
of the details of the maximum, depending only on �. Thus
we can replace �� in Eq. �56� by sin �� or any function with
the same initial slope. Thus we are led to take

���t� �
	E

2
lim

�0→�
�

0

t

d� cos �0� sin �� = lim
�0→�

	E

2

�

�0
2 − �2

=
	E

2

�

�0
2 =

E

2cB0
2 ��BJ · v�� · v� .

Introducing components, taking averages, and using �� ·B�

=0� this reduces to

��geo = − Ev2 1

4cB0
2� �Bz

�z
� �57�

in agreement with Eq. �2� of Ref. �11� if, in that equation,
R2�r

2 is replaced by �v2�=v2 /2. We have shown that in the
adiabatic �short time� limit the systematic �false� EDM effect
depends only on � �Bz

�z
� regardless of the geometry of the mag-

netic field, a result obtained previously by Pendlebury et al.
�10� and confirmed in Ref. �16�.

The next order term in Eq. �55� is easily seen to be of
order v3�2 and so will average to zero, the next term which
contributes will be of order v4�3 and so will be negligible in
the short time limit we are considering. The condition for
this to be valid is �v� /L�2�1, where L is the scale of varia-

tions in the applied magnetic field � �Bz

�z
1
Bz

�L−1�.

B. Longer time behavior of the correlation function

For long times the expansion �54� is clearly not valid and
we must expand in a series in the spatial coordinates. We
start from

�� = −
	2

2
� d� cos �0��B� ��t� � B� ��t − ���z,

where b=E /c, the brackets represent an ensemble average
and

Bx� = Bx�r��t�� − bvy ,

By� = By�r��t�� + bvx.

Then we write

�B� ��t� � B� ��t − ���z = b�Bx�r��t��vx�t − �� − vy�t�By�r��t − ���

− �Bx�r��t − ���vx�t� − vy�t − ��By�r��t����
�58�

and expand the field in a Taylor series

Bx�r��t��

= 	Bx�0,0,0,t� +
 �Bx

�x



0
x�t� +
 �Bx

�y



0
y�t� +
 �Bx

�z



0
z�t�


+ 	
 �2Bx

�x2 

0
x2�t� +
 �2Bx

�y2 

0
y2�t� +
 �2Bx

�z2 

0
z2�t�


+ 	
 �2Bx

�x�y



0
y�t�x�t� +
 �2Bx

�y�z



0
z�t�y�t� +
 �2Bx

�z�x



0
x�t�z�t�


+ 	
 �3Bx

�x3 

0
x3�t� +
 �3Bx

�y3 

0
y3�t� + ¯


�similarly for By�. Concentrating on the first and last terms in
Eq. �58� and noting that there are no correlations between
any functions f�xi ,vi� and g�xj ,v j� we find

�
xi=x,y

�	
 �Bxi

�xi



0
xi�t� +
 �2Bxi

�xi
2 


0

xi
2�t� +
 �3Bx

�xi
3 


0

xi
3�t� ¯ 


�vxi
�t − �� − ��t� ⇔ �t − ���� ,

where the second term is obtained from the first by inter-
changing �t� and �t−��.

By symmetry we see that �xi
2�t�vxi

�t−���=0 so that the
next contributing term will be proportional to


 �3Bx

�xi
3 


0

�xi
3�t�vxi

�t − ��� .

The first order term will be proportional to

�Bx

�x
+

�By

�y
= −

�Bz

�z
.

We see that the condition


 �3Bxi

�xi
3 


0

R2 �
 �Bxi

�xi



0
or

R2

L2 � 1

will ensure that the higher order terms can be neglected. In
the extreme case considered by Harris and Pendlebury �16�
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this condition is strongly violated so our method cannot be
applied since the higher order terms remain significant.

V. DISCUSSION

We have derived the analytic form of the �two-
dimensional� velocity autocorrelation function �VCF� for
particles moving in a specularly reflecting cylindrical vessel.
As the VCF determines the position-velocity correlation
function �PVCF� we have calculated the Fourier transform of
this latter function thus obtaining the frequency shift for a
single group of trajectories characterized by the angle �. Our
results duplicate the analytic result found in Ref. �10� by
direct solution of the classical Bloch equations. We then
show how the analytic formula for single trajectories can be
extended to take into account gas collisions and obtain �after
integrating over trajectories� the linear in E frequency shift
for a single velocity which has been studied previously, our
results agreeing with those obtained by numerical simulation
of the PVCF with collisions in Ref. �11�. We then perform an
average over the Maxwell velocity distribution using the
temperature-dependent collision times appropriate for 3He
diffusing in superfluid 4He and obtain the temperature depen-
dence of the frequency shift in this case. Figures 4 and 5,
which are based on an exact average over the Maxwell dis-
tribution of the 3He velocities, imply that one should be able
to control the effect to high degree.

Due to the heavy mass and slow velocity of the 3He,
Baym and Ebner �17� conclude that the phonon scattering on
3He is predominantly elastic. Single phonon absorption is
kinematically forbidden on a single 3He and can only take
place as a result of 3He-3He collisions which will be negli-
gible for the low 3He densities considered here. Thus our
approach, where we calculate the correlation function for an
ensemble of trajectories with constant 3He velocity and then
average the result over the velocity distribution should be an
excellent approximation. In addition we have discussed the
conditions under which the frequency shift can be shown to
depend only on the volume average of �Bz /�z.

APPENDIX A

For a general orbit the velocity autocorrelation function is
not periodic. However, using the form �15� for the correla-
tion function, we can calculate its Fourier transform straigh-
forwardly:

���,�� =
v2

�
�

l=0,1,2,. . .,
	Al�

l�w

�l+1��w

cos��t�dt

+ Bl�
l�w

�l+1��w t

�w
cos��t�dt
 . �A1�

Now ��=��w�

�
l�w

�l+1��w

cos��t�dt =
sin��l + 1��� − sin�l��

�
, �A2�

�
l�w

�l+1��w t

�w
cos��t�dt =

�l + 1�sin��l + 1��� − l sin�l��
�

+
cos��l + 1��� − cos�l��

��
. �A3�

We separate out the terms in �A1�, according to whether they
come from sines or cosines in �A2� or �A3�.

Taking the sine terms first we have

��l + 1�cos�2l�� − l cos�2�l + 1�����sin��l + 1��� − sin�l���

− �cos�2�l + 1��� − cos 2l��

���l + 1��sin„�l + 1��… − l sin�l����

= sin��l + 1����cos 2�l + 1��� − sin�l��cos�2l�� , �A4�

the sine terms in ��� ,�� are

�s��,��

=
v2

��
�
l=0

�

�sin��l + 1���cos�2�l + 1��� − sin�l��cos�2l���

=
v2

��
�
l=0

N

�f�l + 1� − f�l��

=
v2

��
� f�1� − f�0�+f�2� − f�1�+ ¯ + f�N� − f�N − 1�

+f�N + 1� − f�N��

=
v2

��
f�N + 1� =

v2

��
sin��N + 1���cos�2�N + 1�� . . �A5�

Turning to the cosine terms we have

�c��,�� =
v2

���
�
l=0

�

Bl�cos��l + 1��� − cos�l���

=
v2

���
	�

l=0

N

Bl cos��l + 1��� − �
l=0

N

Bl cos�l��

=

v2

���
	BN cos��N + 1��� − B0

+ �
l=1

N

�Bl−1 − Bl�cos�l��
 , �A6�

where

Bl−1 − Bl = 2 cos�2l�� − cos�2�l − 1��� − cos�2�l + 1���

= 2 cos�2l���1 − cos�2���

= 4 sin2 � cos�2l�� .

Then
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�c��,�� =
v2

���
	1 − cos 2� + BN cos��N + 1���

+ 4 sin2 ��
l=1

N

cos�l��cos�2l��
 , �A7�

h��,�� = �
l=1

N

cos�l��cos�2l��

=
1

2�
l=1

N

�cos�l�� + 2��� + cos�l�� − 2����

=
1

2� sin�	N +
1

2

�� + 2���

2 sin
�� + 2��

2

+

sin�	N +
1

2

�� − 2���

2 sin
�� − 2��

2

− 1� �A8�

except when �±2�=2�n in which case h�� ,��=N /2.
So �we will take the limit as N→��

lim
N→�

sin	N +
1

2

x

sin
1

2
x

= lim
N→�� sin Nx cos

1

2
x

sin
1

2
x

+ cos Nx�
= lim

N→�� sin Nx cos
1

2
x

sin
1

2
x � = 0

except when x=2�m,

lim
N→�� sin Nx cos

1

2
x

sin
1

2
x � = �

m=−�

�

2���x − 2�m� . �A9�

As a result Eq. �A1� becomes ��=��w�

���,�� =
v2

��2�w
sin2 � �

m=−�

�

�2�����w + 2� − 2�m�

+ 2�����w − 2� − 2�m�� . �A10�

Using ����w+2�−2�m�= 1
�w

���+ 2�−2�m
�w

� we have finally

���,�� =
2v2sin2�

�2�w
2 �

m=−�

� ��	� +
2� − 2�m

�w



+ �	� −
2� + 2�m

�w

�

=
2v2 sin2 �

�2�w
2 �

m=−�

�

��„� − �m
+ ���… + �„� − �m

− ���…� ,

�A11�

where �m
± ���=

2�±�+�m�

�w
.

APPENDIX B

Using the formula �18�

cot 
 =
1



+




�
	 �

n=−�

� 
� 1

n�
 − n��
= �

n=−�

�
1


 − n�
�B1�

��� means n=0, excluded� one gets

cot 
 − cot �

� − 

= �

n=−�

+�
1

��n − ����n − 
�
. �B2�

After differentiation with respect to � we obtain

�
n=−�

+�
1

��n − ��2��n − 
�
=

1

�� − 
�sin2 �
−

cot 
 − cot �

�� − 
�2 .

�B3�
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