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Time-domain balanced homodyne detection is performed on two well-separated temporal modes sharing a
single photon. The reconstructed density matrix of the two-mode system is used to prove and quantify its
entangled nature, while the Wigner function is employed for an innovative tomographic test of Bell’s inequality
based on the theoretical proposal by Banaszek and Wodkiewicz �Phys. Rev. Lett. 82, 2009 �1999��. Provided
some auxiliary assumptions are made, a clear violation of the Banaszek-Bell inequality is found.
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I. INTRODUCTION

The concept of entanglement, as first introduced by
Schrödinger �1� and discussed by Einstein, Podolsky, and
Rosen �2� in 1935, has historically been associated with sys-
tems of two or more quanta. Its counterintuitive conse-
quences found a mathematical formulation in the work of
Bell �3� of 1964: pairs of quanta entangled in discrete vari-
ables �i.e., Bohm-like entangled systems �4�� may give rise
to purely quantum nonlocal correlations. Unfortunately, no
loophole-free test of Bell’s inequality has been realized so far
�5�. Besides their relevance in fundamental physics, these
phenomena have attracted much attention due to their use-
fulness in quantum-information technology. Extravagant but
promising protocols such as quantum teleportation, quantum
cryptography, and quantum computation have been proposed
and experimentally verified �see, e.g., �6� and references
therein�.

In the early 1990s, increasing attention has been given to
a new perspective of quantum entanglement. The concept of
entanglement has indeed been extended to any system con-
taining a fixed number �N=1,2 , . . . � of photons, provided at
least one pair of spatiotemporal modes is involved. Then,
even for N=1, one may talk of “single-photon n-mode en-
tanglement,” provided n�2. The first steps in this direction
were taken by Tan, Walls, and Collet �7� �TWC�: when a
single photon impinges on a beam splitter whose outputs are
described by the spatial modes A and B, the emerging single
photon is described by the state ���=��1�A�0�B+��0�A�1�B,
where �0� is the vacuum, �1� is a single-photon Fock state,
and � and � are complex amplitudes such that ���2+ ���2=1.
In this perspective, a single photon, with its presence or ab-
sence from a given spatiotemporal mode, may represent a
tool for entangling two �or more� well-separated field modes.
In this case, an experimental test of nonlocality would con-
sist in performing simultaneous measurements on the sepa-
rate field modes “sharing” the single photon and check if
their mutual correlations violate a Bell’s inequality.

Intensive studies and debates have been dedicated to the
meaningfulness of extending both the concepts of entangle-

ment and nonlocality to TWC-type single-photon two-mode
systems �see, e.g., �8–15��. Quite recently, Babichev et al.
�11� and Zavatta et al. �14� have experimentally character-
ized a source of two-mode spatially and temporally delocal-
ized single photons, respectively, by employing time-domain
homodyne tomography �16� and reconstructing both density
matrix and Wigner function of the measured system. In this
respect, it is worth recalling that the density matrix or
Wigner function of a given system represents its most com-
plete characterization and enables predicting the result of any
possible measurement one may perform on the system �17�.
The results indicate the existence of strong correlations be-
tween the two spatial or temporal modes carrying a coher-
ently delocalized single photon. Whether or not such corre-
lations are nonlocal cannot be asserted; for instance, the
Bell’s inequality test performed in Ref. �11� is based upon
dichotomization of quadrature data and heavily relies upon
data rejection. Of particular interest, in this respect, is the
experiment by Hessmo et al. �12�, who have implemented
the theoretical proposals by Tan et al. �7� and by Hardy �9�,
demonstrating the nonclassical character of the correlations
characterizing two spatial modes sharing a single photon.

Similar to the two-photon case, also “entangled” single-
photon sources may find immediate application in quantum-
information technology: single-photon ebits have indeed
been proven to enable linear optics quantum teleportation
�18,19� and play a central role in linear-optics quantum com-
putation �20,21�. Furthermore, the time-bin entanglement of
the kind of Ref. �14� �see also �22,23�� has been proven
suitable for long-distance applications �19,24�, where the in-
sensitivity to both depolarization and polarization fluctua-
tions becomes a strong requirement.

In this paper, we wish to make one step further in the
direction of understanding and proving single-photon
N-mode entanglement. To this end, we employ the single-
photon source presented in Ref. �14� �see Sec. III�, perform
two-mode homodyne tomography �Sec. IV�, and employ the
reconstructed two-mode density matrix and Wigner function
to quantify the degree of entanglement �Sec. IV A� and
implement an innovative kind of tomographic Bell’s inequal-
ity test �Secs. II and IV B�. In particular, we evaluate the
degree of entanglement characterizing our single-photon sys-
tem by employing Vidal and Werner’s reformulation �25� of
Peres separability criterion �26�. Then, we employ the ex-*Electronic address: bellini@inoa.it
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perimentally reconstructed two-mode Wigner function to
perform a continuous variable Bell’s inequality test, based on
the theoretical proposal by Banaszek and Wodkiewicz �10�,
which we briefly introduce in the next section.

II. TOMOGRAPHIC TEST OF BELL’S INEQUALITY:
BASIC IDEA

Let us start by briefly reviewing the theoretical proposal
of Ref. �10�: the strict connection between the displaced par-
ity operator �a dichotomic observable� and the Wigner func-
tion �16�, suggests that the Wigner function of any two-mode
or two-particle system �whether positive or negative� may
play the role of a nonlocal correlation function. Bell’s in-
equality can thus be recast in the form

�B� =
�2

4
�W�0,0� + W��1,0� + W�0,�2� − W��1,�2�� � 2,

�1�

where W��1 ,�2� is the value of the two-mode Wigner func-
tion at the phase-space point ��1=x1+ iy1 ,�2=x2+ iy2� de-
fined by the quadratures xi and yi of the ith mode or particle
�i=1,2�. This inequality, which we shall name the Banaszek-
Bell inequality, applies both to two-particle and to two-mode
entangled systems, including spatially or temporally delocal-
ized single photons. Interestingly, compared to all Bell’s in-
equalities theoretically proposed for continuous variables
and based upon a posteriori dichotomization of the measured
field quadratures �27�, the Banaszek-Bell inequality may
achieve higher levels of violation. For instance, based on the
predictions of quantum mechanics, the time-bin encoded
single-photon state �14�

��� =
1
�2

��1�n�0�n+1 + �0�n�1�n+1� , �2�

where n denotes a well-defined temporal mode �or time bin�,
is expected to maximally violate the inequality of Eq. �1�,
giving �B��2.2 for �1=�2�0.3.

The experimental test of the Banaszek-Bell inequality, in
the form written in Eq. �1�, is feasible: our idea is to perform
two-mode homodyne detection on the two distinct time bins
�n and n+1� carrying the temporally delocalized single pho-
ton of Eq. �2�, and to use the experimental data to tomo-
graphically reconstruct the two-mode Wigner function enter-
ing the inequality of Eq. �1�. Our ultrafast time-domain
homodyne detection scheme has the potential to achieve this
goal �28,29�.

It is certainly true that, unlike the standard Bell’s inequal-
ity tests, our tomographic test imposes an indirect approach
to Bell’s inequality: rather than directly employing the re-
sults of correlation measurements, our scheme requires the
manipulation of the experimental quadrature data in order to
reconstruct the Wigner function entering Eq. �1�. Note, how-
ever, that the reconstruction procedure is rather transparent,
does not imply additional hypotheses on the state under
study, and can only introduce noise, without hiding or en-
hancing any information contained in the data. Then, finding

a violation of Eq. �1� through a tomographic approach indi-
cates that also direct measurements would lead to a violation.

III. EXPERIMENTAL SETUP

Let us now consider the experimental setup: a mode-
locked Ti:sapphire laser emitting 1.5 ps pulses at 786 nm at a
repetition rate of 82 MHz, is frequency doubled in a lithium
triborate �LBO� crystal; the resulting train of phase-locked
pulses impinges on a nonlinear beta-barium borate �BBO�
crystal, cut for degenerate noncollinear type-I spontaneous
parametric down conversion �30�. Signal-idler photon pairs
centered around 786 nm are generated in symmetric direc-
tions. Before entering an unbalanced fiber-based interferom-
eter and being detected by a single-photon counter, the idler
�trigger� photons undergo a narrow spectral and spatial se-
lection aiming at the conditional generation of a pure single-
photon state in the signal mode �see, e.g., �28,31��. Our setup
is characterized by a single-photon preparation efficiency
�p=0.85, which depends on both the dark counts of the trig-
ger detector and the purity of the prepared single photon
�32�. The conditionally prepared signal beam impinges on a
50-50 beam splitter �BS� where it is mixed with a strong
local oscillator �LO� made of an attenuated version of the
train of laser pulses. Two-mode, high-frequency, time-
domain, balanced homodyne detection is then performed on
two consecutive signal pulses, as depicted in Fig. 1�b�. The
detection efficiency ��d=0.74� depends both on the effi-
ciency of the two photodiodes ��PD=0.88� and optical
losses, and on the mode matching with the local oscillator
��MM =0.86�. The overall experimental efficiency of our
setup is thus expected to be of the order of �=�p�d=0.63.

From the preparation viewpoint, the key part of our setup
is the interferometer inserted in the idler channel: by setting
the interferometer delay T equal to the fixed interpulse sepa-
ration Tp characterizing the train of phase-locked pump
pulses, a click in the idler channel does not distinguish the
idler photon generated by the nth pump pulse which traveled
the long arm, from the idler photon generated by the �n

(a) (b)

FIG. 1. �Color online� �a� Scheme for the remote preparation of
a temporally delocalized single photon; �i� and �ii� indicate the two
indistinguishable alternatives leading to the coherent superposition
of Eq. �2� in the signal arm. �b� Scheme for the two-mode, time-
domain, homodyne tomography of such a time-delocalized single-
photon state.
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+1�th pump pulse which traveled the short arm �see Fig.
1�a��. For an infinite train of mode-locked pump pulses and
in the case of equal losses in the two arms of the interferom-
eter, a click in the trigger detector projects the signal single
photon onto the coherent superposition of Eq. �2�.

IV. EXPERIMENTAL RESULTS

In order to check the degree of entanglement and to per-
form the tomographic test of Bell’s inequality on such con-
ditionally and remotely prepared temporally delocalized
single photons, we have performed two-mode homodyne de-
tection on the pair of consecutive signal time bins sharing the
single photon; this is pictorially drawn in Fig. 1�b�. By mak-
ing use of what we have recently named “remote homodyne
tomography” �14� to remotely vary the relative phase be-
tween the two-mode state and the LO pulses, we have per-
formed about 106 quadrature measurements on the two con-
secutive signal temporal modes carrying the delocalized
single photon. This has been made possible by the ultrafast
operation of the homodyne detector recently developed in
our laboratory �28,29�.

The measured field quadratures have been employed to
reconstruct the density matrix of the measured system by
means of quantum tomography. In particular, we employ the
pattern function �PF� method proposed by D’Ariano et al.
�33� to directly retrieve the elements of the two-mode density
matrix in the number-state base from the measured quadra-
ture data: 	klmn= 	k , l�	̂�m ,n� is obtained from the statistical
average of the corresponding pattern functions fkm�x ,
� over
all homodyne data, which is

	klmn = 	fkm�x1,
1�f ln�x2,
2��x1,
1,x2,
2
�3�

where x1,2 are the quadratures measured at phases 
1,2 on the
two consecutive time bins. The pattern functions have the
form fkm�x ,
�=Fkm�x�e−i�m−k�
, with Fkm�x�=���k�x��m�x�� /
�x �m�k�, where �k�x� and �m�x� are, respectively, the regu-
lar and irregular wave functions of the harmonic oscillator
�16,34�. In the experiment, 
2−
1 is remotely varied by
means of the interferometer while 
2+
1 is left random since
our system is independent of the global phase.

When reconstructing the quantum state, we allow each
single-mode Fock state to contain from zero to two photons;
each matrix index is thus varied from zero to two and a total
of 34=81 density matrix elements are reconstructed for the
two-mode system, as shown in Fig. 2�a�. No assumptions are
made on the system to be reconstructed; we just impose a
truncation to the reconstruction space since no multiphoton
contributions are expected.

The density matrix of the measured system has also been
reconstructed by means of the maximum-likelihood �ML�
method �35�: the density matrix 	̂ that most likely represents
the homodyne data is retrieved by maximizing a functional
L�	̂� involving the positive operator-valued measure associ-
ated with two-mode homodyne measurements. The only con-
straint we impose is that the density matrix 	̂ is a positive-
definite Hermitian matrix with unitary trace. In order to limit
the number of free parameters in the minimization proce-

dure, we impose 	̂ to be independent of the global phase

2+
1. In principle, the ML method enables taking into ac-
count the experimental imperfections, thus reconstructing the
density matrix of the measured system corrected for the ex-
perimental efficiency �. At this stage, we do not impose any
such correction.

Both the PF and the ML methods �without correcting for
�� give very similar results; hence, in Fig. 2�a�, we just plot
the elements obtained from the PF method. The recon-
structed density matrix contains both the expected state of
Eq. �2� and a vacuum component �	0000� coming from the
nonunitary experimental efficiency. The measured system is
thus given by the mixture

	̂s = �1 − ���0�ss	0� + ����ss	�� �4�

with ���s as given in Eq. �2�; note that almost no multipho-
ton contribution exists in Fig. 2�a�, as expected. From the
vacuum component of the reconstructed density matrix we
evaluate the overall efficiency to be �=0.61, a result in good
agreement with our estimated single-photon preparation and
detection efficiencies.

A. Degree of entanglement

The reconstructed density matrix will now be employed to
quantify the amount of entanglement characterizing the mea-
sured two-mode system. To this end, we use the logarithmic
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FIG. 2. �Color online� �a� Experimentally reconstructed density
matrix elements �absolute values� relative to the mixed state of Eq.
�4�; �b� same elements after “vacuum cleaning” by an inverse Ber-
noulli transformation; �c� density matrix elements reconstructed
with the maximum-likelihood method incorporating the experimen-
tal inefficiency.
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negativity EN defined in �25�, on the line of the Peres sepa-
rability criterion �26�. In general, the Peres criterion gives a
necessary condition for separability �26�: if a bipartite sys-
tem is separable, the partial transpose of its density matrix
�i.e., the transpose 	̂TA of subsystem A alone� remains a
physical density matrix with positive eigenvalues. Then, if
we find that the partial transpose of our density matrix is not
positive definite, we know our single-photon system is cer-
tainly nonseparable. In order to quantify the degree of non-
separability �i.e., the degree of entanglement�, one can evalu-
ate the logarithmic negativity defined as �25�: EN�	̂�

 log2�	̂TA�1, where the symbol � · �1 indicates the trace norm:
��̂�1
Tr��̂†�̂, which, for Hermitian matrices, reduces to
Tr��̂�=1+2�N�, with N sum of the negative eigenvalues of �̂
�25�. In other words, the trace norm accounts for the negative
eigenvalues of 	̂TA, and is thus directly related to the amount
by which the partial transpose fails to be positive definite. In
fact, for a separable system, �	̂TA�1=1 and the corresponding
logarithmic negativity is zero; for a maximally entangled 2
2 bipartite system, �	̂TA�1=2 and the corresponding loga-
rithmic negativity is 1.

In our case, the reconstructed density matrix yields a loga-
rithmic negativity EN�	̂�=0.404±0.001, thus showing the
presence of some amount of entanglement even for non per-
fect detection efficiency. This result is perfectly in line with
the value expected from Eq. �4�, with �=0.61. Interestingly,
the bipartite system described by Eq. �4� is one of those
“striking” mixtures which remain inseparable �i.e., 	̂TA has a
negative eigenvalue� for any value of the efficiency � �26�. A
coherently delocalized single photon is thus extremely robust
against losses: its degree of entanglement may decrease but
never vanishes.

B. Test of Banaszek-Bell’s inequality

Based on the above result, our single-photon two-mode
system is characterized by purely quantum correlations. Our
next step is to check whether such quantum correlations are
nonlocal. To this end, we reconstruct the two-mode Wigner
function of the measured system �16�:

W�x1,y1;x2,y2� = �
k,l,m,n

	klmnWkm�x1,y1�Wln�x2,y2� �5�

where Wij�x ,y� is the Wigner function associated with the
projector �i�	j�, and 	klmn is the generic element of the experi-
mentally reconstructed density matrix. The reconstructed
Wigner function can now be used to evaluate the combina-
tion defined in Eq. �1�, thus checking for a violation of the
Banaszek-Bell inequality. We find that the parameter B falls
well within the limits imposed by local hidden-variable theo-
ries �see Fig. 3�, a result that may be associated with the low
overall experimental efficiency. In fact, in the case of limited

efficiency, the expected Wigner function for the state of Eq.
�4� takes the form

W���1,�2� =
4�1 + 2����1 + �2�2 − 1��

�2 e−2��1�2−2��2�2; �6�

hence, taking �1=�2=�J, the combination given in Eq. �1�
becomes

B� = 1 − 2� + e−2J�4��J − 1� + 2� − e−4J�8J� − 2� + 1� .

�7�

Its behavior is plotted in Fig. 3 as a function of the squared
amplitude J for different values of the global efficiency �
and it is seen to closely match the experimental results
�squared points� for �=61%. It is evident that the current
level of experimental efficiency rules out the possibility of a
loophole-free test of the Banaszek-Bell inequality, which
would be attainable only for global experimental efficiencies
larger than 96%.

To satisfy such strict requirements we need to introduce
some auxiliary assumptions. In this perspective, it is worth
noting that, different from photon counting, homodyne to-
mography allows one to explicitly see the effect of the ex-
perimental inefficiencies on the measured system: the overall
efficiency � enters into the reconstructed density matrix �Fig.
2�a�� in the form of a vacuum. In particular, we find that the
vacuum component remains exactly the same when no inter-
ferometer is inserted in the idler channel and a single signal
photon is perfectly localized within a given temporal mode.
This indicates that the nonunitary efficiency � represents our
inability of producing and detecting a pure single-photon
state, but, once such an imperfect single photon is coherently
delocalized between separate time bins, the coherence is not
further affected by losses. This is apparent from Fig. 2�a�,
where all the density matrix elements associated with the

FIG. 3. Plot of the parameter B��J� �Eq. �7�� for three different
values of the overall efficiency �. Continuous curves are theoretical
predictions, while the points come from the experimental data. The
horizontal line indicates the lower bound imposed by the Banaszek-
Bell inequality.
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entangled state of Eq. �2� have approximately equal weights.
In other words, both detection and preparation inefficiencies
give rise to state-independent losses as if a beam splitter with
transmissivity � were introduced in the signal path, mixing
vacuum with the original state �see Eq. �4� and Fig. 2�a��.
Correcting for our nonunitary efficiencies is thus similar to
making the standard fair-sampling assumption �5�.

Based on this reasoning, we have chosen to reconstruct
the density matrix of the measured system by correcting for
the nonunitary efficiency; this is expected to remove the
vacuum component from the reconstructed density matrix,
which is, to make the 	0000 element almost equal to zero and
rescale the other elements accordingly. We will implement
such vacuum removal by employing two different strategies.
The Banaszek-Bell inequality will thus be tested under the
fair-sampling assumption or, more precisely, on the resulting
“vacuum-cleaned” Wigner function.

In the first case, we account for losses by making an in-
verse Bernoulli transformation �IBT� of the reconstructed
density matrix; the result is shown in Fig. 2�b�. The basic
idea is to model the nonperfect experimental efficiency by a
beam splitter with transmissivity � followed by an ideal de-
tector: the measured system 	̂meas can be seen as the attenu-
ated version of the system incident on such fictitious beam
splitter. Since the output state of the beam splitter is related
to the input state by a Bernoulli transformation, inversion of
this transformation gives the state 	̂ of the “incident” system,
before its mixing with vacuum �i.e., before losses affect it�
�36�.

In the second case, we directly reconstruct the loss-free
density matrix by adopting the maximum-likelihood �ML�
method while taking into account the experimental efficiency
�=0.61. The results are shown in Fig. 2�c� �37�.

As shown in Fig. 3, the Wigner functions reconstructed
from both the vacuum-cleaned density matrices give rise to a
good agreement between the experimental data and the the-
oretical prediction of Eq. �7�, with unitary efficiency. The
temporally delocalized single photon thus clearly violates the
lower bound of the Banaszek-Bell inequality under our ver-
sion of the fair-sampling assumption.

Despite the observed violation of the Banaszek-Bell in-
equality, we cannot claim nonlocality for our single-photon
time-encoded two-mode system. In fact, even in the case of
unitary efficiency, our measuring scheme would still not sat-
isfy the locality hypothesis: quadrature measurements on the
two modes are actually done in sequence, so that a physical
signal can in principle be exchanged between the two co-
propagating temporal modes while homodyne measurements
are performed on them. The existence of this possibility
makes our Bell’s inequality test subject to the so-called lo-
cality loophole, which automatically rules out the possibility
of claiming nonlocality �38�. However, this loophole simply
derives from our choice of a temporal delocalization of the
single photon and can in principle be eliminated in future
experiments by introducing a fast switch which converts the
two copropagating temporal modes into two spatially sepa-
rated modes; simultaneous measurements could then be per-
formed on each of the two time bins by two distant homo-
dyne detectors.

V. DISCUSSION AND CONCLUSIONS

Our results demonstrate the feasibility of the tomographic
approach to Bell’s inequality and may open the way toward
new experiments for testing the foundations of quantum me-
chanics. Most important, our experiment sheds some light on
the hotly debated concepts of single-photon two-mode en-
tanglement and nonlocality �7–13,15�. On the one hand,
single-photon two-mode states of the kind described by Eq.
�2� are known to give rise to interference upon recombina-
tion of the two spatiotemporal modes through an interfero-
metric scheme; in this perspective, the TWC entanglement
between two spatial modes sharing a single photon can be
visualized in terms of wave-particle duality: the interference
upon recombination supports the wave picture of light, while
the lack of coincidence counts at the two exits of the en-
trance beam splitter brings into evidence its particle nature.
On the other hand, we have shown that our single-photon
two-mode system manifests entanglement, both in terms of
Peres-like separability criteria and, under additional hypoth-
eses, in the more restrictive terms of Banaszek’s version of
Bell’s inequality. The description of single-photon coherence
effects in terms of single-photon N-mode entanglement is
thus certainly possible and meaningful, and could contribute
to make the counterintuitive wave-particle duality more in-
tuitively accessible.

In summary, we have evaluated the degree of entangle-
ment of a single photon coherently delocalized between two
distinct temporal modes and have implemented an innovative
test of Bell’s inequality based on quantum homodyne tomog-
raphy. We have shown that, within some auxiliary assump-
tions, the correlations between two well-separated temporal
modes sharing a single photon violate the Banaszek-Bell in-
equality. In this respect, it is worth emphasizing that none of
our additional hypotheses is, in principle, indispensable. In
fact, different from Bell’s tests relying on postselection, an
improvement in the experimental efficiencies would allow us
to avoid the fair-sampling assumption; indeed, a setup with
an almost perfect single-photon preparation efficiency is cur-
rently possible. Furthermore, a slight modification of the ex-
perimental setup would easily eliminate the locality loop-
hole. Thanks to the high efficiencies achievable by
homodyne detectors, out tomographic approach may repre-
sent the first step in the direction of a loophole-free test of
Bell’s inequality. In this perspective, also the debated issue
concerning the possibility of extending both concepts of en-
tanglement and nonlocality to a coherently delocalized single
photon, finds here an interesting preliminary answer.
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