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We propose a method of visualizing superpositions of macroscopically distinct states in many-body pure
states. We introduce a visualization function, which is a coarse-grained quasi joint probability density for two
or more Hermitian additive operators. If a state contains superpositions of macroscopically distinct states, one
can visualize them by plotting the visualization function for appropriately taken operators. We also explain how
to efficiently find appropriate operators for a given state. As examples, we visualize four states containing
superpositions of macroscopically distinct states: the ground state of the XY model, that of the Heisenberg
antiferromagnet, a state in Shor’s factoring algorithm, and a state in Grover’s quantum search algorithm.
Although the visualization function can take negative values, it becomes nonnegative �hence, becomes a
coarse-grained joint probability density� if the characteristic width of the coarse-graining function used in the
visualization function is sufficiently large.
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I. INTRODUCTION

Visualization functions, such as the Wigner distribution
function �1� and the Husimi function �2�, are very useful. By
plotting them, one can visualize quantum states to under-
stand the structure of these states. Furthermore, because
these functions are, in some senses, probability densities, one
can interpret various experimental results by using these
functions �3�. Although there are many methods of visualiz-
ing quantum states with small degrees of freedom �3�, those
of visualizing quantum many-body states are very few �4–7�.
It is therefore important to develop methods of visualizing
quantum many-body states.

In quantum many-body systems, which include quantum
computers �8–11�, there are many states which contain su-
perpositions of macroscopically distinct states �12–26�. Ex-
istence of a superposition of macroscopically distinct states
in a many-body pure state can be identified by an index p
�1� p�2� �21–24,27�: If a given pure state has p=2, it con-
tains a superposition of macroscopically distinct states
�21,24�.

If every macroscopic superposition could be reduced to an
equal-weight superposition of two macroscopically distinct
states, such as 1

�2
�0¯0�+ 1

�2
�1¯1�, visualization of macro-

scopic superpositions would be a trivial task. However, there
are many other states in which many macroscopically dis-
tinct states are superposed with various weights �21–26�.
Therefore it is also important to develop good methods of
visualizing such complicated superpositions.

In this paper, we propose a method of visualizing super-
positions of macroscopically distinct states contained in
states having p=2. We first introduce a function
��A1 , . . . ,Am�, which is interpreted as a coarse-grained quasi
joint probability density for Hermitian additive operators

Â1 , . . . , Âm. We next explain how to find appropriate

Â1 , . . . , Âm efficiently for a given pure state. One can visual-
ize superpositions of macroscopically distinct states con-
tained in a given pure state having p=2 by plotting

��A1 , . . . ,Am� for appropriate Â1 , . . . , Âm. As examples, we
visualize four states having p=2: the ground state of the XY
model, that of the Heisenberg antiferromagnet, a state in
Shor’s factoring algorithm �8�, and a state in Grover’s quan-
tum search algorithm �9�. Although � can take negative val-
ues, like the Wigner distribution function, it becomes nonne-
gative, and hence becomes a coarse-grained joint probability
density, if the characteristic width of the coarse-graining
function used in � is sufficiently large.

This paper is organized as follows. After briefly reviewing
the index p in the next section, we introduce � in Sec. III A,
and explain how to find appropriate operators efficiently in
Sec. III B. We visualize four states in Sec. IV. Discussion is
given in Sec. V.

II. INDEX p

To establish notation, and for the convenience of the
reader, we briefly review the index p in this section. For
details, see Refs. �21–25,27�.

We first fix the energy range of interest. It determines the
degrees of freedom of an effective theory which describes
the system under consideration. We assume that the system
is, in that energy range, described as an N-site lattice.
Throughout this paper, we assume that N is large but finite.

For simplicity, we here consider only pure states, although
the definition of superposition of macroscopically distinct
states has been successfully generalized to mixed states �25�.
Furthermore, we assume that states are spatially homoge-
neous, or effectively homogeneous as in quantum chaotic
systems �27� or in quantum computers �22,23�. For such
states, we can consider a family of similar states ���N�	N. For
example, each member of the family ��E0

N�	N of the ground
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states of the XY model is the ground state �E0
N� of the XY

Hamiltonian of an N-site system.
The index p is defined for such families of similar states.

For simplicity, we represent a family of states ���N�	N by a
representative state ��� �=��N��. The index p �1� p�2� of
��� is then defined by

max
Â


����Â�2��� = O�Np� , �1�

where �Â� Â− 
� � Â ��� �28�, and the maximum is taken

over all Hermitian additive operators Â. Here, an additive

operator Â is a sum of local operators: Â=�l=1
N â�l�, where

â�l� is a local operator, which is independent of N, on site l.
We do not assume that â�l�� �l�� l� is the spatial translation
of â�l�.

If p=2, there is a Hermitian additive operator which
“fluctuates macroscopically” in the sense that the relative
fluctuation does not vanish in the limit of N→�:

�
����Â�2���
N

y 0 �N → � � . �2�

Because ��� is pure, the reason for the macroscopic fluctua-

tion is that eigenstates of Â corresponding to macroscopi-
cally distinct eigenvalues are superposed with sufficiently
large weights in ���. Here, two eigenvalues A and A� are
macroscopically distinct if and only if A−A�=O�N�. There-
fore a pure state having p=2 contains a superposition of
macroscopically distinct states �see Refs. �24,25� for detailed
discussion�. On the other hand, if p�2, all additive operators
“have macroscopically definite values” in the sense that rela-
tive fluctuations of all additive operators vanish as N→�. In
this case, there is no superposition of macroscopically dis-
tinct states in ���. In short, one can judge whether a pure
state contains a superposition of macroscopically distinct
states or not by calculating the index p.

There is an efficient method of calculating p. For simplic-
ity, we henceforth assume that each site of the lattice is a
spin-1 /2 system. For a given pure state ���, we define the
variance-covariance matrix �VCM� by

V�l,�l� � 
���	̂��l��	̂��l����� , �3�

where � ,�=x ,y ,z; l , l�=1,2 , . . . ,N; 	̂x�l�, 	̂y�l�, and 	̂z�l�
are Pauli operators on site l. The VCM is a 3N
3N Hermit-
ian nonnegative matrix. If e1 is the maximum eigenvalue of
the VCM, then e1=O�Np−1�, as shown in Appendix A. One
therefore has only to evaluate e1 to calculate p.

III. VISUALIZATION METHOD

By calculating the index p, one can judge whether a pure
state contains a superposition of macroscopically distinct
states or not. From p only, however, one cannot know de-
tailed structures of the superposition of macroscopically dis-
tinct states, including which macroscopically distinct states
are superposed and with what weights they are superposed.
In this section, we propose a method of visualizing these

structures of superpositions of macroscopically distinct
states.

A. Visualization function �

Let Â=�lâ�l� and B̂=�lb̂�l� be Hermitian additive opera-

tors. We assume that �Â , B̂��0, so that the joint probability

distribution for Â and B̂ does not exist in general.
For macroscopic systems, one is usually interested in

states in which typical values of additive operators are O�N�
�28�. Typical values of Â /N and B̂ /N are therefore O�N0�.
Their commutator is small in the sense that

� Â

N
,
B̂

N
� = O� 1

N
� , �4�

because �â�l� , b̂�l���=0 for l� l� �19,25,28�. Since N is large
but finite, the above commutator does not vanish. In real
experiments, however, resolutions of measurements are lim-
ited. Equation �4� therefore indicates that noncommutativity
of additive operators could not be detected for large N. This
suggests that we may be able to introduce a function which
can be well regarded as a coarse-grained joint probability

density for Â and B̂. Note that the finite resolution is essen-
tial, because noncommutativity, however small it is, can be
detected if the resolutions of experiments are high enough
�29�.

We formulate the above idea as follows. Consider the

spectral decompositions of Â and B̂:

Â = �
A�EÂ

APÂ�A�, B̂ = �
B�EB̂

BPB̂�B� , �5�

where EÂ and EB̂ are the spectra of Â and B̂, respectively, and
PÂ�A� and PB̂�B� are the projection operators onto the
eigenspaces of eigenvalues A and B, respectively. To take
account of finite resolutions of experiments, we smear the
projection operators to obtain

P̄Â�A� � �
A��EÂ

wÂ�A,A��PÂ�A�� , �6�

and similarly for P̄B̂�B�. Here, A is a real continuous variable
�A�R�, and wÂ�A ,A�� is a coarse-graining function. It cen-
ters at A=A� with a characteristic width WÂ, and satisfies

wÂ�A,A�� � 0 for all A,A�, �7�

�
−�

+�

wÂ�A,A��dA = 1 for all A�. �8�

The coarse-graining functions wÂ ,wB̂ should not have com-
plicated forms; they should be physically reasonable ones. To
be definite, we henceforth assume that WÂ=WB̂=W and
wÂ�X ,X��=wB̂�X ,X��=w�X−X��, where

w�X� =
1

�2�W
exp�−

X2

2W2� . �9�
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Clearly, P̄Â�A� and P̄B̂�B� are nonnegative Hermitian op-
erators satisfying

�
−�

+�

P̄Â�A�dA = �
−�

+�

P̄B̂�B�dB = 1̂. �10�

They give coarse-grained probability densities �Â and �B̂

for Â and B̂, respectively, for a given pure state ��� by

�Â�A� = 
��P̄Â�A���� �A � R� , �11�

�B̂�B� = 
��P̄B̂�B���� �B � R� . �12�

Now we define

��A,B� �
1

2

��P̄Â�A�P̄B̂�B� + P̄B̂�B�P̄Â�A���� �13�

for A ,B�R. One can easily verify the following:

��A,B� is real, �14�

� �
−�

+�

��A,B�dAdB = 1, �15�

�
−�

+�

��A,B�dB = �Â�A�, �
−�

+�

��A,B�dA = �B̂�B� .

�16�

In general, ��A ,B� can take negative values. If it is nonne-
gative, Eqs. �15� and �16� show that it can be interpreted as a

coarse-grained joint probability density �cgJPD� for Â and B̂.
In fact, as we will demonstrate in the following sections,
��A ,B� becomes nonnegative if W and N are large enough,
for many states of interest. Furthermore, even if W and N are
not large, negative-valued regions of ��A ,B� are small. In
this case, ��A ,B� can be considered as a coarse-grained

quasi joint probability density �cgQJPD� for Â and B̂.
The nonnegativity of ��A ,B� becomes obvious as W

→�, for which ��A ,B��w�A�w�B��0 for all A ,B. For
smaller W, the smallest value of W that makes ��A ,B� non-

negative depends on Â, B̂ and ���. Therefore, in general, the
nonnegativity should be checked a posteriori.

We can also introduce � for m ��3� Hermitian additive

operators Â1 , Â2 , . . . , Âm by

��A1, . . . ,Am� �
1

m!�� 
��P̄Â��1�
�A��1�� . . . P̄Â��m�

�A��m����� ,

�17�

where the sum is taken over all permutations � of the num-
bers 1 ,2 , . . . ,m.

If ��� has p=2, one can visualize the structure of the
macroscopic superpositions contained in ��� by plotting

��A1 , . . . ,Am� versus �A1 , . . . ,Am�, if Â1 , . . . , Âm are appro-
priately taken. We call such a plot a visualization of super-
positions of macroscopically distinct states in ���. An effi-

cient method of finding appropriate Â1 , . . . , Âm will be
explained in the next subsection.

B. Efficient method of finding appropriate operators

In principle, one can take any Hermitian additive opera-

tors Â1 , . . . , Âm, and plot ��A1 , . . . ,Am�. In this paper, how-
ever, we are interested in states having p=2, which contain
superpositions of macroscopically distinct states. Such super-
positions are characterized by macroscopic fluctuations of
certain additive operators �see Sec. II and Refs. �21,24��.
Therefore, as will be demonstrated in the next section, we
can visualize such superpositions by including macroscopi-

cally fluctuating operator�s� in Â1 , . . . , Âm of ��A1 , . . . ,Am�.
In this subsection, we present an efficient method of finding
a set S of macroscopically fluctuating Hermitian additive
operators.

For a given pure state ���, we diagonalize the VCM to
obtain its eigenvalues, e1�e2� ¯ �e3N, and eigenvectors.
From the eigenvectors, we construct a complete orthogonal
system: {�c̃�l

1 	 , �c̃�l
2 	 , . . . , �c̃�l

3N	} ��=x ,y ,z; l=1,2 , . . . ,N�.
Here, �c̃�l

i 	�C3N is an eigenvector of the VCM correspond-
ing to ei. We assume that each c̃�l

i is asymptotically indepen-
dent of N, and that we can normalize �c̃�l

i 	as ��l � c̃�l
i �2=N. By

taking an appropriate limit of �c̃�l
i 	 as described in Appendix

B, we obtain a vector �c�l
i 	, whose elements are independent

of N. From this vector, we construct the additive operator:

Âi � �
l=1

N

�
�=x,y,z

c�l
i 	̂��l� . �18�

As shown in Appendix C, Âi fluctuates macroscopically if
and only if ei=O�N�.

If ei=O�N� and Âi is Hermitian, we let Âi be an element

of S. If ei=O�N� and Âi is non-Hermitian, on the other hand,

we decompose Âi into the real and the imaginary parts: Âi

= Âi
re+ iÂi

im, where Âi
re��Âi+ Âi

†� /2 and Âi
im��Âi− Âi

†� /2i. It

is known that Âi
re and/or Âi

im fluctuate�s� macroscopically
�see Ref. �24� and Appendix A�. We let such macroscopically
fluctuating part�s� be an element�s� of S. In this way, we
obtain a set of macroscopically fluctuating Hermitian addi-

tive operators, e.g., as S= �Â1 , Â2
im, Â3 , Â4

re , Â4
im, Â5	. Several

examples of S will be given in the next section. Any macro-
scopically fluctuating additive operator includes at least one
element of S as a component in the sense explained in Ap-
pendix D.

The number of the elements of S is O�N0�, because ei

�0 and �i=1
3N ei=�l=1

N ��=x,y,zV�l,�l�3N. One can obtain S ef-
ficiently, because one has only to diagonalize the VCM,
which is a 3N
3N Hermitian matrix.

By including an element�s� of S into Â1 , . . . , Âm of
��A1 , . . . ,Am�, one can visualize superpositions of macro-
scopically distinct states in ��� by plotting ��A1 , . . . ,Am�.

IV. EXAMPLES

To demonstrate usefulness of the visualization method,
we visualize four states having p=2 in this section.
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A. XY model

First, we visualize the exact ground state of the XY model
on a two-dimensional square lattice of N sites. The Hamil-
tonian is

Ĥ = − �

l,l��

�	̂x�l�	̂x�l�� + 	̂y�l�	̂y�l��� , �19�

where 
l , l�� denotes the nearest neighbors. If N is finite,
“ground states” obtained by the mean-field approximation
are very different from the exact ground state �30–34�. These
mean-field ground states are degenerate symmetry-breaking
states with nonzero order parameters. They are separable
states, because the mean-field approximation neglects the
correlations between sites. On the other hand, the exact
ground state is unique, symmetric, and has p=2 �24,30–33�.
We visualize the exact ground state.

By numerical calculations, we find that e1=e2=O�N�, ei

=o�N� �i�3�, Â1=�l=1
N 	̂x�l��M̂x, and Â2=�l=1

N 	̂y�l��M̂y.
Hence,

S = �M̂x,M̂y	 . �20�

In Fig. 1, we plot ��Mx ,My� for N=14 without coarse
graining, i.e., W→0, for which the coarse-graining function
of Eq. �9� becomes the delta function �X�. In the figure,
c�0� �c�R� is represented by a vertical line with height c.
Positive values are represented by �red� vertical lines,
whereas negative values are represented by �blue� vertical
lines. Because ��Mx ,My� takes negative values at some

points, it is not a JPD for M̂x and M̂y.
However, negative values are expected to approach 0 as

W is increased. To see this, we plot in Fig. 2 the integral
IM̂x,M̂y

of negative values versus W, where IÂ,B̂ is defined by

IÂ,B̂ �� �
−�

+�

dAdB
��A,B� − ���A,B��

2
. �21�

It is seen that IM̂x,M̂y
indeed approaches 0 as W is increased.

��Mx ,My� therefore becomes a cgJPD if W is sufficiently
large.

For example, we plot ��Mx ,My� with W=3.2 in Fig. 3. In
this case, ��Mx ,My� is nonnegative, and therefore it is a
cgJPD. From this figure, we can clearly understand the struc-
ture of the superposition of macroscopically distinct states:
Many macroscopically distinct states which have macro-
scopically definite U�1� order parameters �Mx ,My� are so
superposed that the ground state has the U�1� symmetry.

In Fig. 4, we plot ��Mx ,My� with smaller W, W=2. Be-
cause ��Mx ,My� has negative-valued regions, it is not a
JPD. However, since �IM̂x,M̂y

� is small, ��Mx ,My� is well re-
garded as a quasi JPD. The figure shows the same
U�1�-symmetrical structure as that of Fig. 3.

One can utilize either Fig. 3 or Fig. 4 depending on the
purpose: When one wants a cgJPD, Fig. 3 should be used.
On the other hand, when one wants to see more detailed
structures, including quantum effects that make � negative,
then Fig. 4 �or Fig. 1� would be better. In this way, one can
adjust W to obtain a useful � according to the purpose.

B. Heisenberg antiferromagnet

Second, we visualize the exact ground state of the Heisen-
berg antiferromagnet on a two-dimensional square lattice of
N sites. The Hamiltonian is
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FIG. 1. �Color online� ��Mx ,My� with W→0 for the exact
ground state of the XY model on a two-dimensional square lattice
with N=14. c�0� �c�R� is represented by a vertical line with
height c. Positive values are represented by �red� vertical lines,
whereas negative values are represented by �blue� vertical lines.
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Ĥ = �

l,l��

�	̂x�l�	̂x�l�� + 	̂y�l�	̂y�l�� + 	̂z�l�	̂z�l��� . �22�

The “ground states” obtained by the mean-field approxima-
tion are degenerate, symmetry breaking, and separable. On
the other hand, the exact ground state is unique, symmetric,
and has p=2 if N is finite �24,31,33,35,36�. We visualize the
exact ground state.

By numerical calculations, we find that e1=e2=e3

=O�N�, ei=o�N� �i�4�, Â1=�l=1
N �−1�l	̂x�l��M̂x

st, Â2

=�l=1
N �−1�l	̂y�l��M̂y

st, and Â3=�l=1
N �−1�l	̂z�l��M̂z

st. Hence

S = �M̂x
st,M̂y

st,M̂z
st	 . �23�

Because ��Mx
st , My

st , Mz
st� is hard to plot, we plot � for M̂x

st

and M̂y
st, ��Mx

st , My
st�. Because of the rotational symmetry of

the model, � for M̂x
st , M̂z

st and that for M̂y
st , M̂z

st have the
same functional form.

In Fig. 5, we plot ��Mx
st , My

st� with W→0 for N=14.

Because ��Mx
st , My

st� is nonnegative, it is a JPD for M̂x
st and

M̂y
st. It is also seen that many macroscopically distinct states

are superposed in the ground state.
By increasing W, we obtain more understandable pictures.

For example, in Fig. 6, we plot ��Mx
st , My

st� with W=2. It is
seen that many macroscopically distinct states are so super-

posed that the ground state is symmetric, like the ground
state of the XY model.

C. Shor’s factoring algorithm

Third, we visualize a state in Shor’s factoring algorithm
�8,11�. Let I be an integer to be factored. We use two quan-
tum registers, the first and the second registers, which are
composed of N1 �2 log2I�N1�2 log2I+1� and N2 �log2I
�N2� log2I+1� qubits, respectively. We denote the total
number of qubits by N=N1+N2. If the order r is 6, for ex-
ample, the state

1
�2N1

�
a=0

2N1−1

�xamod I�2�a�1, �24�

which appears just after the modular exponentiation, has p
=2 �22,23�. Here, �¯ �1 and �¯ �2 represent the first and the
second registers, respectively, and x �x� I� is a randomly
taken integer coprime to I.

For the states of r=6, we numerically find that e1=e2

=O�N�, ei=o�N� �i�3�, Â1=�3
2�l=2

N1 	̂x�l��M̂x
�1�, and Â2

=�3
2�l=2

N1 �−1�l	̂y�l��M̂y
st�1� �see Appendix B�. Here, the qubit

states are �0� and �1� �	̂z �0�=−�0�, 	̂z �1�= �1��. Hence

S = �M̂x
�1�,M̂y

st�1�	 . �25�

Because M̂x
�1� and M̂y

st�1� fluctuate macroscopically, M̂x and

M̂y
st also fluctuate macroscopically �23�. We here use M̂x and

M̂y
st instead of M̂x

�1� and M̂y
st�1�.

In Fig. 7, we plot ��Mx , My
st� with W→0 for �I ,x�

= �21,5�. Because ��Mx ,My
st� takes negative values at some

points, it is not a JPD. To see the behavior of negative values,
we plot in Fig. 8 the integral IM̂x,M̂y

st versus W. We see again
that IM̂x,M̂y

st approaches 0 as W is increased. ��Mx ,My
st� there-

fore becomes a cgJPD if W is sufficiently large.
In Fig. 9, we plot ��Mx ,My

st� with W=1.4. Because

��Mx ,My
st� is nonnegative, it is a cgJPD for M̂x and M̂y

st.
There are four peaks, which represent a superposition of ap-
proximately four macroscopically distinct states.

In Fig. 10, we plot ��Mx ,My
st� with smaller W, W=1. In

this case, there is a negative-valued region. However, be-
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cause �IM̂x,M̂y
st� is small, ��Mx ,My

st� is interpreted as a
cgQJPD. ��Mx ,My

st� again represents four peaks. We have
also observed such a four-peak structure for some other val-
ues of �I ,x�’s.

D. Grover’s quantum search algorithm

Finally, we visualize a state in Grover’s quantum search
algorithm �9,10�. Let us consider the problem of finding a
solution to the equation f�x�=1 among 2N possibilities,
where f�x� is a function, f : �0,1 , . . . ,2N−1	→ �0,1	. These
2N possibilities are indexed by 2N computational basis states,
which are tensor products of �0� or �1� of N qubits. Here,
	̂z �0�=−�0� and 	̂z �1�= �1�. Let �Gk� be the state which ap-
pears after k Grover iterations. It was shown that if the num-
ber of the solutions is O�N0�, �Gk�’s whose k satisfies

 �
4k + 2
�2N

� � −  �26�

have p=2, irrespective of which numbers are the solutions
�23�. Here,  is an arbitrary small positive constant being
independent of N.

To be definite, we assume that the state �1�N� indexes the
solution. Then �Gk� is written as

�Gk� = cos�2k + 1

2
�� 1

�2N − 1
��0�N� + ¯ �

+ sin�2k + 1

2
���1�N� , �27�

where cos �
2 =��2N−1� /2N, and ��0�N�+ ¯ � is the equal-

weight superposition of all computational basis states except
for �1�N�. Among many k’s which satisfy Eq. �26�, we use
k=R /2 for even R, and k=R /2+0.5 for odd R, where R
�CI��−1 arccos�2−N� is the number of total Grover itera-
tions. Here, CI�x� denotes the integer closest to the real num-
ber x.

We numerically find that e1=O�N�, ei=o�N� �i�2�, and

Â1=�l=1
N � −1

�2
	̂x�l�+ 1

�2
	̂z�l���M̂x−z �see Appendix B�. Hence

S = �M̂x−z	 . �28�

Because S has only one element, the macroscopic superpo-
sition can be visualized by plotting the probability density

Gk �PM̂x−z

�Mx−z� �Gk�. However, because it is more interest-

ing to plot ��Mx−z ,A�, where Â is a Hermitian additive op-
erator, we plot ��Mx−z ,My� in this paper. The shape of

Gk �PM̂x−z

�Mx−z� �Gk� can be deduced from that of
��Mx−z ,My�.
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In Fig. 11, we plot ��Mx−z ,My� with W→0 for N=12.
Because � takes negative values at some points, it is not a
JPD. To see the behavior of the negative values, we plot in
Fig. 12 the integral IM̂x−z,M̂y

versus W. IM̂x−z,M̂y
approaches 0

as W is increased. ��Mx−z ,My� therefore becomes a cgJPD

for M̂x−z and M̂y if W is sufficiently large.
In Fig. 13, we plot ��Mx−z ,My� with W=2. Because there

are small negative-valued regions, it is a cgQJPD. It is seen
that the state is approximately a cat state, i.e., an equal-
weight superposition of two macroscopically distinct states.
Although this information can also be obtained by plotting

Gk �PM̂x−z

�Mx−z� �Gk�, we can see interesting structures of
�Gk�, including negative-valued regions, by plotting
��Mx−z ,My�.

V. DISCUSSION

A. Nonnegativity of �

In the previous section, we have observed that an appro-
priate value of W which makes � nonnegative largely de-
pends on the quantum state to be visualized. For example,
��Mx ,My� for the ground state of the XY model becomes
nonnegative with W=3.2, whereas ��Mx ,My

st� for the state

in Shor’s factoring algorithm becomes nonnegative with
smaller W, W=1.4, for the same value of N. Furthermore,
��Mx

st ,My
st� for the ground state of the Heisenberg antiferro-

magnet is nonnegative with any W. Therefore, in general,
one must find an appropriate value of W a posteriori.

However, it is worth mentioning that a sufficient magni-
tude of W which makes � nonnegative seems to be O�N�. To
see this, consider the following three examples.

Example 1: In Figs. 14 and 15, we plot IM̂x−z,M̂y
versus N

for �Gk� of Eq. �27� with W=O�N� and W=O��N�, respec-
tively. Here, k=R /2 for even R, and k=R /2+0.5 for odd R.
It is seen that IM̂x−z,M̂y

approaches 0 as N is increased if W
=O�N�, whereas it does not approach 0 if W=O��N�.

Example 2: In Fig. 16, we plot ��Mx ,My� for the sepa-
rable state �0�N� with W=1.5 and N=14. Here, 	̂z �0�=−�0�.
There are negative-valued regions. In Figs. 17 and 18, we
plot IM̂x,M̂y

versus N with W=O�N� and W=O��N�, respec-
tively. We can see again that IM̂x,M̂y

approaches 0 as N is
increased if W=O�N�, whereas it does not approach 0 if W
=O��N�.

Example 3: For the cat state 1
�2

�0�N�+ 1
�2

�1�N�, in which

M̂z fluctuates macroscopically, ��Mz ,Mx� and ��Mz ,My�
are nonnegative. On the other hand, ��Mx ,My� can take
negative values. In Fig. 19, we plot ��Mx ,My� with W
=1.5 and N=14. It is seen that there are negative-valued
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regions. In Figs. 20 and 21, we plot IM̂x,M̂y
with W=O�N� and

W=O��N�, respectively. IM̂x,M̂y
again approaches 0 as N is

increased if W=O�N�, whereas it does not approach 0 if W
=O��N�.

From these �and some other� examples, it is expected that
O�N� is a sufficient magnitude of W which makes � nonne-
gative for sufficiently large N. This expectation is reasonable,
because W=O�N� means that the relative error of a measure-
ment is independent of the system size N, which is a usual
situation for macroscopic systems.

Whether ��A1 , . . . ,Am� is nonnegative or not depends

also on which additive operators Â1 , . . . , Âm are used. For the

ground state of the XY model, for example, if we use M̂x and

M̂z instead of M̂x and M̂y, ��Mx ,Mz� is nonnegative with

any W, because the ground state is an eigenstate of M̂z cor-
responding to the eigenvalue Mz=0, hence ��Mx ,Mz�
=�M̂x

�Mx�w�Mz��0.
At the time of this writing, however, we do not know a

method of finding Hermitian additive operators and W which
make � nonnegative for a given state. To find such a method
will be a subject of future studies.

B. Negative-valued regions of �

If �Â , B̂�=0, ��A ,B� is nonnegative. It is therefore ex-
pected that negative-valued regions of � represent some

quantum natures, like those of the Wigner distribution func-
tion.

It seems that superposition of macroscopically distinct
states studied in this paper is not directly related to negative-
valued regions. For example, ��Mx

st ,My
st� is nonnegative

with any W for the ground state of the Heisenberg antiferro-
magnet, which has p=2.

In the previous subsection, on the other hand, we have
seen that ��Mx ,My� has negative-valued regions for the
separable state �0�N�. Because the separable state has no
quantum nature other than the quantum coherence within
each site, the negative-valued regions should represent this
quantum coherence. This expectation is reasonable, because
��Mx ,My� is nonnegative with any W for the random state

�̂r� 1
2N 1̂, which has neither entanglement nor quantum coher-

ence. Here, we provisionally define � for a mixed state �̂ by

��A ,B�� 1
2 Tr �̂�P̄Â�A�P̄B̂�B�+ P̄B̂�B�P̄Â�A��.

Detailed analysis of negative-valued regions is, however,
beyond the scope of the present paper. It will also be a sub-
ject of future studies.
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APPENDIX A: e1=O„Np−1
…

In this appendix, we show that e1=O�Np−1�. For a given
pure state ���, let �c̃�l

1 	�C3N be an eigenvector of the VCM
corresponding to the maximum eigenvalue e1. We normalize
it as ��l � c̃�l

1 �2=N. From the eigenvector, we construct the
operator:

Â1 � �
�l

c̃�l
1 	̂��l� . �A1�

If it is Hermitian and all c̃�l
1 ’s are independent of N, it

gives the maximum of Eq. �1�. Therefore,

maxÂ
� � ��Â�2 ���=e1N in Eq. �1�. Hence e1=O�Np−1�.
If Â1 is non-Hermitian and all c̃�l

1 ’s are independent of N,

we decompose it as: Â1= Â1
re+ iÂ1

im, where Â1
re��Â1+ Â1

†� /2

and Â1
im��Â1− Â1

†� /2i. Then 
� � ��Â1
re�2 ���=O�e1N� or


� � ��Â1
im�2 ���=O�e1N�, because

��Â1���� = ��Â1
re��� + i�Â1

im���� � ��Â1
re���� + ��Â1

im���� .

�A2�

Assume that 
� � ��Â1
re�2 ���=O�e1N�. Because Â1 is additive,

Â1
re is also additive. Then maxÂ
� � ��Â�2 ���=O�e1N� in Eq.

�1�. Hence e1=O�Np−1�.
If some c̃�l

1 ’s depend on N, we compose the additive op-
erator

Â1 � �
�l

c�l
1 	̂��l� , �A3�

where �c�l
1 	 is obtained by taking an appropriate limit of �c̃�l

1 	
as described in Appendix B. It can be shown that


� ��Â1
†�Â1 ���=O�e1N�. In fact, by defining d̃�l

1 � c̃�l
1 −c�l

1 ,


���Â1
†�Â1��� = �

�l�l�

c�l
1*c�l�

1 V�l,�l�

= �
�l�l�

�c̃�l
1* − d̃�l

1*��c̃�l�
1 − d̃�l�

1 �V�l,�l�

= e1N + e1o�N� + �
�l�l�

d̃�l
1*d̃�l�

1 V�l,�l�

= O�e1N� , �A4�

where we have used the facts that �c̃�l
1 	 is an eigenvector of

the VCM corresponding to e1, that ��l � c̃�l
1 �2=N, that d̃�l

1

=o�N0�, and that 0���l�l�d̃�l
1*d̃�l�

1 V�l,�l��e1N. If Â1 is Her-

mitian, maxÂ
� � ��Â�2 ���=O�e1N� in Eq. �1�. Hence e1

=O�Np−1�. If Â1 is not Hermitian, its real or imaginary part
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gives O�e1N� fluctuation. Therefore, maxÂ
� � ��Â�2 ���
=O�e1N� in Eq. �1�. Hence e1=O�Np−1�.

In conclusion, we have shown that e1=O�Np−1�.

APPENDIX B: COMPOSITION OF ˆc�l
i
‰ FROM ˆc̃�l

i
‰

By diagonalizing the VCM, one obtains �c̃�l
i 	�C3N corre-

sponding to ei. Each element c̃�l
i generally depends on N,

whereas c�l
i ’s composing the additive operator Âi through Eq.

�18� should be independent of N. We can deduce c�l
i from c̃�l

i

simply as follows.
Let us define a parameter �� l /N, and denote c̃�l

i by
c̃��

i �N�. We take the following limit:

lim
N�→�

c̃��
i �N�� � c�

i ��� , �B1�

where � is kept constant in this limit. Then, c�l
i is given by

c�l
i =c�

i �l /N�. Note that a small number �=O�N0�� of elements
among 3N elements of �c�l

i 	 can be modified, because it does
not alter the leading term �with respect to N� of


� ��Âi
†�Âi ���. Using this property, we can adjust Âi for our

convenience.
For the state of Eq. �24� with r=6, for example,

c̃�l
1 = ��N/�N1 − 1� �� = x;2 � l � N1� ,

0 �others� ,
�B2�

c̃�l
2 = ��− 1�l�N/�N1 − 1� �� = y ;2 � l � N1� ,

0 �others� .
�B3�

We therefore obtain

c�l
1 = ��3/2 �� = x;1 � l � N1� ,

0 �others� ,
�B4�

c�l
2 = ��− 1�l�3/2 �� = y ;1 � l � N1� ,

0 �others� .
�B5�

Or, we can modify the l=1 terms of these results as c�1
1

= c�1
2 =0 in accordance with the l=1 terms of Eqs. �B2� and

�B3�. We have employed the latter forms in Sec. IV C.
Moreover, for �Gk� with k=R /2 �even R� or k=R /2+0.5

�odd R�,

c̃�l
1 = �− a/�a2 + b2 + c2 �� = x;1 � l � N� ,

ib/�a2 + b2 + c2 �� = y ;1 � l � N� ,

c/�a2 + b2 + c2 �� = z;1 � l � N� .

�B6�

Here, a, b, and c are real numbers which depend on N. It is
numerically shown that limN→��a−c�=0 and
limN→�b /�a2+b2+c2=0. We therefore obtain

c�l
1 = �− 1/�2 �� = x;1 � l � N� ,

0 �� = y ;1 � l � N� ,

1/�2 �� = z;1 � l � N� ,

�B7�

which has been used in Sec. IV D.

APPENDIX C: Âi FLUCTUATES MACROSCOPICALLY IF
AND ONLY IF ei=O„N…

In this Appendix, we show that Âi of Eq. �18� fluctuates
macroscopically if and only if ei=O�N�. Using c�l

i of Appen-

dix B, we define d̃�l
i � c̃�l

i −c�l
i . Then


���Âi
†�Âi��� = �

�l�l�

c�l
i*c�l�

i V�l,�l�

= �
�l�l�

�c̃�l
i* − d̃�l

i*��c̃�l�
i − d̃�l�

i �V�l,�l�

= eiN + eio�N� + o�N2� , �C1�

where we have used the facts that �c̃�l
i 	 is an eigenvector of

the VCM corresponding to ei, that ��l � c̃�l
i �2=N, and that

d̃�l
i =o�N0�. Therefore, if ei=O�N� then 
� ��Âi

†�Âi ���
=O�N2�. On the other hand, if ei=o�N� then


� ��Âi
†�Âi ���=o�N2�.

APPENDIX D: ANY MACROSCOPICALLY FLUCTUATING
ADDITIVE OPERATOR INCLUDES AN ELEMENT

OF S

For an additive operator Â=��lc�l	̂��l�, the coefficient
vector �c�l	�C3N can be expressed as a linear combination
of �c̃�l

i 	’s: c�l=�i=1
3N

�ic̃�l
i , where �i’s are coefficients satisfying

�i ��i�2=O�N0�. Assume that �i=o�N0� if ei=O�N�
�i=1, . . . ,3N�. Then


���Â†�Â��� = N�
i

��i�2ei = o�N2� , �D1�

where we have used the facts that �c̃�l
i 	’s are orthogonal

eigenvectors of the VCM, and that ��l � c̃�l
i �2=N. Equation

�D1� shows that Â does not fluctuate macroscopically.
In other words, if Â fluctuates macroscopically, its coeffi-

cient vector �c�l	 includes at least one �c̃�l
i 	 whose ei

=O�N� as a component of the linear combination with the
weight �i=O�N0�. Therefore,

Â = �
�l

�¯ + �ic̃�l
i 	̂��l� + ¯ �

= �
�l

�¯ + �i�c�l
i + d̃�l

i �	̂��l� + ¯ �

= ¯ + �iÂi + ¯ , �D2�

which shows that Â includes Âi �hence also Âi
re and Âi

im� with
the weight �i=O�N0�. In this sense, at least one element of S
is “included” in Â, if Â fluctuates macroscopically.
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