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I. INTRODUCTION

Although a composite system can contain several parties,
its physical properties do not necessarily equal the sum of its
parts. Correlations among different parts in a composite sys-
tem are usually invoked to describe the difference between
the physical properties of a composite system and the sum of
its parts. Roughly speaking, the physical properties for a
composite system are reflected both in the sum of the physi-
cal properties of its parts and the correlations �among differ-
ent parts� of the composite system. What makes a composite
system more interesting in some sense can be largely attrib-
uted to the existence of correlations among the constituents
of the system.

The rapid development of quantum information science in
recent years has called for serious efforts to characterize cor-
relations in a composite quantum system. Depending on
whether quantum nonlocal resources are needed in the prepa-
ration of a quantum state, the correlations among different
parties in a composite system can be further classified into
classical and quantum correlation �1�. In the language of
quantum-information science, quantum correlation is often
called quantum entanglement to emphasize the inseparability
of the quantum state of a composite system into those of its
parties. Quantum entanglement is widely believed to be a
useful resource in implementing quantum computation and
information tasks �2�.

The two-party correlation, especially the two-party quan-
tum entanglement, has been extensively studied and by now
is in many sense well understood �3–6�. However, very little
is known about quantum entanglement properties for multi-
party systems despite consorted efforts over the last decade.
As we will show through our work, not only computational
but also conceptual difficulties arise when one attempts to
characterize genuine multiparty correlations �6�. For ex-
ample, the two-party correlation of a quantum state ��12� is
described by the mutual entropy of the composite state, i.e.,
S�1:2�=S���1��+S���2��−S���12��, where S��� is the von
Neaumann entropy of the quantum state �, which is defined
as S���=−Tr�� log2 ��. The three-party mutual entropy for a
three-state ��123�, defined accordingly as

S�1:2:3� = S���123�� − S���12�� − S���23�� − S���13�� + S���1��

+ S���2�� + S���3�� , �1�

does not faithfully characterize genuine three-party correla-
tion because it is known to take on negative values for some
specific three-party quantum states. Vedral suggested an al-
ternative three-party correlation measure using the relative
entropy defined as �6�

S���123����1���2���3�� = S���1�� + S���2�� + S���3�� − S���123�� .

�2�

Although semipositive definite for any three-party quantum
state and easily generalizable to arbitrary multiparty cases,
this relative entropy measure is not a proper correlation mea-
sure. For a product state ��123�=��1���23� exhibiting only two-
party correlation, the above relative entropy correlation mea-
sure S���123� ���1���2���3��=S�2:3� simply measures two-party
correlation, rather than the genuine three-party correlation. It
turns out S���123� ���1���2���3�� measures the total correlation,
the sum of both the two-party and three-party correlations in
the three-party state.

The aim of this paper is to provide a genuine multiparty
correlation measure for arbitrary quantum states. Our choice
for the genuine multiparty correlation measure to be shown
and justified below is intimately related to the cumulant �or
the Ursell expansion� of a multiparty density matrix �7–10�.
The research on the cumulant of a multiparty state has had a
long history. Cumulants were first introduced by Thiele in
1899, who called them half-invariants �11�. The name of the
cumulant is given by Fisher and Wishart in 1931 �12�. It was
first introduced by Ursell into classical physics in 1927 �13�,
and Kahn and Ulenbeck gave the quantum mechanical treat-
ment in 1938 �14�.

The cumulant of a multiparty density matrix was known
to be related to multiparty correlation, and was even called
the correlation operator �15�. However, it does not provide a
legitimate measure to compare the correlations in different
quantum states.

This paper is arranged as follows. In Sec. II, we outline
three preliminaries: First, we will introduce the trace distance
between two Hermitian operators of the same trace. Second,
the cumulant of a multiparty density matrix is introduced in
an instructive way. Third, the conditions for a legitimate
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multiparty correlation measure are discussed. In Sec. III, we
define our multiparty correlation measure as the trace norm
of the cumulant of the multiparty density matrix. We further
prove that it is a legitimate multiparty correlation measure by
explicitly demonstrating that it satisfies the five basic condi-
tions for a multiparty correlation measure. We then apply our
correlation measure to study three cases: simple two-party
states, three-party states, and more general multiparty stabi-
lizer states �16,17�. Finally, we summarize our results with a
discussion.

II. PRELIMINARIES

This section contains the three preliminaries for a conve-
nient introduction of our correlation measure. First, we gen-
eralize the trace distance between two quantum states to the
trace distance between two Hermitian operators with the
same trace. An important property of this distance is briefly
reviewed, which constitutes the key element in proving the
legitimacy of the proposed correlation measure. Second, we
briefly review the concept of the cumulant for a multiparty
density matrix in an instructive way. Third, we discuss the
basic requirements for a legitimate multiparty correlation
measure.

A. Trace distance

The trace distance between two Hermitian operators � and
� with the same trace is defined by

D��,�� � 1
2Tr�� − �� . �3�

This definition is a simple extension of the trace distance
between two quantum states �2�. Note that there is an alter-
native useful expression for the trace distance,

D��,�� = maxP Tr�P�� − ��� , �4�

where the maximum is taken over all projectors P.
It is easy to check that it satisfies the three basic require-

ments for a distance, i.e.,
�1� D�� ,��=0⇔�=�,
�2� D�� ,��=D�� ,��,
�3� D�� ,���D�� ,��+D�� ,��.
The trace distance has the following important property,

which is listed here as a theorem.
Theorem 1. (Trace-preserving quantum operations are

contractive) Suppose E is a trace-preserving quantum opera-
tion. Let � and � be Hermitian operators with the same trace.
Then

D„E���,E���… � D��,�� . �5�

This theorem is a simple generalization of the well-known
theorem where � and � are density operators �2�. It plays an
important role in proving our correlation measure is legiti-
mate. The proof of this theorem is omitted here because its
proof is almost the same to that of the original theorem,
which can be found in several reference books.

B. Cumulants

We introduce an instructive way to understand the cumu-
lant for an N-party density matrix ��12¯N�. Suppose we know

all the �N−1�-party reduced density matrices, we can con-
struct a pseudo- N-party density matrix �̃�12¯N� such that all
of its reduced density matrices are the same as those reduced
from the density matrix ��12¯N�. Then the cumulant of
��12¯N� is defined by

C���12¯N�� � ��12¯N� − �̃�12¯N�. �6�

The pseudo-N-party density matrix �̃�12¯N� can be directly
constructed by the following method. First, we find all the
partitions of TN��12¯N	. Any partition can be denoted by
�S1 ,S2 , . . . ,SM	 where M��2� is the number of partition,
∀i , j�TM, Si��, Si�Sj =�, and 
i=1

M �Si=TN. Second, the
pseudo- N-party density matrix is expressible in the form

�̃�12¯N� = �
�Si	

a�Si	

i

��Si�, �7�

where a�Si	
are constants dependent on the specific partition

�Si	. Third, all the constants can be determined by the con-
ditions Tri �̃�12¯N�=Tri ��12¯N�, or

Tri C���12¯N�� = 0, �8�

for any i�TN.
To determine the constants a�Si	

in Eq. �7�, we will use the
cumulants to expand the density matrix, which is the so-
called Ursell expansion of the density matrix �9�. Let us de-
note ��1�=C�1� and C���12¯N��=C�12¯N�. From Eqs. �6� and
�7�, the density matrix

�S = �
�Si	

b�Si	

i

C�Si� + C�S�, �9�

where the sum is taken over all the partitions �Si	 of S with
S�TN. Using the condition �8� and the mathematical induc-
tion method, we can prove that the constants b�Si	

=1. Using
Eq. �9�, we obtain the unique solution of the constants in Eq.
�7� satisfying the condition �8�: a�Si	

= �−1�M�M −1�! �7–9�.
The cumulant of an N-party density matrix has the follow-

ing important property.
Theorem 2. If an N-party density matrix is a product state,

i.e., ��12¯N�=��S1���S2�, where �S1 ,S2	 is a partition of TN,
then �̃�12¯N�=��12¯N�, i.e., the cumulant C���12¯N��=0.

Proof. N=2, C���12�� follows obviously from ��12�

=��1���2�. Assume the theorem is valid for all k�N−1, we
need to prove it is also valid for k=N. According to Eq. �9�,
we obtain

��12¯N� = �
�S1i	



i

C�S1i� �
�S2j	



j

C�S2j� + C�12¯N� = ��S1���S2�

+ C�12¯N�,

where �S1i	 and �S2i	 are partitions of S1 and S2, respectively.
The above equation implies C�12¯N�=0. This completes our
proof.

C. Conditions of a genuine multiparty correlation measure

From a general physical consideration, a genuine N-party
correlation measure MC���12¯N�� should satisfy the following
five conditions �5�.
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�1� Negative correlation has no physical interpretation.
MC���12¯N���0.

�2� Any product state implies no genuine N-party corre-
lation. If an N-party density matrix ��12¯N�=��S1���S2�, where
�S1 ,S2	 is a partition of TN, then MC���12¯N��=0.

�3� The correlation measure is invariant under local uni-
tary transformations. MC�UL��12¯N�UL

†�=MC���12¯N��, where
UL=
i=1

N U�i�.
�4� The correlation measure is invariant when the system

is augmented by locally noncorrelated auxiliary subsystems.
MC���12¯N� � �L

�12¯N��=MC���12¯N��, where �L
�12¯N�

=
i=1
N ��i�.
�5� The correlation measure is nonincreasing under local

operations. CM(EL���12¯N��)�CM���12¯N��, where EL

=
i=1
N E�i�.
Here we emphasized that condition �2� is stronger than

the following condition N-product version,
�2�� If an N-party density matrix ��12¯N�=
i=1

N ��i�, then
MC���12¯N��=0.

As we have mentioned in the introduction, this condition
can be used to define the total correlation, which includes
different types of correlations in the state.

We include the extra condition �4� as a general require-
ment for a legitimate correlation measure because correla-
tions in a system should not depend on the rest of the world
or ancillary systems ��L

�12¯N�� if they are independent and
uncorrelated ��L

�12¯N�=
i=1
N ��i��.

An optional requirement for a legitimate correlation mea-
sure is related to the so-called additivity, i.e., requiring
MC���12¯N� � �L

�12¯N��=MC���12¯N��+MC���12¯N�� for an
absolute correlation scale. This additivity requirement is
clearly stronger than our proposed condition �4�. We feel
such a strong condition is not needed as argued previously in
the basic requirements of two-party entanglement measure
�4�.

III. A GENUINE MULTIPARTY CORRELATION
MEASURE

In this section, we present our central result of a genuine
multiparty correlation measure. It is first proposed and fur-
ther proved to satisfy the aforementioned five basic require-
ments for a multiparty correlation measure, thus it constitutes
a legitimate multiparty correlation measure. We end this sec-
tion by demonstrating the applications of our proposed mea-
sures to several important classes of examples.

A. General formalism

Definition. An N-party correlation measure of the state
��12¯N� is proposed as

MC���12¯N�� � D���12¯N�, �̃�12¯N�� = 1
2Tr�C���12¯N��� ,

�10�

which constitutes a legitimate genuine multiparty correlation
measure because of the following theorem, which is the main
result of our paper.

Main theorem. MC���12¯N�� is a legitimate N-party corre-

lation measure, i.e., it satisfies the five basic conditions for
an N-party correlation measure.

Proof. Let us prove the five conditions, respectively,
�1� MC���12¯N��= 1

2Tr�C���12¯N����0.
�2� ��12¯N�=��S1���S2�⇒C���12¯N��=0⇒MC���12¯N��=0.

Note that we have used Theorem 2 in the first step of this
proof.

�3� Under the action of UL,

��Si� � TrTN−Si
�UL��12¯N�UL

†� = USi
��Si�USi

† ,

where USi
=
 j�Si

Uj. Using the expression �7� for the
pseudodensity matrix, we obtain

�̃�12¯N� � UL�̃�12¯N�UL
† .

Thus, the cumulant

C�UL��12¯N�UL
†� = ULC���12¯N��UL

† .

Therefore,

MC�UL��12¯N�UL
†� = 1

2Tr�ULC���12¯N��UL
†� = MC���12¯N�� .

�11�

�4� It is easy to prove that

C���12¯N�
� �L

�12¯N�� = C���12¯N�� � �L
�12¯N�.

Thus

MC���12¯N�
� �L

�12¯N�� = 1
2Tr�C���12¯N�� � �L

�12¯N��

= MC���12¯N�� . �12�

�5� Under the action of EL,

��Si� � TrTN−Si
�EL���12¯N��� = ESi

���Si�� ,

where ESi
=
 j�Si

E�j�. Using the expression �7� for the
pseudodensity matrix, we obtain

�̃�12¯N� � EL��̃�12¯N�� .

Therefore,

MC�EL���12¯N��� = D„EL���12¯N��,EL��̃�12¯N��…

� MC���12¯N�� . �13�

Note that Theorem 1 was used for the proof of the last
inequality.

B. Applications

1. Two-party correlation

The two-party correlation measure is defined as

MC���12�� = 1
2Tr���12� − ��1���2�� . �14�

The physical meaning of this measure is the distance be-
tween the state ��12� and its reduced product state ��1���2� �2�.

Let us apply the two-party correlation measure to the fol-
lowing two typical states. The first state is the maximally
classical correlated two-qubit state
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�c
�12� = 1

2 ��00��12� �12�00� + �11��12� �12�11�� , �15�

we find the two-party correlation according to our measure is
given by MC��c

�12��=1/2. The second state is the maximally
entangled Bell state

�B��12� =
1
�2

��00��12� + �11��12�� , �16�

for which our two-party correlation measure gives
MC��B��12� �12�B��=3/4. The unique difference between the
Bell state �16� and the maximally classical correlated two-
qubit state �15� is the very existence of quantum coherence
in �B��12�. Our result shows that quantum coherence will in-
crease the two-party correlation �18�.

2. Three-party correlation

When dealing with three-party systems, our correlation
measure becomes

MC���123�� = 1
2Tr�C���123��� . �17�

We again study several types of typical three-qubit states.
Analogously, the first state is the maximally classical corre-
lated three-qubit state

�c
�123� = 1

2 ��000��123� �123�000� + �111��123� �123�111�� ,

�18�

for which our three-party correlation measure vanishes, i.e.,
MC��c

�123��=0.
The second state we consider is the GHZ state �19�

�G��123� =
1
�2

��000��123� + �111��123�� , �19�

for which our three-party correlation measure gives
MC��G��123� �123�G��=1/2.

These two specific examples indicate that just like the
case of two parties, quantum coherence generally increases
the three-party correlation. More specifically, we note that
MC��c

�123��=0, i.e., there exists no genuine three-party corre-
lation in this state. Yet, even according to our definition of
separate states included in the condition �2�, this state is not
really a noncorrelated state. This example thus shows that
even for a three-qubit state, the first of the five conditions
becomes a sufficient but not necessary condition, i.e., if the
correlation measure MC���123�� is zero, we do not know for
sure if this state is noncorrelated or not. Contrary to this for
a mixed state, however, we find that for a three-qubit pure
state, the following theorem is valid.

Theorem 3. If ��123� is a three-qubit pure state, and the
correlation measure MC���123��=0, then the state is noncor-
related, i.e., it can be written as a direct product of two den-
sity matrixes of mutually independent parts.

The proof of this theorem is attached as an appendix.
Remarkably, this theorem implies the other typical three-

qubit pure state, the so-called W state �20� possesses genuine
three-qubit correlation.

3. Multiparty correlations in the N-qubit GHZ state

Let us study the correlations in the N-qubit GHZ state,
which is defined by

�GHZ�N�� =
1
�2

��0 ¯ 0��1¯N� + �1 ¯ 1��1¯N�� . �20�

An analogous classically correlated state based on what we
considered earlier is

�c
�N� = 1

2 ��0 ¯ 0��1¯N��1¯N�0 ¯ 0� + �1 ¯ 1��1¯N��1¯N�

�1 ¯ 1�� . �21�

Since all reduced density matrices of the above two states are
exactly the same, the difference of their respective cumulants
simply consists of the off-diagonal terms

C��GHZ�N��� − C��c
�N�� = 1

2 ��0 ¯ 0��1¯N��1¯N�1 ¯ 1�

+ �1 ¯ 1��1¯N��1¯N�0 ¯ 0�� .

�22�

Furthermore, the cumulant of the state �c
�N� is given by

C��c
�N�� = cN�� �even − � �odd� , �23�

where

�even = �
�ai	��0,1	

�iai�even

�a1 ¯ aN��1¯N��1¯N�a1 ¯ aN� ,

�odd = �
�ai	��0,1	

�iai�odd

�a1 ¯ aN��1¯N��1¯N�a1 ¯ aN� ,

and the coefficient

cN = �
M=1

N

�
i=0

M−1
�− 1�M+i−1�M − i�N�M − 1�!

2Mi!�M − i�!
= �

− 1�
�N−1

��N−1�� 1

1 + e���
�=0

. �24�

Specifically, for any odd number N, cN=0. Therefore for any
odd number N, the N-party correlation measure gives

CM��c
�N�� = 0, �25�

CM��GHZ�N��� = 1
2 . �26�

For an even number N, cN�0. For example, we find c2
=1/4, c4=−1/8, c6=1/4, c8=−17/16, c10=31/4, c12=
−691/8, c14=5461/4, c16=−929 569/32, . . .. The corre-
sponding N-party correlation measure becomes

CM��c
�N�� = 2N−1�cN� , �27�
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CM��GHZ�N��� = 2N−1�cN� +
�cN +

1

2
� + �cN −

1

2
� − 2�cN�

2
,

�28�

which for �cN��1/2, gives CM��GHZ�N���=CM��c
�N��. In Fig.

1, we show the N dependence of the above correlation mea-
sures for the two states. Two interesting features are worthy
of some attention. First, it is interesting to note that
CM��GHZ�N���=CM��c

�N�� for N�8 because �cN��1/2 for N
�8. The physical meaning of this interesting equality is yet
to be understood. Second, the exponentially increasing de-
pendence of the total correlations on N in both cases reflects
the exponentially increasing size of the Hilbert space.

4. Multiparty correlations in stabilizer states

The correlations �or entanglement� in stabilizer states
have been discussed in Refs. �22–24�. We now apply our
multiparty correlation measure �10� to characterize these cor-
relations.

To compute our measure of Eq. �10� for a given state, we
need first to obtain the corresponding reduced density matri-
ces. This task is dramatically reduced if the given state is a
stabilizer state. A stabilizer state is the unique simultaneous
eigenstate of the maximal Abelian subgroup of the N-qubit
Pauli group GN. The group GN consists of all 4�4N local
operators of the form M =	MM1 � ¯ � MN, where 	M
� �±1, ± i	 is an overall phase factor and Mi is either the 2
�2 identity matrix Ii or one of the Pauli matrices Xi, Yi, Zi.

A stabilizer S in the Pauli group GN is defined as an Abe-
lian subgroup of GN which does not contain −I. A stabilizer
consists of 2k Hermitian Pauli operators �i.e., they must have
real overall phase factors ±1�, where k ��N� is the number
of the generators of S. As the operators in a stabilizer com-
mute, they can be diagonalized simultaneously and, what is
more, if k=N then there exists a unique state �
� on N qubits

such that M�
�= �
� for every M �S. Such a state �
� is
called a stabilizer state and the group S=S�
� is called the
stabilizer of �
�. The expansion

�
�
� =
1

2N �
M�S�
�

M , �29�

which describes a stabilizer state as a sum of all elements in
its stabilizer, can be readily verified.

The support supp�M� of an element M =	MM1 � ¯

� Mn�S�
� is the set of all i� �1, . . . ,n	 such that Mi dif-
fers from the identity Ii. Let S be a subset of TN. Tracing out
all qubits of �
� outside S gives the reduced density matrix
��S��
� associate with S, which is equal to

��S��
� =
1

2�S� �
M�S,supp�M��S

M . �30�

This can easily be verified using the identity �29�. This al-
lows use to obtain the cumulant of the state by direct com-
putation, with the result taking the following form:

C��
�
�� =
1

2N �
M�S

�MM , �31�

where �M are real constants, and �M =0 when M =
i=1
N Ii. The

eigenvalues of the cumulant C��
�
�� can be obtained as
follows. First we take a generator SG of the stabilizer group
S, which includes n independent elements in S, denoted by
Gi �i=1,2 , . . . ,n�. We take values of all the Gi as ±1, which
determines the values v�Gi	

�M� of all the M. All the eigenval-
ues of the cumulant are

1

2N �
M�S

�Mv�Gi	
�M� .

Therefore, our multiparty correlation measure for a stabilizer
state becomes

MC��
�
�� =
1

2N+1 �
�Gi	

� �
M�S

�Mv�Gi	
�M�� . �32�

Without any complication, the above procedure we describe
is easily extended for different partitions of the stabilizer
states, or a reduced density matrix of the stabilizer states.

Let us demonstrate the above procedure with the three-
qubit stabilizer state �N=3�, or the equivalent three-qubit
GHZ state as considered earlier in Eq. �19�. When viewed as
a stabilizer state, its generators can be taken as follows:

G1 = X1Z2, G2 = Z1X2Z3, G3 = Z2X3.

The elements in the stabilizer group S can be written as

Ma1a2a3
= G1

a1G2
a2G3

a3 = X1
a1Z1

a2Z2
a1X2

a2Z2
a3Z3

a2X3
a3,

where a1 ,a2 ,a3� �0,1	. So the three-party density matrix is

��123� =
1

23 �
a1,a2,a3=0

1

G1
a1G2

a2G3
a3.

The two-party density matrices are

2 4 6 8 10 12 14 16
10

−2

10
0

10
2

10
4

10
6

10
8

10
10

N

C
M

|GHZ(N)

ρ
(N)
c

FIG. 1. �Color online� The N dependence of the total N-partition
correlation for an N-qubit GHZ state and the maximal classically
correlated N-qubit state.
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��12� =
1

22 �
a2=a3=0

G1
a1G2

a2G3
a3 =

1

22�
a1

G1
a1,

��23� =
1

22 �
a1=a2=0

G1
a1G2

a2G3
a3 =

1

22�
a3

G3
a3,

��13� =
1

22 �
a2=a1+a3=0

G1
a1G2

a2G3
a3 =

1

22 �
a1+a3=0

G1
a1G3

a3,

and the one-party density matrices are

��1� =
I1

2
, ��2� =

I2

2
, ��3� =

I3

2
.

The cumulant thus becomes

C���123�� =
1

23 �G1G2G3 + G1G2 + G2G3 + G2� ,

and our three-party correlation measure is given by

C���123�� =
1

24 �
G1,G2,G3=±1

�G1G2G3 + G1G2 + G2G3 + G2� =
1

2
,

the same result as obtained earlier in the line after Eq. �19�
based on a direct calculation.

IV. DISCUSSION AND CONCLUSION

We proposed a multiparty correlation measure as the trace
norm of the cumulant of the multiparty density matrix, as
defined in Eq. �10�. A natural question arises: Is this a unique
multiparty correlation measure based on the cumulant? For
example, by replacing the trace norm of Eq. �10� by a
squared norm, can we obtain an alternative measure

MC� ���12¯N�� = Tr�C���12¯N���2, �33�

which then can be directly written as a sum of a complete set
of squared correlation functions? We find that MC� ���12¯N��
satisfies the conditions �1�, �2�, and �3� of a multiparty cor-
relation measure. In particular, it is invariant under local uni-
tary transformations, thus it is appropriate to call
MC� ���12¯N�� a local unitary invariant multiparty correlation
function �LUI-MCF�. We do not know whether the LUI-
MCF satisfies the condition �5�, i.e., whether MC� is nonin-
creasing under general local operations. Unfortunately, We
find it does not satisfy the additional condition �4� proposed
by us, thus the LUI-MCF is not a legitimate correlation mea-
sure.

As mentioned in the introduction, a total correlation was
previously defined by Vedral to measure the total correlation
in a multiparty quantum state �6�. Our work above also sug-
gests an alternative total correlation measure as the distance
between the quantum state and its reduced completely non-
correlated state, i.e.,

MTC���12¯N�� = D���12¯N�,

i=1

N

��i�� . �34�

It is easy to check that it satisfies the conditions �1�, �2��, and
�3�–�5�, but does not satisfy the condition �2�, which implies

it is indeed a legitimate total correlation measure.
We expect our correlation measure will find applications

not only in quantum-information science but also in many-
body physics. This expectation is based on the observation
that the usual correlation functions cannot characterize gen-
eral correlations in a multiparty quantum state. On the one
hand, our correlation measure recovers to the usual correla-
tion function when there is only a single nonzero correlation
function. On the other hand, our correlation measure satisfies
the basic general requirements for a legitimate correlation
measure, which implies they will faithfully characterize the
multiparty correlation in a quantum state. In this paper, we
define a multiparty correlation measure capable of capturing
genuine multiparty correlation of a multiparty quantum state.

From a theoretical viewpoint, one open problem is how to
extract the quantum part of the correlation from our correla-
tion measure. This will then provide a measure of multiparty
entanglement. In addition, as an open question for further
investigation, it will be interesting to find out how our cor-
relation measure is related to quantum entanglement mea-
sures �23–25� of interest in quantum-information science. In
many-body physics, we are especially interested in finding
out what is really responsible for the quantum phase transi-
tion: Is it the quantum correlation, classical correlation, or
the total correlation �26–29�?

In summary, we have proposed a multiparty correlation
measure based on the cumulant of multiparty density matrix,
which is capable of characterizing genuine multiparty corre-
lation. We proved that our correlation measure is a legitimate
multiparty correlation because it satisfies the five basic re-
quirements for a multiparty correlation measure. The fourth
requirement is suggested by us based on physical and opera-
tional considerations of multiparty correlation. As an appli-
cation, we find an efficient algorithm to compute the multi-
party correlations for all stabilizer states.
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APPENDIX: PROOF OF THEOREM 3

Under local unitary transformations, any three-qubit state
can be most economically expressed as equivalent to �21�

�
� = a0ei��000� + b1�100� + b2�010� + b3�001� + a1�111� ,

where the parameters satisfy

a0,a1,b1,b2,b3,� � R ,

a0
2 + a1

2 + b1
2 + b2

2 + b3
2 = 1.

Let us denote the cumulant C���123�� as C, i.e.,

C = ��123� − ��1���23� − ��2���13� − ��3���12� + 2��1���2���3�.

We first consider the element
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100�C�010� = b1b2�1 − 2a0
2��a1

2 + b3
2� = 0.

According to the symmetry of the state, we obtain

b1b2�1 − 2a0
2��a1

2 + b3
2� = 0,

b2b3�1 − 2a0
2��a1

2 + b1
2� = 0,

b1b3�1 − 2a0
2��a1

2 + b2
2� = 0.

If

a1
2 + b3

2 = 0,

or

a2
2 + b3

2 = 0,

or

a1
2 + b2

2 = 0,

then it is easy to check that the state is a product state.
Therefore we only check two cases

1 − 2a0
2 = 0

or

b1b2 = 0,

b2b3 = 0,

b1b3 = 0.

We need to further compute the following matrix element:

111�C�111� = a1
2a0

2�1 − 2a1
2� + 2b1

2b2
2b3

2 + 2a1
2�b1

2b2
2 + b2

2b3
2

+ b1
2b3

2� = 0.

If

a0
2 = 1

2

then

a1
2a0

2�1 − 2a1
2� � 0 = 0,

which gives

a1
2 = 1

2

or

a1 = 0.

When a1
2=1/2 ,a1

2=1/2, we find

b1 = b2 = b3 = 0,

which is the GHZ state, whose cummulant takes the maxi-
mum value. For a1=0, the state is a product state. If

a0
2 � 1

2 ,

then

a1
2a0

2�1 − 2a1
2� = 0,

which leads to

a1a0 = 0,

or

a1
2 = 1

2 .

For the former case the state is a product state. Thus we only
need to prove the theorem for the specific state of the latter
case

�
� = a0ei��000� + b1�100� +
1
�2

�111� .

We only need to check the element

000�C�111� =
1
�2

a0ei� − a0ei�b1b1
1
�2

= 0,

or

a0�1 − b1
2� = 0,

which gives a0=0, i.e., the state is also a product state.
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