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Bloch oscillations in a frequency-chirped optical lattice are a powerful tool to transfer coherently many
photon momenta to atoms. We have used this method to measure accurately the ratio h /mRb. In this paper we
detail the experimental procedure and we present a complete analysis of the different systematic effects. They
yield a global relative uncertainty of 13 parts per 109 �ppb�. The measured value of h /mRb is
4.591 359 29 �6��10−9 m2 s−1. The deduced value of the fine-structure constant is �−1=137.035 998 84 �91�
with a relative uncertainty of 6.7 ppb.
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I. INTRODUCTION

The fine-structure constant � is defined as

� =
e2

4��0�c
�1�

where �0 is the permittivity of vacuum, c is the speed of
light, e is the electron charge, and �=h /2� is the reduced
Planck constant. The fine-structure constant sets the scale of
the electromagnetic interaction, which is one of the four fun-
damental interactions. It appears and so can be determined in
different domains of physics, which spread from atomic
physics to mesoscopic and macroscopic condensed matter
physics and elementary particle physics. The relevance of the
fine-structure constant is that it is dimensionless, and there-
fore it does not depend on any unit system. Hence, this al-
lows the comparison of all the various accurate measure-
ments of �, which constitutes an interesting test of the
consistency of physics. This comparison is regularly made
by the international Committee on Data for Science and
Technology �CODATA�, which determines the recommended
values of all the physical constants from an adjustment of all
the relevant data available �1�. One key weakness of the last
adjustment made in 2002 is the lack of redundancy in the
input data for �. The estimation of this constant by CO-
DATA2002 is essentially determined only by two data
points, from the measurement of h /mCs where mCs is the
atomic mass of cesium �relative uncertainty of 7.7 parts per
109 �ppb��2�, and mainly by the electron magnetic moment
anomaly ae �relative uncertainty of 3.8 ppb�.

This situation has been modified recently: after almost
two decades of work, a new experimental measurement of ae
�3� along with an impressive improvement of the QED cal-
culation �4� have led to a new determination of � with a
relative uncertainty of 0.70 ppb. This important result renews

the need of other determinations of � at the 1 ppb level for
several reasons. �i� For the next CODATA adjustment, � will
be mainly determined from only one measurement and this
will be a true weakness. �ii� To test more stringently the QED
calculations of ae, an independent determination of � is
needed. �iii� If we assume the accuracy of the QED calcula-
tion of ae, another determination of � will give a limit upon
the possible internal electron structure �5�.

The recent proposal of a redefinition of the kilogram by
fixing the value of the Planck constant h �6,7� has also re-
newed the interest in having an accurate determination of the
fine-structure constant. The realization of h with the watt
balance �7� relies on the validity of the expression RK
=h /e2=�0c / �2�� where RK is the von Klitzing constant
from the quantum Hall effect. At the present time there is a
minor difference �24±18 ppb� between the determination of
� deduced from RK �8� and the one deduced from the recent
measurement of ae �5�. For a redefinition of the kilogram, a
good alternative is to use the value of � issuing from the ae
to define RK, more accurately than it can be measured from
the quantum Hall effect. In this case, it seems prudent to
independently check the used value of � as accurately as
possible.

In this paper, we report a determination of the fine-
structure constant with a relative uncertainty of 6.7 ppb
which is a first step toward a 1 ppb measurement. This ex-
periment has the benefit of 20 years of research on atom-
light interaction. Nowadays, laser cooling techniques enable
a precise and easy control of the atomic motion �9�. Many
applications of those techniques have been developed in me-
trology, such as the realization of microwave and optical
clocks �10,11� or inertial sensors �12,13�. One of the earliest
applications to the measurement of fundamental constants
has been the determination of the fine-structure constant �
using atom interferometry by Chu and co-workers �14�. This
experimental determination of � is deduced from the mea-
surement of h /mCs �2�. Indeed, the fine-structure constant
can be related to the ratio h /mX �15� by

�2 =
2R�

c

Ar�X�
Ar�e�

h

mX
�2�

where R� is the Rydberg constant, Ar�e� is the relative
atomic mass of the electron, and Ar�X� is the relative mass of
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the particle X with mass mX. These factors are known with a
relative uncertainty of 7�10−12 for R� �16,17�, 4.4�10−10

for Ar�e� �18�, and less than 2.0�10−10 for Ar�Cs� and
Ar�Rb� �19�. Hence, the factor limiting the accuracy of � is
the ratio h /mX.

In the present paper we report a determination of the fine-
structure constant � deduced from the measurement of
h /mRb �20�. The principle of the experiment consists in de-
termining h /mRb through the accurate measurement of the
rubidium recoil velocity vr=�k /mRb when the atom absorbs
or emits a photon of wavevector k.

To determine precisely the recoil velocity, we transfer to
the atoms a very high number of photon momenta without
spontaneous emission and then we measure their velocity
variation. The induced acceleration arises from a succession
of stimulated two-photon transitions using two counterpropa-
gating laser beams. Each transition modifies the atomic ve-
locity by 2vr leaving the internal state unchanged. This ac-
celeration process can also be interpreted in terms of Bloch
oscillations in the fundamental energy band of the periodic
potential created by an optical standing wave. Bloch oscilla-
tions are a powerful tool to transfer to the atoms a very high
number of recoil velocities in a short time with a high effi-
ciency �21�.

To measure accurately the atomic velocity variation, we
prepare a narrow and well-determined initial velocity distri-
bution. For this purpose we use two counterpropagating laser
beams to induce a velocity-selective Raman transition. This
first step defines the initial velocity class. After the accelera-
tion process, the final atomic velocity is determined by mea-
suring the Doppler effect by a second counterpropagating
velocity-selective Raman transition. To determine the whole
velocity profile the second Raman transition is scanned in
frequency. The final uncertainty in the measurement of the
recoil velocity �vr

will therefore depend on two factors: �i�
the uncertainty �v of the Raman inertial sensor which mea-
sures the atomic velocity variation and �ii� the number 2N of
photon momenta transferred to the atoms: �vr

=�v /2N.
The discussion is organized as follows. First, the Raman

velocity sensor is described in Sec. II along with the noise
sources which limit its sensitivity. Next, in Sec. III, we study
the physical processus used to transfer to the atoms a high
number of recoil velocities, i.e., Bloch oscillations in a
frequency-chirped standing wave. In Sec. IV we present our
experimental setup and in Sec. V our determination of the
fine-structure constant. Finally, in Sec. VI we detail the sys-
tematic effects that limit the accuracy of h /mRb and �.

II. THE VELOCITY SENSOR

In this section we introduce the velocity sensor used to
select and measure a narrow atomic velocity class. We also
discuss the noise and error sources limiting the accuracy of
the velocity sensor.

A. Accurate selection and measurement
of a narrow velocity class

The principle of the velocity sensor is described in Fig. 1.
The main tool is the velocity-selective Raman transition be-

tween two hyperfine levels �a� , �b� of the ground state, with
energies Ea and Eb. This transition is realized by using two
counterpropagating laser beams with frequencies 	1 ,	2 and
wave vectors k1 ,k2. After the cooling process, the atoms are
all in a well-defined internal state �b�. We apply a first
velocity-selective Raman � pulse ��b�→ �a�� to define an ini-
tial velocity class centered on vi. At resonance,


sel = �l + �k1 − k2� · �vi +
�

2m
�k1 − k2�� �3�

where 
sel		1−	2−	HFS is the Raman detuning from the
atomic resonance �h	HFS=Eb−Ea� and �l is the differential
shift of the atomic levels. This level shift takes into account
a possible light shift and quadratic Zeeman level shifts. To
cancel the associated systematic effects we use an experi-
mental procedure described in the next section. The second
term corresponds to the Doppler effect and to the atomic
recoil. After this first step, we push away the remaining at-
oms in �b� by using a resonant beam tuned to the one-photon
transition. Then an acceleration changes the atomic velocity
from vi to v f �see Sec. III�. Finally, to measure the final
velocity, we apply a second � pulse ��a�→ �b�� with a detun-
ing 
meas. To reconstruct the final velocity distribution, we
repeat all the preceding steps by scanning the detuning 
meas.
The variation of velocity �v is given by

�v · �k1 − k2� = �
meas
max − 
sel� , �4�

where 
meas
max is the detuning at the maximum of the velocity

distribution.
The final populations in both states �a� and �b� are mea-

sured by fluorescence using the time-of-flight technique �see
Sec. IV�. We emphasize that, even if the time-of-flight tech-
nique was initially developed for measuring the temperature
of the cold atomic sample �22�, we use this method only to
extract information about the fraction of atoms in each hy-
perfine level.

FIG. 1. Principle of the velocity sensor. The first Raman � pulse
drives a narrow velocity class of atoms from initial internal state �b�
to state �a�. The remaining atoms in �b� are pushed away. To mea-
sure the final velocity of atoms in �a� we use a second Raman �
pulse. This pulse transfers from �a� to �b� a velocity-dependent frac-
tion of atoms.
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As mentioned before, in such experiments, Raman transi-
tions involve two hyperfine levels of the ground state. There-
fore the width of the resonant velocity class �v is determined
only by the photon coupling and the duration of the Raman
pulse �. In particular, for a � pulse

�v 

1

��k1 + k2�
. �5�

As an example, for rubidium, �k1+k2�vr
15 kHz, one
selects an atomic velocity class of width �v
vr /15 for �
=1 ms.

B. Error sources and noise of the velocity sensor

Equation �3� shows that we have to control carefully the
frequency difference between the two laser beams, 	1−	2,
and the differential atomic level shift �l in order to ensure a
good accuracy in the velocity measurement.

We are mainly concerned with two level shifts: light shifts
and quadratic Zeeman shifts. In principle, level shifts are
compensated between the selection and the measurement if
they are induced by a constant field. However, there is a
residual effect due to laser intensity fluctuations and spatial
inhomogeneities of the magnetic field.

Nevertheless, the corresponding error in the determination
of the recoil velocity changes sign when the direction of the
Raman beams is reversed. Thus, the velocity is obtained
from the mean value of two velocity measurements by ex-
changing the Raman beams. This idea is reflected by writing
the resonance condition for the two configurations:


 = �l�z,t� − �R�k1 + k2��vi + �R
�

2m
�k1 + k2�� �6�

with �R= +1 �−1� for the configuration defined I �II� when
the Raman recoil is upward �downward�. From the two mea-
surements of 
, we obtain


II − 
I

2
=
�l�zII,tII� − �l�zI,tI�

2
+ �k1 + k2�vi. �7�

Assuming that both measurements take place at the same
spatial point and that the magnetic field has a periodic de-
pendence on the experimental sequence we have �l�zII , tII�

�l�zI , tI�. Hence, the atomic velocity can be written as

vi =

II − 
I

2�k1 + k2�
, �8�

which is free from the systematic effect �l�z , t�.
The noise sources limiting the sensitivity of our velocity

sensor have been widely studied in a previous paper �23�. At
present, we are limited by the noise on the detection setup
and the vibration noise of the retroreflecting mirror. The last
can be reduced by an actively stabilized antivibration plat-
form.

From all these considerations we are able to define the
center of the atomic velocity distribution with a statistical
uncertainty better than vr /10 000 in 5 min of integration
time.

III. COHERENT ACCELERATION OF THE ATOMS:
BLOCH OSCILLATIONS

In this section we describe the physical process used to
accelerate the atoms, transferring to them a well-defined
number of recoil momenta by means of Bloch oscillations
�24�. We also discuss some systematic effects that may arise
from the modification of the velocity distribution of atoms in
the optical lattice when we switch off the optical potential,
and we justify the choice of a blue detuning for the Bloch
laser beams.

A. Atoms in a periodic optical potential

The atoms are coherently accelerated by using two coun-
terpropagating laser beams, inducing a succession of two-
photon Raman transitions. Each transition modifies the
atomic velocity by 2vr, leaving the internal state unchanged.
In order to compensate the Doppler shift the frequency dif-
ference of the two laser beams is linearly swept. A more
suitable approach based on the Bloch formalism allows a
more subtle description of the process: the interference of the
two laser beams leads to a periodic light shift of the atomic
energy levels. Thus, the atoms experience a periodic poten-
tial

U�x� = U0 cos2�kx� �9�

where U0= �
2

I
Is



� ,  being the natural width of the transition,
� the detuning from the one-photon transition, I the laser
intensity of each beam, and Is the saturation intensity.

The periodicity of the potential leads to the well-known
energy band structure, historically developed to describe the
dynamics of electrons in a perfect crystal �25�. The Bloch
theorem introduces two quantum numbers to solve this prob-
lem: n, the band index, and the wave vector q �quasimomen-
tum� which plays the same role in the motion of a particle in
a periodic potential as the free-particle wave vector p �true
momentum� in the absence of any external potential.

The eigenstate solution of the corresponding Bloch
Hamiltonian for a stationary periodic potential can be written
in momentum space as

��n,q� = �n,q� = �
l

�n�q + 2lk��q + 2lk� �10�

with l�Z. Here �q� designates the ket associated with a plane
wave of quasimomentum q and the amplitudes �n corre-
spond to the Wannier function �26� in momentum space.
From Eq. �10� we see that the only states coupled by the
potential U�x� are the plane waves with a momentum differ-
ing by a multiple of 2�k. The Wannier function �0 for the
fundamental energy band is shown in Fig. 2 for various po-
tential depths U0 /Er �Er=�2k2 /2m is the recoil energy�.

Now we consider a linear frequency chirp between the
two laser beams �	�t�. From the laboratory frame, the peri-
odic potential U�x� is now moving with a velocity v�t�
=�	�t� /2k. If �	�t� is adiabatically swept the atoms evolve
in the same energy band, i.e., the fundamental band. The
temporal evolution of the atomic wave function in momen-
tum space is then given by
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����t�� = �
l

�n�q�t� + 2lk��q0 + 2lk� , �11�

where q0 is the quasimomentum associated with the center of
the initial atomic velocity distribution and q�t�=q0

+mv�t� /�. Consequently, only the enveloping Wannier func-
tion �n is time dependent. The atomic momentum distribu-
tion is periodic in time because it is described as the product
of a Dirac comb with a time-translated envelope.

From the reference frame of the moving potential the
atomic momentum distribution is now written as the product
of a stationary enveloping Wannier function �centered in q
=0� by a time-translated Dirac comb. Therefore q�t� periodi-
cally scans the Brillouin zone giving rise to the well-known
Bloch oscillations.

B. Analysis of the final velocity distribution:
Effect of the optical potential

In this section we discuss the displacement of the center
of the final velocity distribution when the optical potential is
switched off nonadiabaticaly. This effect was briefly de-
scribed in a previous paper �27� where we presented a mea-
surement of the Bloch oscillation frequency of atoms in a
standing wave in the presence of a gravity field. In that ex-
periment the effect induces a modification of the amplitude
of the oscillations but does not give rise to a systematic
effect in the Bloch frequency. This is not the case for the
measurement presented in this paper.

We start from a selected narrow velocity class �sel�p� cen-
tered around p=0. Then we load the atoms in the fundamen-
tal energy band n=0. By linearly chirping the frequency dif-
ference of the laser beams the atoms are made to perform N
Bloch oscillations, acquiring 2�k per oscillation. At the end
of this process if the potential is switched off in a sudden
way, nonadiabatically, the final momentum distribution
�fin�p+2N�k� can be obtained by projecting the atomic wave
function ��t� in p space. We find that the final momentum
distribution, around the peak at 2N�k, is given by

�fin�p + 2N�k� = ��0�p + m
v��2�sel�p� �12�

where 
v is the difference between the average velocity of
the cloud and the velocity of the optical lattice, i.e., the ve-

locity of the cloud is 2Nvr+
v. The final distribution �fin is
given by the initial one �sel modulated by the enveloping
Wannier function �0�p�. This leads not only to a reduction of
the signal but also to a shift of the center of the distribution
which depends on 
v �see Fig. 3�. Let us estimate the corre-
sponding systematic effect �v in the measurement of the ve-
locity. Assuming that the initial momentum distribution is
�p��k, one can develop ��0�2 to first order. Then Eq. �12�
becomes

�fin�p + 2N�k� = ���m
v� + ��m
v� �
p

�k
��sel�p�

�13�

where ��v�	��0�v��2 and ��v�	vrd� /dv.
Consequently, if the initial velocity distribution �sel�p� is

centered around p=0, the final velocity distribution �fin�p� is
not centered on 2N�k but shifted by m�v because of the first
factor of Eq. �13� �see the inset of Fig. 3�. Close to the
maximum of �sel�p� we obtain the following order of mag-
nitude for this effect:

�v

vr
�

��
v�
��
v�

��p

�k
�2

. �14�

Figure 4 shows the numerical calculation of the ratio of
coefficients � /� as a function of the potential depth U0 for
different values of 
v. This ratio is maximal at the edge of
the first Brillouin zone.

As an example, for a 1.2 ms � pulse, with U0=10Er and

v=0.3vr, the systematic effect on the velocity measurement
�evaluated from a numerical calculation of the coefficients of
Eq. �14�� is about 7�10−5vr.

Instead, if the potential is adiabatically lowered, the Wan-
nier function, which depends strongly on U0 �see Fig. 2�,
tends to a square function over the first Brillouin zone and
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FIG. 2. �Color online� Wannier function in momentum space
��p� for different potential heights U0. When the potential depth is
close to zero, the Wannier function is constant all over the first
Brillouin zone and tends to 1.

∆v

?v

β  α(  v)

α δ( v)
∆v

Wannier function
Initial velocity distribution

Bloch state

FIG. 3. �Color online� In this figure the envelope �dotted curve�
corresponds to the Wannier function in momentum space �0�p�.
This function modulates the Bloch states �solid line�. �v is the
width of the velocity distribution and 
v is the difference between
the atomic velocity and the center of the first Brillouin zone. ��
v�
is the value of the Wannier function for a given 
v and ��
v� is the
derivative of the Wannier function normalized with respect to vr.
The inset is a zoom of the center of the Brillouin zone. It shows the
shift �v due to the Wannier function.
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thus ��v�→1 and ��v�→0 for �
v��vr. No systematic ef-
fect in the measurement of the final velocity profile is then
derived. Hence, in the experiment to determine h /mRb the
optical potential has been switched off adiabatically.

C. Choice of blue detuning of the potential to reduce
spontaneous emission

In this section we discuss the effect of a red or a blue
detuning � of the optical potential in the spontaneous emis-
sion rate. Indeed, spontaneous emission limits the number N
of Bloch oscillations the atoms are able to perform. Let us
derive an expression comparing the rate of spontaneous
emission for a red and a blue detuned potential. For our
periodic potential �9� the spontaneous emission rate is given
by

Psp�x� =
U0

�



�
cos2�kx� . �15�

In particular, for a Bloch state ��n,q�x�� the average sponta-
neous emission rate can be derived from
��n,q�x��Psp�x���n,q�x��. One can write

�cos2�kx�� =
1

2
c�U0,q� �16�

where c�U0 ,q� is a corrective factor which considers the
beams’ interference. Therefore,

c�U0,q� = 1 + ��n,q�x��cos�2kx���n,q�x�� . �17�

In the tight-binding limit �U0��Er, the atoms can be well
described by particles trapped in a single lattice well. Let us
now distinguish two cases: red and blue detuning of the po-
tential.

1. Red detuning of the potential, ��0

If ��0, the atoms are trapped in the spatial region x0
where the intensity of the field is the highest. Hence, we can

approximate �cos�2kx��
1+ �−2k2x2� assuming x0=0. To
calculate �−2k2x2� we recall the expression of the mean value
of a harmonic potential for the ground state �−U0k2x2�
= 1

2
�U0�Er. We find

c�U0,q�red = 2 − Er

�U0�

 2. �18�

We conclude that for a red detuning the atoms are led to the
trap center seeking the highest field, and the spontaneous
emission rate increases by a factor of 2 with respect to two
noninterfering beams.

2. Blue detuning of the potential, ��0

If ��0 the atoms are trapped at the spatial regions with
minimum intensity. Therefore, the proper assumption now is
�cos�2kx��
−1+ �+2k2x2�. An identical calculation as in the
previous section leads to

c�U0,q�blue = 1 + �cos�2kx�� = Er

�U0�
. �19�

As a consequence, the ratio between the spontaneous rate in
a blue-detuned lattice to that in a red-detuned one is

Pblue

Pred =
1

2
 Er

�U0�
. �20�

Notice that this result can also be expressed in terms of the
Lamb-Dicke parameter � �28�, equal, in our case, to
�Er /4U0�1/4.

Hence, for U0�Er a blue-detuned potential causes less
spontaneous emission than a red-detuned one. These results
have been confirmed by the following experiment �see Fig.
5�. After the selection step we accelerate the atoms in F=1
during a given time. We evaluate the losses by measuring the
fraction of atoms transferred to F=2 by spontaneous emis-
sion. As predicted, we see that a blue-detuned potential in-
duces fewer losses than a red-detuned one. However, the
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FIG. 4. �Color online� Numerical simulation of the ratio � /�
versus the potential depth for different values of 
v. This ratio
increases fast when getting away from the center of the Brillouin
zone.
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FIG. 5. Losses to F=2 induced by spontaneous emission versus
the detuning �. A blue detuning of the potential �circles� leads to
fewer atomic losses than a red detuning �squares�. As the intensities
of the two Bloch beams are slightly different, the ratio between the
losses �for red and blue detuning� does not verify the quantitative
behavior predicted by the model described in this section.
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ratio between the losses �for red and blue detuning� does not
verify the quantitative behavior predicted by Eq. �20�. This is
probably due to intensity imbalance between the two laser
beams. The ratio of losses for a blue and a red detuning that
we measure is about 4 compared to 10 expected by Eq. �20�.
This corresponds to an intensity imbalance of about 15%
between the two laser beams.

D. Effect of the transverse dipolar force on the width
of the atomic velocity distribution

Up to now, we have neglected the atomic transverse de-
gree of freedom. The finite size of the laser beams gives rise
to a transverse dipolar force that pushes the atoms to �away
from� the center of the beam in the case of red �blue� detun-
ing. In the next paragraph we calculate this force and the
associated acceleration focusing on the tight-binding regime
and with a blue detuning of the potential.

We want to evaluate the potential energy E�r� of an atom
subjected to the potential U�r ,x� as a function of its distance
r from the propagation axis. We use a classical treatment for
the transverse variable r and the Bloch formalism for the
propagation axis variable x. The optical potential can be
written as

U�r,x� = U0 cos2�kx�e�−2r2/w0
2� �21�

where w0 is the beam waist. We consider an atom in the
fundamental energy band. The average atomic energy is
therefore

E�r� = U0e−2r2/w0
2
�cos2�kx�� . �22�

The transverse dipolar force is then

F = Er
2r

w0
2

U0

Er
e�−2r2/w0

2�c�U0,q� �23�

where c�U0 ,q� is defined in Eq. �17�. In Sec. III D we
showed that in the tight-binding regime and for a blue detun-
ing of the potential c�U0�=Er / �U0�. Thus, the transverse
acceleration for r�w0 is given by

a� =
Er

m

2r

w0
2�U0�

Er
. �24�

As an example, for typical parameters w0=2 mm and r
=500 �m, a�
4,3�U0� /Er mm s−2. For 10 ms of Bloch
oscillations and U0
100Er, we find a variation of the atomic
transverse velocity of 0.43 mm/s�vr /10. This shift is neg-
ligible compared to the spread of the transversal atomic ve-
locity distribution. In conclusion, a blue detuning of the
Bloch laser beams does not induce a significant transverse
broadening of the atomic cloud.

IV. EXPERIMENTAL SETUP

In this section we detail the experimental protocol and we
present our results on the determination of the ratio h /mRb
and the fine-structure constant � along with their statistical
uncertainty.

The experimental sequence begins with the loading of a
standard magneto-optical trap �MOT� from a rubidium va-
por. After a few seconds the magnetic field is switched off
and the atoms equilibrate in an optical molasses, reaching a
temperature of 3 �K. Then the experiment develops in three
steps: �i� we select a narrow subrecoil velocity class using a
Raman velocity-selective � pulse; �ii� we accelerate coher-
ently the atoms by transferring to them 2N photon momenta
by means of Bloch oscillations; �iii� we probe the final ve-
locity distribution using another Raman � pulse. Then we
measure the proportion of atoms in the different hyperfine
states �see Fig. 6�. The Bloch and Raman beams are in ver-
tical configuration. The detailed procedure is the following.

A. Zeeman repumper

At the end of the optical molasses phase, 3�107 87Rb
atoms are in the F=2 state, equally distributed among all mF
sublevels. In the experiment we address only the atoms in the
mF=0 state. Hence, to pump the atoms to �F=2,mF=0�, we
shine during 50 �s a laser beam �Zeeman repumper� linearly
polarized, parallel to the quantification axis, and resonant
with the F=2→F�=2 transition. The Clebsch-Gordan coef-
ficient for �F=2,mF=0�→ �F�=2,mF� =0� is zero, so after
many cycles the atoms will be optically pumped to the �F
=2,mF=0� state. The repumper beam increases the atomic

Blow-away
beam

Bloch beam

Raman beam 1
and

Raman beam 2

Bloch beam

Detection beams

Signal from F=2
Signal from F=1

Raman beam 2

Cold atomic cloud

Repumping
beam

Partially reflecting
plate

λ /2 waveplate

g

Upper optical fiber

Lower optical fiber

FIG. 6. Scheme of the experimental setup. The cold atomic
cloud is produced in a MOT �the cooling laser beams are not
shown�. The Raman and the Bloch beams are in vertical geometry.
The Raman beams and the upward Bloch beam are injected into the
same optical fiber. The “blow-away” beam is tuned to the one-
photon transition and allows us to clear the atoms remaining in F
=2 after the selection step. The populations in the hyperfine levels
F=1 and 2 are detected by fluorescence at 15 cm below the MOT
using a time-of-flight technique.
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fraction in the �mF=0� state, but it transfers momentum to
the atoms, broadening the velocity distribution. Experimen-
tally, the �F=2,mF=0� density in momentum space increases
by a factor of 2.

B. Selection of a subrecoil velocity class

In order to select a narrow subrecoil velocity distribution
we use a square counter-propagating Raman pulse in the
lin� lin configuration, with a frequency detuning fixed at

sel. A bias vertical magnetic field of 150 mG parallel to the
propagation axis of the Raman beams is applied so that only
the mF=0 sublevel takes part in the Raman transition. The
Raman pulse transfers atoms from the 5S1/2�F=2,mF=0� to
the 5S1/2�F=1,mF=0� state. To reduce photon scattering and
light shifts the Raman lasers are blue detuned by 1 THz from
the D2 line. This detuning is chosen so that the Raman fre-
quencies are close to the two-photon 85Rb standard �29�. For
a power of 8 mW and a beam waist of 2 mm, the � condi-
tion is achieved using a �=3.4 ms pulse. The width of the
selected velocity class is vr /50.

In order to reduce the phase noise, the two Raman beams
follow the same optical path. They reach the lower part of
the cell by the same fiber and to achieve a counterpropagat-
ing configuration one of them is retroreflected in the upper
part of the cell. During the Raman pulse, the frequency of
one Raman beam is linearly swept in order to compensate
the Doppler shift induced by the fall of the atoms under the
gravity field.

We generate the Raman beams by phase-locking two ex-
tended cavity diode lasers �ECLs�. Their frequencies and
phase difference are then referenced to a stable frequency
source and can be controlled precisely. The beat note of the
two overlapped beams �fRaman
6.834 GHz� is detected by a
fast photodiode, amplified and mixed down with a local os-
cillator yttrium indium garnet �YIG� at a frequency fYIG

6.409 GHz to a more convenient intermediate frequency

425 MHz. This frequency is mixed with a frequency ramp
around 25 MHz generated by a modulated synthesizer �SRS
DS345�. This ramp compensates the Doppler effect of the
free-falling atoms and can be used for both the selection and
the measurement �see Fig. 7�. An adjustable band-pass filter
keeps only the beat note at 400 MHz which is again divided
by 4 and compared to the signal at 100 MHz from a refer-
enced quartz. The frequency of this quartz is referenced to
the Cs clock thanks to our optical fiber link with the Primary
French Time Frequency Laboratory �30�. Their beat note is
amplified once again and used as the input for three feedback
paths. The fastest path acts directly on the diode. The second
path uses the modulation input of the diode laser current
controller. The slowest path uses a piezoelectric transducer to
adjust the length of the ECL cavity.

The lasers are amplified in master-slave configurations
with the slave being a high-power diode laser. Amplitude
control of the laser light is achieved using 80 MHz acousto-
optic modulators �AOMs� whose radio frequencies are also
referenced to the same stable 100 MHz quartz oscillator.
The frequencies of the Raman and Bloch beams are stabi-
lized onto an ultrastable Zerodur® Fabry-Pérot cavity. We
measure precisely one of the Raman beam frequencies by
counting its beat note with a standard: the two-photon
5S1/2�F=3�–5D1/2�F=5� transition of 85Rb at �2ph

=385 285 142 378�2� kHz �29,31� �see Fig. 8�. From the beat
note we can determine the Raman beam wavelength, the free
spectral range of the cavity, and hence the Bloch beam wave-
length. We use this optical reference to calibrate continu-
ously the thermal drift of the cavity. The laser wavelengths
can be thus determined with an uncertainty of 300 kHz.

C. Push beam

After the Raman selection, the nonselected atoms remain-
ing in F=2 are removed by a 3 ms laser pulse resonant with
the F=2→F�=3 transition. This beam is 6.8 GHz out of

Referrence
100 MHz

X 62

YIG
oscillator

Synthesizer
Marconi 2023

Synthesizer
SRS DS345

6. 409 ... GHz

6. 2GHz
209 MHz

184 MHz

15 MHz15 MHz

Raman
beatnote

frequency

φ-lock
400 MHz

6. 834... GHz

425 MHz

25MHz

400 MHz P
ha

se
-l

oc
k

lo
op

Selection SRS1

Measurement SRS2

compensation of the Doppler shift
due to g

SRS3

t

Synthesizer
SRS DS345

Synthesizer
SRS DS345

Phase-lock loop

δsel

δmeas

R
am

an
fr

eq
ue

nc
y

FIG. 7. Phase locking scheme
for the Raman beams. The YIG
oscillator is phase locked at
6.409 GHz by mixing it down
with the 62nd harmonic of the
quartz oscillator and with two
synthesizers �Marconi 2030 and
SRS DS345�. All the synthesizers
are referenced to the Cs clock. To
perform the selection or the mea-
surement, we switch between the
two SRS DS345 synthesizers. A
third SRS synthesizer is used to
compensate the Doppler shift in-
duced by the local acceleration of
gravity.
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resonance from the atoms in F=1 and could exert a dipolar
force on the Raman-selected cloud. To avoid this force the
push beam is placed parallel to the Raman beams. Thus, the
gradient of the dipolar force is transversal and there is no
effect on the atom longitudinal velocity.

D. Coherent acceleration

The optical lattice is the result of the interference of two
counterpropagating laser beams in lin� lin configuration.
They are blue detuned by 40 GHz from the one-photon tran-
sition 5 2S1/2→5 2P3/2. The optical lattice is raised adiabati-
cally in 500 �s to load all the selected atoms in the funda-
mental Bloch band. The final potential depth is 70Er. In
order to perform a coherent acceleration of the atoms, we
sweep linearly in time the frequency difference between the
two Bloch beams ���t� using acousto-optic modulators:
���t�=2at /�, where a is the effective acceleration. In a 3 ms
frequency sweep the atoms are accelerated at 1800 m s−2 re-
ceiving 900 photon momenta. The efficiency per oscillation
�taking into account spontaneous emission and nonadiabatic
transitions� is 99.95%.

Finally, the lattice intensity is adiabatically lowered in
500 �s to bring the atoms back to a well-defined momentum
state. Note that during the 500 �s of both adiabatic ramps,
the optical lattice is constantly accelerated in order to com-
pensate the gravity acceleration.

The Bloch lasers are produced by a Ti:sapphire laser
pumped by a 10 W doubled neodymium-doped yttrium alu-
minum garnet laser at 532 nm �Millenia, Spectra Physics�.
The Ti:sapphire laser is frequency stabilized on the same
Fabry-Pérot cavity used for the Raman beams. The output

power is 2 W with a tunability of some nanometers around
780 nm. The output is divided into two beams, each one
controlled in frequency and amplitude by an independent
AOM. The two beams reach the cell by two different fibers.

One of the Bloch beams is injected in the Raman beam
fiber using the following trick. We place an AOM before the
fiber and the Bloch beam is aligned into it with the AOM off
while the first diffracted order of the Raman beams is aligned
into the fiber with the AOM on. Hence, for each state of the
AOM only one of the beams is selected into the fiber. The
frequency difference between the Bloch beams is controlled
by a frequency generator �NI5411� with a rate of 40�106

points per second. We program on it a frequency ramp
around 10 MHz: f�t�=10 MHz+
��t�. The output f�t� is fre-
quency doubled and divided into two paths �see Fig. 9�. One
path mixes the signal with 60 MHz coming from a synthe-
sizer and the other path mixes it with 100 MHz from another
synthesizer in order to obtain two opposite frequency ramps
around 80 MHz to control each one of the Bloch AOMs and
accelerate the atoms. As the AOM modulators are used in
double-pass configuration, the acceleration of the lattice is
then given by alat= �8/ �kB2+kB1��d
� /dt �kB1 and kB2 are the
wave vectors of the Bloch beams�. Using the frequency con-
trol scheme depicted in Fig. 9, the sum of these wave vectors
does not vary at the first order during the acceleration pro-
cess.

E. Velocity measurement

After the coherent Bloch acceleration, we measure the
final atomic velocity by means of a second Raman � pulse
with frequency 
meas. It transfers atomic population from
�F=1,mF=0� to �F=2,mF=0� satisfying the relation �4�.

meas is scanned in frequency in order to shape accurately the
final velocity distribution. We are able to determine the cen-
ter of the final distribution with an uncertainty on the order
of 1 Hz, corresponding to about 7�10−5vr in 10 min.

F. Detection

The experimental method to detect the fraction of atoms
in each hyperfine level �F=1 and F=2� recalls the one used
in atomic clock systems �32�. We shine on the free-falling
atoms at 15 cm below the trapping zone two parallel beams
separated by 10 mm �see Fig. 10�. The first one is a retrore-
flected circularly polarized laser beam resonant with the
closed transition F=2→F�=3 leaving the F=1 population
unaffected. From the fluorescence signal in a photodiode we
detect the atomic fraction in F=2. To avoid a decay in F
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Raman 1

Raman 2

RF reference

PBS PBS

FIG. 8. Setup to stabilize and measure the Bloch and Raman
beam frequencies. One of the Raman lasers and a Ti:sapphire laser
are stabilized on a highly stable Fabry-Pérot cavity. Their frequen-
cies are measured by counting the beat note with a two-photon Rb
standard.
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FIG. 9. Frequency control of the two AOMs for the Bloch
beams.
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=1 we add a magnetic bias field parallel to the detection
beam propagation. Thus, the atoms will be quickly pumped
to the �F=2,mF=2� state. On the retroreflecting mirror of the
first detection beam there is a small stain, which prevents the
lowest part of the beam from coming back. In this way, the
atoms detected in F=2 are subsequently pushed far away
from the detection zone. The atomic fraction in F=1 contin-
ues to fall freely and is detected by the second laser beam
placed below. This beam is a superposition of F=2→F�=3
resonant light with a repumper beam resonant with the F
=1→F�=2 transition. The atoms in F=1 are hence pumped
to the F=2 state and then detected following the previous
procedure.

G. Further improvements of the experimental protocol

The final sequence is strongly improved from the one de-
scribed above in order to meet some experimental require-
ments and to reach a competitive uncertainty. The complete
temporel sequence of both the intensity and the frequency of
the different lasers is described in Fig. 11.

1. Double acceleration

After the Bloch acceleration, the atoms can reach the up-
per window of the vacuum chamber. To avoid it, we have
implemented a double-acceleration scheme. At the end of the
optical molasses phase, when all the atoms are in F=2, we
effectuate a first acceleration of the cloud by means of Nfirst
Bloch oscillations �see Fig. 11�. The first Raman transition
selects a narrow velocity class from the accelerated cloud.
Then, the push beam eliminates the nonselected atoms. We
apply the second acceleration, Nsecond Bloch oscillations, in
the opposite direction to decelerate the atoms to v
0. Fi-
nally, the second Raman pulse measures the final velocity
distribution. We emphasize that the velocity shift between
the selection and the measurement is only due to the second
Bloch acceleration, which is the one referred as “Bloch ac-
celeration” everywhere in the text.

2. Differential measurement and Raman beam inversion

In this vertical configuration, we should know precisely
the value of the local acceleration of gravity g to measure

accurately the ratio h /mRb. In order to cancel the effect of
gravity we effectuate two identical measurements of h /mRb
with opposite directions of the Bloch acceleration �up and
down�, keeping constant the delay between the selection and
measurement � pulses.1 The ratio � /mRb can be then deter-
mined from

�

mRb
=

�
sel − 
meas�up − �
sel − 
meas�down

2�Nup + Ndown�kB�k1 + k2�
�25�

where Nup down correspond, respectively, to the number of
Bloch oscillations in the two opposite directions, kB is the
Bloch wave vector, and k1 and k2 are the wave vectors of the
two Raman beams.

As discussed in Sec. II, the contribution of some system-
atic effects to the determination of h /mRb changes sign when
the direction of the Raman beams is exchanged �see Fig. 12�.
Hence, for each up or down trajectory when the Raman
beams are reversed, we record two velocity spectra, and we
take the mean value of these two measurements. Finally,
each determination of h /mRb and � is obtained from four
velocity spectra �see Fig. 13�.

V. EXPERIMENTAL RESULTS. DETERMINATION OF
h /mRb AND THE FINE-STRUCTURE CONSTANT

Here we present our final determinations of h /mRb and �.
They have been derived from 72 experimental data point
taken during four days.

Each determination of h /mRb is obtained from four spec-
tra as detailed in the previous section. Each spectrum con-
tains 160 points and is obtained in 5 min. The uncertainty in

1We emphasize that neither the trigger generator nor the synthe-
sizer making the sweep to compensate g is reprogrammed.
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FIG. 11. Intensity and frequency timing of the different laser
beams for the accerelation-deceleration sequence.
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the determination of the central frequency of each spectrum
is about 1.7 Hz �
10−4vR�. We show in Fig. 13 four typical
velocity distributions for Nup=430 Bloch oscillations and
Ndown=460 oscillations. The effective recoil number is here
2�Nup+Ndown�=1780.

In Table I we present the parameters for the Bloch and
Raman beams in all our determinations of �.

The parameters of the four spectra of each measurement
are summarized in Table II, where Nfirst and Nsecond are the
numbers of Bloch oscillations in the acceleration-

deceleration process of each measurement of h /mRb. The
sign of �R represents the inversion of the Raman beams.

Figure 14 presents the set of 72 determinations of the
fine-structure constant �. In each one of them, we have trans-
ferred to the atoms up to 460 Bloch oscillations, with an
efficiency of 99.95% per oscillation. Each determination is
obtained after 20 min of integration time. The corresponding
relative uncertainty in h /mRb is around 6.6�10−8 and hence
� is deduced with a relative uncertainty of 3.3�10−8. The
dispersion of these n=72 measurements is �2 / �n−1�=1.3
and the resulting statistical relative uncertainty on h /mRb is
8.8 ppb.

The experimental value of h /mRb, taking into account
only the statistical uncertainty, without any correction, is for
the isotope 87Rb

h

mRb
= 4.591 359 237�40� � 10−9 m2 s−1 �8.8 � 10−9�

�26�
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FIG. 12. h /mRb measurements are obtained by inverting the
Raman beams �circles�. B
150 mG. The mean value of each pair
of measurements �squares� cancels out systematic effects, such as
light shifts and quadratic Zeeman shifts. For clarity, we plot the
ratio of the measured �h /m�meas to �h /m�ref, where �h /m�ref is the
value derived from �2002.
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FIG. 13. Sequence of four spectra used for each determination of �. Here N1 and N2 are, respectively, the numbers of atoms in F=1 and
F=2 after the acceleration process. They are obtained by exchanging the Raman beam directions and performing the Bloch acceleration
upward or downward. The parameters used for each spectrum are summarized in Table II. The relative uncertainty for each spectrum is about
1.7 Hz. From the four spectra, h /mRb can be determined with an uncertainty of 6.6�10−8.

TABLE I. Power, intensity, and detuning of the Bloch and Ra-
man beams in the measurements.

Raman beams Bloch beams

P 10 mW 115 mW

I 150 mW/cm2 180 mW/cm2

Detuning 1 THz 40 GHz
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The deduced value of �−1 is then

�−1 = 137.035 999 59�60� �4.4 � 10−9� . �27�

In the next section, all systematic effects affecting the
experimental measurement will be analyzed and taken into
account to determine the final values of h /mRb and �.

VI. SYSTEMATIC EFFECTS

In this section we present the different systematic effects
limiting the measurement of the ratio h /mRb and the associ-
ated uncertainties. The resulting relative uncertainty on the
fine-structure constant is derived.

A. Wave-front curvature and Gouy phase

The relation p=h� /c for the impulsion of a photon as a
function of its frequency is only valid for a plane wave. In
the more realistic case of a beam of finite waist, there are
corrections to this relation which can be characterized by the
Gouy phase shift �33� and the wave-front curvature. We
evaluate these two corrections in the same formulas as a
function of the beam’s parameters.

Let us first calculate an order of magnitude of the Gouy
phase shift. The Gouy phase is the phase describing the �
phase shift at the focus of a beam. The laser beam can be
described as a sum of plane waves, and the Gouy phase shift
is due to the dispersion of the k wave vectors. Each wave
vector has a component along the propagation axis �kz� and a
component orthogonal to this axis �k��. Each plane wave has
the same frequency, so we have the relation k2=	2 /c2=kz

2

+k�
2 . For a beam of minimal waist w0, the dispersion in k� is

Fourier limited to 1/w0. At the position of the minimal waist,
where all the plane waves are in phase, the wave vector is of
the order of

kz = k2 − k�
2 
 k�1 −

k�
2

2k2� . �28�

The correction is thus of the order of 1 /k2w0
2. The effect of

the Gouy phase shift is to reduce the effective wave vector.
This effect is very similar to the reduction of the speed of an
electromagnetic wave confined in a wave guide. On the other
hand, the conservation of momentum implies that a beam
passing through a lens �and then having a different waist w0�
will exert onto it a force. This force has been in fact known
for a long time and it is used, for example, for trapping
dielectric particle in optical tweezers �34�.

In order to calculate the exact effect at a position z from
the minimal waist and r from the axis, we have to take into
account the phase between the different plane waves inter-
fering at that point. This will lead to the Gouy effect �depen-
dence upon z� and the wave-front curvature �dependence
upon r�. The effective wave vector resulting from the inter-
ference of each plane wave can also be directly obtained
from the gradient of the phase of the laser beam �35�:

kz
eff =

d�

dz
= k −

2

kw�z�2�1 −
r2

w�z�2 �1 − �z/zR�2�� �29�

where zR=�w0
2 /� is the Rayleigh length and w�z�2=w0

2�1
+ �z /zR�2�. Notice that at z=zR, where the wave-front curva-
ture is maximal, the effective wave vector does not depend
upon r.

Equation �29� gives the effective wave vector as a func-
tion of two parameters: w�z�, the waist of the beam at the
measurement point, and z /zR. To evaluate these two param-
eters, we have used a Shack-Hartmann wave-front analyzer
�HASO 64, Imagine Optic� which measures the wave-front
curvature radius R�z� and the waist w�z� at a given position.
Assuming that our beam is a Gaussian beam, and thus using
the relation R�z�=z�1+ �zR /z�2�, we obtain that

z

zR
= ��

�

w�z�2

R�z� � . �30�

The wave-front curvature effect depends upon the dis-
tance r from the propagation axis. To calculate the effect, we
need to know the mean value of r2. The diameter of the
atomic cloud measured using absorption imaging is �r2�

TABLE II. Parameters of the four spectra used for each determination of �. Nfirst and Nsecond are defined
in Sec. �IV G 1�.

Spectrum 1 Spectrum 2 Spectrum 3 Spectrum 4

Nfirst −450 390 −450 390

Nsecond 460 −430 460 −430

�R −1 −1 1 1

�sel �Hz� −13956985 11455931 13926651 −11486265

�meas �Hz� −342932 −1855606 312598 1825272

137.035980

137.035985

137.035990

137.035995

137.036000

137.036005

137.036010

137.036015

137.036020

α-1

FIG. 14. Chronologically, our 72 determinations of the fine-
structure constant.
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�800 �m�2. The light beams were centered on the atomic
cloud by using copropagating Raman transitions and maxi-
mizing the number of transferred atoms. We estimate that the
cloud is in the center of the Raman beams with a precision
better than 500 �m, leading to �r2�
�950 �m�2.

Table III gives the wave-front parameters of the different
beams involved in our experiment. Using the fact that
h /mRb� �kRkB�−1 �see Eq. �25��, where kR and kB are the
mean values of the effective wave vector for the Raman and
the Bloch beams, the final relative correction on h /mRb is
16.4 ppb. The uncertainty of the measured wave-front curva-
ture is quite high. We thus took a conservative uncertainty of
50%, leading to a relative uncertainty of 8 ppb.

B. Laser beam alignment

In Eq. �25� we supposed that both Raman and Bloch
beams are counterpropagating. Rigorously, one should re-
place the term 2kB�k1+k2� by �kR

U−kR
D� · �kB

U−kB
D�, where

�kR
U ,kR

D� and �kB
U ,kB

D� are, respectively, the wave vectors of
the Raman and the Bloch beams defined in Fig. 15. The two

upward-propagating wave vectors are parallel because the
beams come out from the same fiber. The correction to apply
will then depend only upon the angles �R and �B between the
upward and downward Bloch and Raman beams �see Fig.
15�. If all four wave vectors are in the same plane, and in the
limit �R and �B�1, the relative correction to h /mRb is given
by ��B

2 +�R
2 −�B�R� /4.

The alignment of the counterpropagating beams was done
by maximizing the coupling of the downward-propagating
beams into the lower fiber. For the Raman beam, we mea-
sured a reduction of the coupling by a factor of 2 when we
tilted the mirror by 7�10−5 rad. Assuming that the coupling
was within 10% of the optimum, we find �R�3�10−5 rad.
Similarly, �B�1.6�10−4 rad for the Bloch beam.

In the worst case where �B and �R have opposite signs, we
obtain a systematic effect of 8�10−9. Thus, we assume a
relative systematic effect on h /mRb of 4�10−9, with a rela-
tive uncertainty of 4�10−9.

C. Gravity gradient

The local acceleration of gravity g induces an atomic ve-
locity variation of gTdelay, where Tdelay is the time between
the selection and measurement pulses. However, to cancel
the effect of this velocity shift we use the same temporal
sequence for the upper and lower atomic trajectories. Never-
theless, gravity will be slightly different for the two trajecto-
ries because of the gravity gradient �zg �see Fig. 16�. The
atomic velocity variation due to this gradient is then propor-
tional to the mean value of z during the flight. The correction
on h /mRb is thus

mRb

h
�� h

mRb
�

grav. grad.
=

Tdelay��z�U − �z�L��zg

2vr�Nup + Ndown�
, �31�

where �z�U− �z�L is the difference between the mean posi-
tions of the upper and lower trajectories �see Fig. 16� and
Nup+Ndown is the total number of Bloch oscillations done for
the two trajectories. We calculate �z�U− �z�L=10 cm. The
gravity gradient is, neglecting effects due to earth rotation,
�zg=−2g /RT
3.1�10−7g m−1 �RT is the radius of the
earth�. With Tdelay=12 ms, we obtain a relative correction for
h /mRb of 3.6�10−10 �for coherence with Table V.

TABLE III. Wave-front parameters of the Raman and Bloch
laser beams.

w�z�
�mm�

R�z�
�m�

kz
eff /k−1
�ppb�

Upward beams 2.1 15.9 −7

Bloch �downward� 2.0 7.0 −14

Raman �downward� 2.4 31.6 −5

θR θB

kU
B

kD
BkD

R

kU
R

FIG. 15. Laser beam alignment. In our geometry, the two up-
ward propagating beams come from the same fiber and thus are
parallel. We denote by �R ��B� the angle between the two Raman
�Bloch� beams.

zU
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sel

z L
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FIG. 16. Position of atoms for the upper and lower
trajectories.
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D. Index of refraction

In this section, we first calculate the refractive index for
the Raman and Bloch beams due to both the vapor back-
ground and the atomic cloud. In a second part, using simple
arguments of momentum conservation, we explain how this
refractive index may induce an effect on the recoil measure-
ment.

1. Measurement of the refractive index

For a detuning � larger than the natural linewidth  of the
atomic transition, the refractive index is given by

n = 1 + f
3�

2
�


�
� �

2�
�3

�32�

where � is the wavelength of the transition, � is the atomic
density, and f is the oscillator strength. In our case the de-
tuning is larger than the hyperfine splitting �500 MHz�, but
smaller than the fine structure �7 THz�; hence f =2/3 for the
D2 line.

Our magneto-optical trap is loaded from a rubidium va-
por. To measure the density of this vapor, we looked at the
absorption of a probe beam through the cell. Because the
Doppler effect is larger than the hyperfine splitting, the cross
section is calculated without hyperfine splitting: �
= f3�2 /2�. By taking into account that only 1/4 of the atoms
are 87Rb, 5 /8 of them are in the F=2 state, and that because
of the Doppler effect, only a small proportion �the natural
linewidth divided by the Doppler width� are resonant, we
find that the total density of the background vapor is 8
�108 atoms/cm3.

The cold atom density is measured just after the optical
molasses phase using absorption imaging on the F=2 to F�
=3 transition. By integrating the attenuation of the probe
beam over the cloud one can calculate the total number of
atoms. Assuming a Gaussian isotropic density distribution,
we obtain a density of �=1.1�1010 atoms/cm3. However,
we have to take into account the fact that fewer than 2% of
the atoms remain after the first selection. The resulting re-
fractive indexes are summarized in Table IV.

2. Photon recoil in a dispersive medium:
A simple theoretical approach

The problem of the momentum of a photon in dispersive
media is quite an old question; classically it can be expressed

as the momentum of a wave packet of given energy E. Al-
most a century ago, this question lead to a controversy be-
tween Abraham �36,37�, who affirmed that the photon mo-
mentum in a medium of refractive index n was E /nc, and
Minkowski �38,39�, who affirmed that it should be En /c.
Later work due to Peierls gave other values �40�. A precise
calculation of the recoil induced by the reflection of a light
pulse, done by Gordon �41�, confirmed the Minkowski for-
mula. This formula, applied for a quantum of light, says that
the recoil of a photon of wave vector k in the vacuum is n�k.
Recently, Campbell et al. �42� measured the recoil energy of
atoms diffracted by a standing wave in an atom interferom-
eter. The result obtained is in agreement with Minkowski
formula.

This result can be obtained using the following argument.
In a refractive medium of index n, the phase of the electric
field varies as nkx. When the atoms interact with this field,
this phase will be added to the initial phase of the atomic
wave function. For a one-photon transition, this means that
the momentum of the atoms increases by n�k.

However, in the case of Bloch oscillations we know that,
for each atom transferred, an incoming photon �of momen-
tum �k before any interaction� will leave the medium in the
opposite direction, with the same frequency and so a mo-
mentum −�k. Consequently, for a complete Bloch oscilla-
tion, a total momentum of 2�k will be transmitted to each
atom.

As pointed out in �42�, to understand the phenomenon we
have to take into account the motion of the refractive me-
dium. This can be done using the following argument. In
order to calculate the recoil due to the diffraction of atoms by
light, we need to calculate the phase of the light at the posi-
tion of the atoms. Because we are doing a two-photon tran-
sition only the difference �=�1−�2 between the phases of
the two beams is involved.

Using the facts that �i� without dispersive media the phase
would be ��x�=2kx, �ii� inside the medium we have the
relation d� /dx=2nk, and �iii� at the position �x� of the cen-
ter of the medium the effect due to the refractive index can-
cels from the first and second beams, we obtain that

��x� = 2�n − 1�k�x − �x�� + 2kx . �33�

By assuming that the medium is uniform, we have �x�
=�ixi /N, where xi �i=1, . . . ,N� is the position of the atoms
in the dispersive medium. The function ��x� depends on the
position of all the atoms. Consequently, when an atom is
transferred, it acquires the momentum �d��xi� /dxi=2n�k
+2�1−n��k /N
2n�k and each other atom j �j� i� acquires
a momentum of �d��xi� /dxj =2�1−n��k /N. The approach
described in this paragraph is not a full quantum approach of
the refractive index, but more a mean-field approach. How-
ever, this simple calculation both leads to the result of
Minkowski and respects momentum conservation.

a. Bloch. Let us consider the problem of Bloch oscilla-
tions in a more general way as a process transferring a frac-
tion � of atoms with a two-photon transition. We obtain that
the momentum of the transferred atoms is 2�n+��1−n���k
�each atom is transferred one time and is �N times in the

TABLE IV. Refractive index for the different steps of the
experiment.

Detuning � �atoms cm−3� n−1

Cold atom cloud

Raman selection 1 THz 1�1010 −3.5�10−10

Bloch 40 GHz 2�108 −1.7�10−10

Raman measurement 1 THz 2�108 −7�10−12

Background vapor

Raman 1 THz 8�108 −2.9�10−11

Bloch 40 GHz 8�108 −7.2�10−10
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dispersive medium when another atom is transferred�. The
momentum of non transferred atoms is 2��1−n��k.2

So for an efficiency of 100% there is no effect due to the
refractive index. In our experiment, where the efficiency per
oscillation is ��99.95%, the correction due to refractive
index is less than two orders of magnitude lower than the
correction given by the Minkowski formula, and thus negli-
gible.

b. Raman. One way to calculate the Doppler effect of a
nonrelativistic atom is to consider the time derivative of the
phase at the position x�t�=vt of the atom: 	�
=d�(x�t� , t) /dt. To calculate the derivative of Eq. �33�, we
have to take into account the motion of the cloud. By assum-
ing that the cloud is moving at a speed v0, the value of the
Raman frequency 
� for an atom moving at a speed v is


� = 
 − 2kv + 2�n − 1�k�v0 − v� . �34�

In the experiment, the mean velocity of the cloud at the
selection is about 2Nvr. We select atoms in such a way that
their velocity differs from this mean velocity by less than one
recoil. As a consequence, the relative effect of the refractive
index is of the order of �n−1� / �2N� where N
500 is the
velocity of the atoms in units of 2vr. With n−1
3�10−10,
the effect is then completely negligible.

c. Background vapor. We have seen that the momentum
transferred to the atoms is given by 2�1+ �1−���n−1���k
where �1−�� is the fraction of nontransferred atoms. This
equation can be interpreted using the Minkowski formula in
which the refractive index n is replaced by the refractive
index due only to nontransferred atoms �1+ �1−���1−n��.
Consequently, because the hot atoms from the background
are out of resonance and do not perform Bloch oscillations,
we have to take them into account as nontransferred atoms.
This results in a relative correction of 0.75 ppb on h /mRb.

E. Quadratic Zeeman effect

Residual magnetic field gradients contribute to the sys-
tematics in two ways. First there is a second-order Zeeman
shift of the energy levels which induces an error in the Ra-
man velocity measurement. Second, the quadratic magnetic
force modifies the atomic motion between the selection and
the measurement.

1. Zeeman shift in the Raman process

As explained in Sec. II, by exchanging the direction of
propagation of the two Raman beams used for the selection
and the measurement of the velocity of atoms, one can
change the sign of the effect due to level shifts. This assumes
that between two consecutive measurements the magnetic
field and the atomic position are the same. The temporal
sequence being the same for the two directions of propaga-
tion, there is no reason for a systematic effect due to a tem-
poral variation of the magnetic field. However, the position
of atoms is not exactly the same because the directions of the

recoils given at the first Raman transition are opposite. For
the timing used in our experiment, this difference is about

z=300 �m.

The systematic effect arising from the position shift de-
pends only on the gradient of the Zeeman shift ���Zee� at the
position of the atoms at the second Raman pulse for the
upper and lower trajectories. In order to measure this gradi-
ent, we perform copropagating Raman transitions. The se-
quence is the following. We keep the same first three steps:
initial acceleration with Bloch oscillations, selection of a
subrecoil velocity class, and deceleration of this velocity
class. The last step is a copropagating Raman transition, be-
tween the same �F=1,mF=0� and the �F=2,mF=0�
states—we can then measure the hyperfine splitting between
the two states. This measurement includes many shifts: the
Zeeman shift ��10 Hz for a magnetic field of 150 mG�, the
light shifts ��3.5 Hz�, and the Doppler shift ��5 Hz�. In-
deed, for a copropagating transition, the Doppler effect,
given by �k1−k2�v, is about 105 times smaller than for a
counterpropagating transition—but not negligible. We thus
take care to make the same number of oscillations in the
accelerating and decelerating processes. The final atomic ve-
locity is then only due to the gravitational fall and can be
calculated. Furthermore, both the Doppler shift and light
shift can be canceled out by calculating the gradient from
measurements at different positions. This is done by chang-
ing the number of Bloch oscillations.

The experiment is realized in a non-magnetically-shielded
stainless steel vacuum chamber. The deduced Zeeman shift
gradients �see Fig. 17� are �z�Zee

U =1.85 Hz mm−1 and
�z�Zee

L =−0.52 Hz mm−1 respectively, for the upper and
lower trajectories.

From Eq. �25�, we can estimate the correction to the value
of h /mRb:

2For �=1/2, this prediction differs by a factor of 2 from the result
of Ref. �42�
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FIG. 17. Experimental determination of the magnetic field along
the atomic trajectory. The zero of the atomic position corresponds to
the center of the molasses.
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�� �

mRb
�

Zeeman
=

�z�Zee
U − �z�Zee

L

8�Nup + Ndown�kBkR

z . �35�

The resulting relative correction on h /mRb for our parameters
is −13.2 ppb. Taking into account the uncertainty of the mag-
netic field measurement, we estimate the corresponding un-
certainty at 4 ppb.

2. Quadratic magnetic force

The second-order Zeeman effect induces a shift in the
energy levels of an atom in the magnetic field. If this mag-
netic field is not homogeneous, the kinetic energy of the
atoms will be modified. The variation of velocity of an atom
with velocity v enduring a variation of energy �E is �v
=�E /mv. We obtain that the relative correction on h /mRb
due to this effect is

h

2�Nup + Ndown�vr
��Zee,F=1

U

mvsel
U −

�Zee,F=1
L

mvsel
L � �36�

where �Zee,F=1
U/L is the variation of Zeeman shift between the

selection and the measurement for the upper and lower tra-
jectories. We emphasize that only the F=1 hyperfine level is
involved in the Bloch oscillations process.

As shown in Fig. 17, the minimum of the measured mag-
netic field is in the center of the chamber and therefore the
induced force opposes the second Bloch acceleration. The
corresponding correction to h /mRb is positive. For a typically
measured Zeeman shift of 30 Hz, we obtain that the relative
correction on h /mRb is 2.6 ppb. We estimate our knowledge
of the magnetic field within 30% corresponding to an uncer-
tainty of 0.8 ppb.

F. Light shift

In the same way that the second-order Zeeman effect
gives two different systematic effects, light shifts can induce
an error in the Raman velocity selection and measurement
and can also induce a force on atoms between Bloch oscil-
lations.

1. One-photon light shift

For atoms in �F ,mF=0�, the light shift induced by a laser
beam of intensity I and detuned by � from the D2 line is, in
the case where � is larger than the hyperfine splitting but
smaller than the fine structure,


ls =
2

8IS

I

�
�37�

where  is the linewidth of the 5P3/2 state and IS is the
saturation intensity of the D2 line.

However, for a Raman transition, only the differential ef-
fect from the light shift of the �F=1, mF=0� and �F=2, mF
=0� states is important. In the case where � is larger than the
hyperfine splitting 	HFS of the ground state, the differential
effect is obtain by taking the derivative of Eq. �37�. We ob-
tain


ls
�F=2� − 
ls

�F=1� = −
2I

8IS

	HFS

�2 . �38�

The light intensity at the position of the atoms is easily
measured by looking at the � condition of a copropagating
Raman transition. Indeed, the effective Raman coupling �,
in the case of a lin � lin transition, is equal to

� =
I

IS

2

16���
. �39�

Combining Eqs. �38� and �39�, and using the fact that we
have to add the light shift of three beams �one of the Raman
beams is retroreflected�, we obtain that


ls
�F=2� − 
ls

�F=1� = −
6�

�

	HFS

���
. �40�

With our parameters, one can calculate that the light shift
will shift the transition by 75 Hz—leading to a change in
velocity by about 5�10−3vr. This effect is important. How-
ever, one can expect to cancel it in many ways: between the
selection and measurement �constant effect is canceled�, up-
per and lower trajectories �time-dependent effect is then can-
celed�, and by reversing the direction of propagation of the
Raman beam �position-dependent effect is canceled�. The in-
version of the direction of the Raman beams, which should
result in the cancellation of level shifts �up to a systematic
shift in the position of atoms� does not work well for light
shifts, because of a possible systematic change in the inten-
sity of light when the direction of propagation is changed.
Thus, we do not compensate either the effect resulting from
spatial variations of light or the effect caused by the spread
of the atomic cloud and the finite size of the laser beam. The
intensity at the measurement will be, on average, less than
the intensity at the selection.

Let us denote by �ls
0 the light shift for the selection, by  

a parameter such that the residual light shift due to the spread
of the cloud is �ls

0 �1− � at the measurement, by R a typical
length for the variation of intensity, and by � the relative
difference of intensity between the Raman beams when we
exchange their direction of propagation.

The correction to apply to h /mRb is then

�

R

�ls
0 �zsel

U − zsel
L � − �ls

0 �1 −  ��zmeas
U − zmeas

L �
8�Nup + Ndown�kRkB

�41�

where zsel/meas
U/L are the positions of atoms during the selection

and measurement for the upwards and downward trajectories
�see Fig. 16�.

We measure ��10% and estimate R!10 m. Conse-
quently, the effect, of the order of 2�10−10 for h /mRb, is
negligible and we decide not to apply any correction.

2. Two-photon light shift

There is a two-photon light shift induced by the copropa-
gating Raman beams coming out of the same fiber �afterward
one of them will be retroreflected in order to form the coun-
terpropagating beam�. The experiment is based on the fact
that, because we are addressing moving atoms, only the
velocity-selective transition is resonant. However, the co-
propagating one will induce a light shift given by
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ls 2ph = −
�2

2

. �42�

This light shift, inversely proportional to the detuning 
 of
the transition—and thus to the velocity of atoms—is larger
during the second Raman pulse. It does not cancel between
the upward and downward trajectories because we are not
using a totally symmetric scheme �due especially to gravity
and a different number of transmitted recoils�. Finally, we
obtain that the relative effect on h /mRb is

�2

2

�
sel
U �−1 − �
meas

U �−1 − �
sel
L �−1 + �
meas

L �−1


sel
U − 
meas

U − 
sel
L + 
meas

L . �43�

With our experimental parameters, the corresponding correc-
tion to h /mRb is 1 ppb with an uncertainty of 0.4 ppb.

3. Light shift gradient during Bloch oscillation

Another important systematic effect induced by a spatial
variation of the light intensity is the dipolar electric force.
This force modifies the atomic velocity during Bloch oscil-
lations. A rough calculation based on light shifts considering
about U0=100Er and a typical length for the variation of
light shift R=10 m leads to a force F=U0 /R giving an ac-
celeration of 3�10−5vr ms−1. This effect is then non-
negligible.

However, this force cannot be calculated by adding the
force due to the gradient of each beam: we have to take into
account both the interference of the lasers and the fact that
the wave function of atoms is not uniform. In particular, in
the case of a deep blue-detuned lattice, atoms are located in
spatial positions where the light intensity is minimal. The
effect is then highly reduced. Furthermore, only the spatial
variation of this force is important, because any constant
force �such as gravity� will cancel out from the upper and
lower trajectories.

To evaluate this effect, we calculate the energy of an atom
in the fundamental band of the lattice as a function of its
position. The energy level in the tight-binding limit is then
given by

U =
U0

4

�EU − ED�2

EUED
+ U0Er �44�

where EU/D are the amplitudes of the electromagnetic field of
the upward and downward propagating beams which form
the optical lattice. The first term of Eq. �44� corresponds to
the minimum energy in the lattice potential and the second
term is the energy of the harmonic oscillator in the potential
well. It is important to notice that this formula is valid only
for a blue-detuned lattice. This energy shift induces a force
F=−�U /�z.

In the tight-binding limit, because U0�16Er, the contri-
bution of the second term of Eq. �44� is small. As mentioned
above, all constant forces cancel out between the upper and
lower trajectories and only the gradient of the force
�� /�z�F�z� contributes to the systematics. By neglecting the
second term in Eq. �44�, we obtain that

�F�z�
�z

= 2
U0

"
��" − 1��#U

RU
2 − "

#D

RD
2 � − � 1

RU
−

"

RD
�2�

�45�

where "=ED /EU, RU/D are the curvature radius of the upward
and downward propagating beams, and #U/D are dimension-
less factors given by the relations

#U/D = 2 − � �RU/D

�wU/D
2 �2

. �46�

Because our measurement was done with beams of differ-
ent curvature radius, the force gradient is not null, even for
beams of equal intensity �"=1�. Using the parameters of
Table III, we obtain a systematic correction on h /mRb of
−9.2�10−10. The uncertainty, coming mainly from the un-
certainty on the wave-front curvature, is 4�10−10. We did
not take this effect into account in our previous publication
�20�. Therefore the value of the fine-structure constant � is
slightly different from that published in this reference.

G. Final results and uncertainty budget

We summarize in Table V the different systematic effects
and their contributions to the uncertainty on the determina-
tion of the ratio h /mRb. All the uncertainties are added in
quadrature. The largest uncertainty comes from the laser geo-
metric parameters �wave-front curvature, waist, alignment�
�9 ppb�. All these parameters were measured a posteriori.
The contribution of the magnetic field to the systematics was
experimentally determined by mapping the magnetic field
gradient experienced by the atoms. Those uncertainties can
be reduced by using appropriate techniques. More funda-
mental uncertainties come from the different light shifts in
the experiment �0.7 ppb�. Finally, concerning the index of
refraction effect, we have assumed a conservative uncer-
tainty of 0.85 ppb derived from the calculation of the Bloch
and Raman wavelengths in the medium.

TABLE V. Error budget on the determination of h /mRb �system-
atic effect and relative uncertainty in ppb�.

Source
Correction

�ppb�

Relative
uncertainty

�ppb�

Laser frequencies 1.6

Beams alignment 4 4

Wave-front curvature and Gouy phase 16.4 8

Second-order Zeeman effect −13.2 4

Quadratic magnetic force 2.6 0.8

Gravity gradient 0.36 0.04

Light shift �one-photon transition� 0.4

Light shift �two-photon transition� 1.0 0.4

Light shift �Bloch oscillation� −0.92 0.4

Index of refraction of atomic cloud 0.6

Index of refraction of background vapor 0.75 0.6

Global systematic effects 10.98 10.0
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Table VI shows the different constants used for the deter-
mination of � from our measurement. Their uncertainties are
negligible. Taking into account the corrections, we obtain
that

h

mRb
= 4.591 359 29�6� � 10−9 m2 s−1 �1.3 � 10−8� ,

�47�

�−1 = 137.035 998 84�91� �6.7 � 10−9� . �48�

VII. CONCLUSION AND PROSPECTS

Thanks to the high efficiency of the Bloch oscillations
process �99.97% per recoil�, we are able to transfer to the
atoms about 900 photon momenta. This method combined
with a precise velocity sensor leads to a measurement of the
ratio h /mRb with a relative uncertainty of 1.3�10−8. This
noninterferometric measurement achieves a precision com-
parable to the best measurement provided by an atomic in-
terferometry experiment �2�. A comparison of our determina-
tion of � with other determinations is presented in Fig. 18.
Except for the more recent value of � obtained from the
measurement of ae �5�, all the values used for this compari-
son come from the last CODATA report. This determination
of � with an uncertainty below 10 ppb will increase the con-
fidence on the � value at this level of uncertainty.

We plan several improvements in order to achieve a 1 ppb
level uncertainty on �. The statistical uncertainty of our cur-
rent measurement �4.4 ppb� arises from the signal-to-noise
ratio of the velocity sensor. We expect to improve this ratio
by a factor of 4, first by increasing significantly the initial
density of atoms in velocity space, and second by imple-
menting a vibration isolation platform in our experimental
setup. On the other hand, by increasing the number of recoils
transmitted to the atoms �using a much larger cell and a more
powerful laser�, we plan to reduce the statistical uncertainty
significantly below 1 ppb.

We need also to control more carefully the systematic
effects �5 ppb, in the current measurement�. For this purpose,
we consider several enhancements: �i� A better control of the

geometrical parameters of the Raman and Bloch laser beams
will allow us to reduce the uncertainty coming from the
wave-front curvature. �ii� A magnetic shielding of the
vacuum chamber, associated with the differential measure-
ment currently used to bring down systematics, will probably
reduce by one order of magnitude effects due to the magnetic
field. �iii� Laser frequency stabilization and measurement can
easily be improved to neglect the associated systematic effect
at the ppb level. �iv� A better determination and control of
experimental parameters involved in the light shift and the
refractive index will be required to reduce the uncertainty on
their estimations.

Furthermore, improvements in the statistical uncertainty
�due to the reduction of integration time� may allow us to
place experimental error bars on systematic effects by mak-
ing measurements with different parameters. These major
improvements should lead to a measurement of � below the
ppb level.

A new measurement of the fine-structure constant at the
ppb level would have an important consequence not only in
metrology but also in fundamental physics. Indeed, with the
recent 0.7 ppb determination of � from the measurement of
ae, such a determination, which is almost independent of
QED, would lead to an unprecedented test of QED and of the
internal structure of the electron �5�.
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TABLE VI. Constants used for the determination of � from
h /mRb.

Value

Relative
uncertainty

�ppb�

Rydberg constant �1� 10 973 731.568 525�73� m−1 0.0006

Rubidium mass �19� 86.909 180 520�15� amu 0.2

Electron mass �1� 5.485 799 0945�24� 10−4amu 0.44
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FIG. 18. Comparison of our measurement �h /m�Rb�� with the
measurements used for the 2002 CODATA adjustment �1� and the
measurement of Ref. �5� �Harvard�.
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