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The semiclassical limit of the quantum few-body problem has not been studied in general terms from the
point of view of periodic orbit theory. In a previous paper, we studied noninteracting two-body systems �Phys.
Rev. A 62, 042109 �2000�� and discussed the fact that the periodic orbits occur in continuous families.
Interactions destroy the periodic orbit families leaving a discrete set of isolated periodic orbits. In this paper,
we consider the effect of weak two-body interactions, which can be thought of as symmetry-breaking pertur-
bations and can thus be analyzed using a theory developed by Creagh �Ann. Phys. �N.Y.� 248, 1 �1996��. The
Pöschl-Teller two-body system confined in a square well is analyzed to illustrate the use of the formalism. It is
shown that the effect of the interaction can be evaluated for all two-particle periodic orbits, and that the
coarse-grained quantum density of states can be fully reproduced from simply summing the perturbed contri-
butions of each periodic orbit family. Good numerical estimates of the quantum singlet energies can actually be
obtained, but it is found that that perturbed trace formulas cannot reproduce the multiplet splittings predicted
from quantum mechanics. Several interesting properties are observed depending on the range of the interaction
and on whether the interaction is attractive or repulsive.
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I. INTRODUCTION

Semiclassical theory emerged at the advent of quantum
mechanics and has evolved into a powerful tool for perform-
ing analytical calculations and for gaining insight into new
problems �1�. The most important energy domain semiclas-
sical theory is periodic orbit theory �POT�, which extracts
spectral information from knowledge of the classical peri-
odic orbits. For nonintegrable systems, the central result of
periodic orbit theory is the Gutzwiller trace formula �1–5�,
which expresses the oscillatory part of the density of states as
an infinite sum over the periodic orbits of the classical sys-
tem. Although conceptually elegant, the Gutzwiller trace for-
mula is generally very hard to use because it is not easy to
systematically find periodic orbits. This problem only be-
comes more severe for multiparticle systems. First, there is
the high dimensionality of phase space �for example, a two-
body system in two space dimensions evolves in an eight-
dimensional phase space�, and second, there is the intractable
proliferation of multiparticle periodic orbits. Consequently,
there has been little effort devoted to descriptions or analyses
of few-body systems in terms of POT, and no attempt to
further develop the theory in such a way as to make it viable
to apply to few-body problems. Previously, we began efforts
in this direction and derived semiclassical trace formulas for
two �6� or more �7� noninteracting identical particles. In this
paper, we continue on and consider the effect of weak two-
body interactions.

Let us begin by considering the simple �and yet non-
trivial� example of two point particles in a one-dimensional
infinite square well. If there is no interparticle interaction, the

system is fully integrable, and the fundamental relation be-
tween the quantum density of states and classical mechanics
is the Berry-Tabor trace formula �8�. The fact that each
single-particle energy is conserved automatically means
there is a continuous �time-translational� symmetry, and thus
the periodic orbits come in one-parameter families that live
on two-tori. Interactions destroy the continuous symmetry
and therefore break up the periodic orbit families into a dis-
crete set of isolated orbits. The standard Gutzwiller theory
can be used if the interaction is sufficiently strong. If, how-
ever, the particles are weakly interacting, then the system is
near-integrable, and although the periodic orbits no longer
occur in families that reside on tori, the periodic orbits are
not sufficiently isolated, and so the precondition crucial to
the derivation of the Gutzwiller trace formula �that the orbits
are isolated� is not fulfilled. For weak interactions, the
Gutzwiller trace formula thus clearly fails. In principle, this
type of problem is not new. Ozorio de Almeida �9� �see also
Ref. �10�� considered the perturbation of generically inte-
grable systems, and derived a “uniform approximation” that
attempted to smoothly interpolate �divergence-free� between
the Berry-Tabor and Gutzwiller limits. Tomsovic, Grinberg,
and Ullmo �11� also derived a semiclassical trace formula for
two-degree-of-freedom near-integrable and mixed systems.
The most important fact to appreciate here is that introducing
an interaction is actually a specific example of a more gen-
eral situation in which there is a breaking of a continuous
symmetry. There is a substantial amount of literature on the
effect of symmetry breaking on trace formulas �9,11–15�,
and, in particular, a perturbative theory applicable to any
situation in which continuous symmetries are broken has
been developed by Creagh in Ref. �12�. The results of this
general theory �sometimes referred to as “semiclassical per-
turbation theory” �1�� can therefore be used to analyze weak
interparticle coupling in a two-body system.
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The basic idea is that a calculation to first order in pertur-
bation theory of the actions should be adequate to describe
the regime where the periodic orbits are not isolated enough
so that the standard Gutzwiller trace formula applies. All
members of the continuous family of periodic orbits remain
approximately periodic if the interaction is weak enough.
The basic procedure then is that for a family of unperturbed
orbits, we determine the perturbed action after the interaction
is turned on. The main step is to expand the action in the
exponent to linear order in the perturbation parameter and
assume that all other prefactors retain their unperturbed val-
ues. If the interaction is sufficiently weak, the only modifi-
cation to the noninteracting two-body trace formula �see
Refs. �6,7�� occurs in the amplitude, which gets modulated
by a factor that is �in principle� straightforward to calculate.
If the interaction is sufficiently strong, we should use the
Gutzwiller trace formula, and for interaction strengths in the
intermediate regime, we expect the perturbative theory and
the Gutzwiller theory to yield consistent results.

There are many examples of systems we could analyze in
order to illustrate the use of the formalism and to give proof-
of-concept. Ultimately, we are interested in higher-
dimensional systems with unstable dynamics; however, the
example we considered above �i.e., a two-body system con-
fined in an infinite square well� is a better starting point,
insofar as introducing the formalism. Classically, the one-
particle dynamics consist of only one primitive orbit, the
unperturbed two-body dynamics are scaling, and further-
more, � corrections are not required for the analysis. �The
latter would be important for the analysis of certain types of
orbits in higher-dimensional billiards.� In fact, the simplicity
of the two-body dynamics in the absence of interactions al-
lows for an interesting possibility: semiclassical quantiza-
tion. The reason is that the main ingredient required in the
perturbative analysis is the periodic orbits of the noninteract-
ing two-body system, and since all of these are known in this
case, if the effect of the interaction could be computed for all
of these orbits, we could then go for a full quantization.
Indeed, it is worth the effort, and as will be shown in Sec.
III B, the coarse-grained quantum density of states can be
accurately reproduced by summing the perturbed contribu-
tions for each periodic orbit family. This is quite interesting
and important, especially since Creagh’s perturbative theory
cannot generally be used for the purpose of full quantization
�1�. It should also be kept in mind that when a nonscaling
interaction is introduced, the resulting two-body system is
both nonscaling and nonintegrable. At present, semiclassical
quantization of nonintegrable systems �even near-integrable
ones� is not viable, and so the periodic orbit quantization of
this type of two-dimensional system is quite compelling.

Before starting, we outline the contents of the paper. In
Sec. II, we elaborate on the basic ideas we introduced above
and give the main formulas. The discussion is somewhat
general, but part of it is also geared to the specific example
we have in mind to analyze afterwards. We should forewarn
readers that Sec. II is concise and assumes familiarity with
the results of Ref. �12�. In Sec. III, we apply the ideas and
formulas to the example of two identical particles confined in
an infinite square well and coupled to each other through a
weak Pöschl-Teller two-body interaction. This section is di-

vided into two parts; Sec. III A contains the analytical work
and Sec. III B contains the numerics. Finally, in Sec. IV, we
conclude the paper with a summary of our results and a brief
discussion of possible extensions and future work.

II. SEMICLASSICAL ANALYSIS OF A WEAKLY
INTERACTING TWO-BODY SYSTEM

In one dimension, the classical two-body Hamiltonian is

H =
pa

2

2m
+

pb
2

2m
+ U�xa� + U�xb� + �V�za,zb� , �1�

where U is a one-body confining potential, and the perturba-
tive term �V�za ,zb� is a weak two-body interparticle interac-
tion. The za/b are the phase space coordinates of the particles,
and � is a continuous parameter.

First, we briefly review the periodic orbit structure for �
=0 �see Ref. �7� for a detailed discussion�. Generally speak-
ing, there are two types of periodic orbits in the full two-
particle phase space. If both particles evolve on �generally
distinct� periodic orbits of the one-particle phase-space with
equal period, then the full phase-space periodic orbit is a
dynamical periodic orbit. In that event, there is a second
constant of motion in involution with H. Without loss of
generality, this can be chosen to be J=ha�za�, the single-
particle Hamiltonian of particle a. It generates time transla-
tions of particle a while leaving particle b fixed. There is a
corresponding group parameter � that is conjugate to J and
has the dimension of time. For any initial condition on a full
phase-space periodic orbit, flows generated by H and J to-
gether map out a two-dimensional torus. This means there is
a one-parameter degenerate family of periodic orbits. For �
=0, there are also heterogeneous periodic orbits in the full
phase space, which are periodic orbits that result from one
particle executing periodic dynamics while the other particle
remains stationary. In particular, suppose that particle a is
stationary and particle b evolves dynamically on a periodic
orbit. The stationary particle can be anywhere in the billiard,
and thus there is a spatial translation symmetry. This implies
that the heterogeneous orbits must also occur in continuous
families. In addition to E, there is one independent constant
of motion J, which �without loss of generality� is the mo-
mentum of particle a, that is, J= pa. The corresponding con-
jugate group parameter is �=xa, where xa is the spatial
translation of particle a. There is an identical contribution to
the two-particle resolvant from heterogeneous orbits that de-
rive from particle a evolving on a periodic orbit while par-
ticle b is fixed, and in this case, J= pb and �=xb, where xb is
then the spatial translation of particle b.

If we consider now a typical member of the dynamical
periodic orbit family � specified by the group parameter �
�denote this orbit by ���, it will still be approximately peri-
odic for ��0, but it will have a modified action. To first
order in perturbation theory, the change in action at fixed
energy E is �using the theory of Ref. �12��
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�S��E;�,�� � − ��
��

V„za�t + ��,zb�t�…dt , �2�

where the integral is over an unperturbed orbit ��, and the
domain of integration is over one period of this orbit. The
orbit specified by the parameter � involves a shift of the
initial condition of particle a, that is, za�t ;��=za�t+��. The
amplitude of the unperturbed two-body trace formula �see
Ref. �7�� is then multiplied by a “modulation factor,” which
is given by �again using the theory of Ref. �12��

M��E;�� =
1

T�
� exp� i

�
�S��E;�,���d� . �3�

If the interaction is absent, then �S� is zero and the modu-
lation factor is unity. On the other hand, if the interaction is
sufficiently strong so that �S���, then the above integral
can be done by stationary phase. Each stationary phase point
of the integral corresponds to the initial condition of an iso-
lated orbit in the Gutzwiller limit. For this to be a complete
description, we use the analysis outlined above for small
interaction strengths and use the isolated orbit analysis for
large interaction strengths and expect that there is an inter-
mediate range of interaction strengths in which these analy-
ses are both valid. It is important to note here, however, that
this intermediate range cannot be identified at the outset.

As briefly discussed above, there are also contributions to
the resolvant from families of heterogeneous orbits when �
=0. Of course, for ��0, there are no such orbits �i.e., these
orbits are destroyed and replaced by isolated orbits�. How-
ever, for weak interactions �i.e., �	1�, the Gutzwiller ampli-
tudes of the isolated periodic orbits that replaced the hetero-
geneous orbit families will again be incorrect and
semiclassical perturbation theory should be used to obtain a
trace formula with the correct amplitudes. As before, there
will be a range of interaction strengths in which this pertur-
bative analysis reproduces the results of the Gutzwiller
theory. In the presence of a weak interaction, the heteroge-
neous periodic orbit �x will have a modified action

�S��E;x,�� � − ��
�x

V„za = �xa = x,pa = 0�,zb�t�…dt . �4�

As before, we integrate over one full period of the unper-
turbed heterogeneous orbit, which is now the period of the
orbit on which particle b evolves. The group parameter x that
specifies the particular heterogeneous orbit of the family in-
dicates the position of the stationary particle in the billiard.
The modulation factor is then

M��E;�� =
1

L�x1

x2

exp� i

�
�S��E;x,���dx , �5�

where x1 and x2 are the positions of the hard walls. The
“group volume” 	dx= �x2−x1�=L is the width of the billiard.

III. EXAMPLE: TWO WEAKLY INTERACTING POINT
PARTICLES IN AN INFINITE SQUARE WELL

Consider the one-dimensional single-particle potential

U�x� = 
0, x1 
 x 
 x2

� otherwise.
� �6�

We populate this potential with two particles and introduce a
Pöschl-Teller two-body interaction,

�V��xa − xb�� = �V0 sech2 ��xa − xb� , �7�

where xa and xb denote the positions of the two particles, and
� is a measure of the interaction strength. �Hereafter, V0 shall
be absorbed into the definition of �, which then has units of
energy and can be positive or negative.� This two-body sys-
tem will generally have mixed dynamics, and for large val-
ues of �, the standard Gutzwiller theory can be applied. For
small values of �, the Gutzwiller amplitudes become invalid
and actually diverge in the limit �→0. Although the tori are
destroyed for ��0, the periodic orbits are not sufficiently
isolated for small values of � since their perturbed actions
differ by less than �.

A. Semiclassical analysis

Consider first the noninteracting case ��=0�. The smooth
average density of states can be obtained simply from the
convolution identity


̄2�E� = 
̄1�E� * 
̄1�E� =
mL2

2��2 −
2m

E

L
2��

+
1

4
��E� ,

�8�

where we have used the formula


̄1�E� =
1

2� 1

E0E

− ��E�� , �9�

and E0��2�2 /2mL2 is the ground-state energy of the one-
body system. �Note that L= �x2−x1� is the width of the well.�
In Eqs. �8� and �9�, the �-function correction does not actu-
ally contribute to the density of states, but rather to any in-
tegrated quantity for which the density of states is part of the
integrand �the most common example is the smooth part of

the cumulative density of states N̄�E�=	0
E
̄���d��. This cor-

rection has been identified as belonging to the one-particle
Weyl expansion �see, for example, Eq. �4.141� of Ref. �1��,
and will be important in a subsidiary calculation described
below.

As briefly described in Sec. II, there are two contributions
to the oscillatory part of the density of states. One comes
from the dynamical periodic orbits, and the other from the
heterogeneous periodic orbits. The dynamical periodic orbits
consist of both particles executing independent single-
particle motions on some repetition of the primitive periodic
orbit. If a particle is launched at x1, and the repetition index
of the orbit is n, then the position of a particle as a function
of time �i.e., the configuration space periodic orbit� is
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x�t;n� = �
j=0

�2n−1� �Xj + �− 1� jv�t −
jT

2n
��GT/2n�t −

jT

2n
� ,

�10�

where Xj is x1 or x2 when j is even or odd, respectively, v is
the speed of the particle, T is the period of the orbit, and the
gate function is defined as

G��t − �� = �0, t 
 �

1, � 
 t 
 � + �

0, t � � + � .
� �11�

Suppose that particles a and b are on the nath and nbth rep-
etition of the primitive orbit. Using the results of Ref. �7�, the
contribution of the dynamical periodic orbits to the two-
particle resolvant is

g̃2
d�E� = − i� �

na=1

�

�
nb=1

� exp i�2�
�na
2 + nb

2�E/E0 −
�

4
�

��na
2 + nb

2�E0
3E�1/4 .

�12�

The heterogeneous orbits occur when one particle is fixed
inside the well while the other particle evolves on a periodic
orbit. Since the stationary particle can be anywhere in the
well, there is a translation symmetry that is generated by the
momentum. Using the results of Ref. �7�, heterogeneous or-
bits make the following contribution to the two-particle re-
solvant:

g̃2
h�E� = − i��

n=1

� exp i�2n�
E/E0 −
�

4
�

�n2E0
3E�1/4 . �13�

Note that both Eqs. �12� and �13� are O�1/�3/2�, and have
identical energy prefactors O�1/E1/4�, which is generally true
for orbits that occur in one-parameter families. The standard
semiclassical approximation for the oscillatory part of the
resolvant, that is, the leading-order semiclassical trace for-
mula, is the sum of Eqs. �12� and �13�. Numerically, this
yields a set of peaks at the positions of the quantum two-
particle spectrum and a spurious set of peaks at the positions
of the one-particle spectrum. There is, however, a “boundary
correction” to Eq. �13�. This term is not relevant for our
purposes, but we should at least mention the subtle way it
emerges. This correction arises from the “grazing” heteroge-
neous orbits, which are those orbits for which the stationary
particle resides at the wall of the square well. These orbits
represent the boundary of the heterogeneous orbit family and
are of course not isolated. Mathematically, the correction to
Eq. �13� arises as an end-point correction to the trace integral
over the heterogeneous orbit family, while the leading-order
contribution �Eq. �13�� comes from the stationary phase
points of the integrand. The correction term itself happens to
be exactly the trace formula for a single particle in the square
well, accompanied by an overall minus sign �i.e., −
̃1�E��,
and is O�1/��. We note that this correction is identical to the
boundary correction for the two-dimensional square billiard

�see Eq. �2.187� of Ref. �1��. When we include this term with
the leading-order heterogeneous term, it exactly cancels the
spurious peaks mentioned above. A similar situation occurs
in the case of one particle in an equilateral triangle billiard
�see Sec. 6.1.2 of Ref. �1��.

We now examine each contribution to the density of states
for ��0. The Thomas-Fermi �TF� term, that is, the leading-
order term of the average density of states, can be computed
from the inverse Laplace transform of the classical two-
particle partition function Z2

cl���= 1
2�2���2 	dq	dp exp

�−�H�q ,p��. The integral over momentum p= �pa , pb� is
trivial, and the remaining integral over the coordinates q
= �xa ,xb� can be transformed to a one-dimensional integral
after a change of variables to center-of-mass and relative
coordinates: X= �xa+xb� /2, x= �xa−xb�. Under the inverse
Laplace transform, this reduces to


̄2�E;�,�� =
mL

2��2�
0

L

��E − � sech2 �x�dx , �14�

where ��¯� in Eq. �14� is a step function. Due to the prop-
erties of the integrand, the TF term is a constant, mL2 /2��2

for E��. When 0�E��, the TF term is a complicated
function of E, but this range of E is unimportant for the
calculations we pursue here.

For the oscillatory part of the density of states, we must
determine the perturbed actions for each family of unper-
turbed orbits. For dynamical orbits, the particles are gener-
ally out of phase, and the unperturbed orbits are xa�t+��
=x�t+� ;na� and xb�t�=x�t ;nb�. Then, from Eqs. �2� and �7�,

�S��E;�,�,�� � − ��
��

V„xa�t + ��,xb�t�…dt

= − ��
0

T

sech2 ��xa�t + �� − xb�t��dt .

�15�

The above integral splits into 2�na+nb� intervals, each of
which must be evaluated separately. To evaluate the integral,
the distance function Dab�t ;��=xa�t+��−xb�t� should be cal-
culated on � intervals of size T /2nanb; the reason is that
particle a reverses direction at jaT /2na �ja=1,2 ,3 , . . . ,2na�,
whereas particle b reverses direction at jbT /2nb �jb

=1,2 ,3 , . . . ,2nb�, and thus the distance function changes
discontinuously at values of � that are integer multiples of
min��jaT /2na− jbT /2nb� : janb− jbna�0�=T /2nanb, or more
precisely Dab�t ;�� changes discontinuously at � j = jT /2nanb,
where j=1,2 ,3 , . . . ,2nanb. After careful integration of Eq.
�15� using Eq. �10� in the argument of the secant function,
we find, by induction, the action shift, for �T /2nanb��
� ��+1�T /2nanb, �=0,1 ,2 ,3 , . . . , �2nanb−1�, is
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�S��E;�,�,��
�

= −
2�va

���va
2 − vb

2�

� �
k=0

�na−1� �tanh ��vb� +
�k − ��L

na
�

+ tanh ��− vb� +
�k + 1 + ��L

na
��

+ �a ↔ b� , �16�

where va/b=
2Ea/b /m. The energies of the particles are such
that the periods of the unperturbed orbits are the same: Ea/b
=na/b

2 E / �na
2+nb

2�. �Of course, Ea+Eb=E.� The physical mean-
ing of the terms involving L will become clear after the
asymptotic analysis below. As we shall see, each of these
terms is an initial coordinate of particle a on an isolated orbit
of the Gutzwiller limit. As deduced above, the distance func-
tion and therefore �S���� has a different functional form in
each of the 2nanb � intervals. However, the range of the
action shifts turns out to be the same for all intervals. Thus,
it is sufficient to compute the action shift for one interval �for
instance, the first interval� and then use the multiplicative
factor 2nanb when computing the modulation factor M�,
which is then found by integrating over �,

M��E;�,�� =
2nanb

T�
�

0

T�/2nanb

exp� i

�
�S��E;�,�,���d� ,

�17�

where �= �na ,nb�, �S� is given by Eq. �16�, and the common
period T�=Tna

�Ea�=Tnb
�Eb��T�E�=��
�na

2+nb
2� /E0E.

If the unperturbed dynamical orbit results from both par-
ticles evolving on the same orbit of the one-particle phase
space �i.e., na=nb=n�, the distance function changes discon-
tinuously at integer multiples of T /2n. Then, the integral in
Eq. �15� splits into 4n intervals, and again using Eq. �10� in
the argument of the secant function, we find, by induction,

�S��E;�,�,��
�

= −
2n�

�
��T�

2n
− ��sech2��v��

+
1

�v
tanh��v��� �18�

for 0���T� /2n, where v=
E /m. Similarly, for the other �
intervals. The complete modulation factor is then

M��E;�,�� =
2n

T�
�

0

T�/2n

exp� i

�
�S��E;�,�,���d� ,

�19�

where �= �n ,n�, the common period T�=Tn�Ea�=Tn�Eb�
�T�E�=n��
2/E0E, and �S� is as given in Eq. �18�. The
modulation �Eq. �17� or Eq. �19�� is then inserted as a mul-
tiplicative factor in the summation of Eq. �12�. Finally, the
contribution of the dynamical orbits to the oscillatory part of
the density of states is 
̃2

d�E ;� ,��=− 1
� Im�g̃2

d�E ;� ,���, and
thus


̃2
d�E;�,�� = �

na=1

�

�
nb=1

�
1

�n�
2E0

3E�1/4�Re�M��E;�,���

�cos�S��E� −
�

4
� + Im�M��E;�,���

�sin�S��E� −
�

4
�� , �20�

where �= �na ,nb�, n�
2 = �na

2+nb
2�, and S��E�=2�
n�

2E /E0.
In the limit �S���, we can analyze the modulation inte-

grals by stationary phase. As examples, consider �= �1,1�
and �= �2,1�. In the former, using the modulation factor
�19�, there are two contributions. These have phases of ±� /4
relative to the noninteracting case and have relative ampli-
tudes O�
��. The two stationary phase points �=0 and �
=T /2 correspond physically to the situations in which the
two particles are initially in phase and T /2 out of phase,
respectively. For T /2���T, there are also two stationary
phase points �=T /2 and �=T, but these are extraneous since
these points describe the same situations as before �i.e., �
=0 and �=T indicate that both particles are initially at x1�.
The corresponding shifts in the action are �S�0�=−�T and
�S�T /2�=−�T tanh��L� /�L, respectively. For �= �2,1�, us-
ing Eq. �17�, there are nine critical points �w=wT /8, w
=0,1 ,2 , . . . ,8. These stationary phase points do not all de-
scribe unique initial conditions, in the sense that several of
them correspond to the same initial conditions. Actually,
these points correspond physically to one of four situations:
�i� both particles are initially at x1 with pa�0 ��=0, T /2,
and T�; �ii� particle b is at x1 while particle a is at the center
of the well with pa�0 ��=T /8 and 5T /8�; �iii� same as �ii�
except pa
0 ��=3T /8 and 7T /8�; �iv� the particles are at
opposite sides of the well ��=T /4 and 3T /4�. In cases �ii�
and �iii�, the particles are separated by a distance L /2,
whereas in case �iv�, the particles are separated by a distance
L. This analysis implies that the periodic orbit family �
= �2,1� is broken up and replaced by four isolated orbits.

More generally, if na�nb, there are �4nanb+1� critical
points �w=wT / �4nanb�, where w=0,1 ,2 , . . . ,4nanb. If na

=nb=n, there are �2n+1� critical points �w=wT /2n, where
w=0,1 ,2 , . . . ,2n. In all cases, the action shifts are obtained
by substituting each stationary phase point into Eqs. �16� and
�18�. As in the specific examples given above, the complete
set of stationary phase points do not all describe unique ini-
tial conditions. Many of the stationary phase points are de-
generate in the sense that they correspond to the same initial
conditions. The symmetric periodic orbit families �na=nb�
are always broken up into two isolated orbits �corresponding
to situations in which the particles either both begin at x1 or
begin at opposite sides of the square well�, and the nonsym-
metric periodic orbit families �na�nb� are broken up into
2nanb isolated orbits �corresponding to situations in which
the particles are initially separated by integer multiples of
L /nanb�. These results are consistent with Birkhoff’s theo-
rem, which states that any smooth perturbation results in an
even number of isolated orbits, of alternating stability. Note
that the number of critical points increases with the length of
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the orbits. This implies that families having smaller actions
break into relatively fewer isolated orbits than families hav-
ing larger actions, which are replaced by many more isolated
orbits.

We could imagine that there exists a range of interaction
strengths where the perturbation is small enough to justify
the use of semiclassical perturbation theory while neverthe-
less �S��. We would then still use the formalism of this
paper for small interaction strengths and use the isolated or-
bit analysis for large interaction strengths and expect that
there is an intermediate regime in which both analyses are
valid.

For heterogeneous orbits, upon adding an interaction, the
specific property that one of the particles is stationary while
the other evolves with all of the energy will no longer be
true, but it is still necessary to smoothly interpolate between
the cases in which the translation symmetry exists and the
case for which this symmetry is broken. To first order in
perturbation theory, the change in action �at fixed energy E�,
for a typical member �x of the heterogeneous orbit family �,
is

�S��E;x,�� � − ��
�x

V„x1 + x,xb�t�…dt . �21�

In the above formula, the group parameter x is the displace-
ment from x1 �the position of the left wall�, and 0�x�L. As
before, we integrate over one period of the orbit family. In
this case, this is the period of the evolving particle T. If the
evolving particle is on the nth repetition of the primitive
orbit, then the shift in the action is

�Sn�E;x,�,�� =
2n�

�v
�tanh ��x + �x1 − x2�� − tanh �x� ,

�22�

where v=
2E /m. The modulation factor for the heteroge-
neous orbits is then

Mn�E;�,�� =
1

L�0

L
exp� i

�
�Sn�E;x,�,���dx . �23�

�Note the group volume 	0
Ldx=L= �x2−x1�.� The modulation

factor in Eq. �23� is now included as a multiplicative factor
in the summation of Eq. �13�. Thus, the contribution of the
heterogeneous orbits to the oscillatory part of the density of
states is 
̃2

h�E ;� ,��=− 1
� Im�g̃2

h�E ;� ,���, that is,


̃2
h�E;�,�� = �

n=1

�
1

�n2E0
3E�1/4�Re�Mn�E;�,���cos�Sn�E� −

�

4
�

+ Im�Mn�E;�,���sin�Sn�E� −
�

4
�� , �24�

where Sn�E�=2n�
E /E0.
For large values of �, we can again analyze the modula-

tion integral by stationary phase. In this case, we get only
one contribution since there is only one stationary phase
point x= �x1+x2� /2, which is at the center of the well. Thus,
after the interaction is turned on, each heterogeneous orbit

family is destroyed and replaced by a single isolated orbit.
The correction that arises from the perturbed contribution of
the “grazing” heterogeneous orbits is not generally important
for quantization. Including this correction term is crucial
only if we are interested in perturbed levels of the two-body
system whose unperturbed counterparts coincide with a level
of the one-body spectrum. �These degeneracies are quite
rare; for example, for E
1000, there are only 10 such lev-
els.� Otherwise, the leading-order semiclassical trace formu-
las are sufficient. Therefore,


̃2
sc�E;�,�� = 
̃2

h�E;�,�� + 
̃2
d�E;�,�� . �25�

B. Numerics

For numerical purposes, we define a semiclassical coarse-
grained density of states using the Gaussian-convolved trace
formula �GCTF�


̃�
sc�E;�,�� � 
2���

�

exp�− 2�2T�
2�E�

4�2 �A��E�

� Im
iM��E;�,��exp�i�S��E� −
�

4
��� ,

�26�

which �upon adding the Gaussian-convolved Thomas-Fermi
term 
̄��E ;� ,��� is the semiclassical approximation to the
exact quantum Gaussian coarse-grained density of states
�CGDOS�,


��E;�,�� = 
2�E;�,�� � G��E� = �
n

exp�−
�E − En�2

2�2 � ,

�27�

which is a set of Gaussian spectral lines �of width 
2��
centered at each energy of the quantum two-body spectrum
�En :n�N�. In Eq. �26�, � refers to a dynamical or heteroge-
neous orbit family, T��E� is its period, and A��E� is its un-
perturbed amplitude �i.e., the amplitudes of Eqs. �20� and
�24� when M�=1�. The sum in Eq. �26� derives from con-
volving the perturbed trace formulas with an unnormalized
Gaussian function G��E�=exp�−E2 /2�2�. More precisely,
Eq. �26� is obtained from an asymptotic analysis of the con-
volution integral,


̃�
sc�E;�,�� = 
̃2

sc�E;�,�� � G��E�

= −
1

�
Im�g̃2

sc�E;�,�� � G��E�� . �28�

The convergence of the sums in Eqs. �20� and �24� is en-
forced through an exponential damping factor �exp
�−�2�L�

2 /8E�� in the amplitude. The parameter � is the vari-
ance of the Gaussian, �=2m /�2, and L� is the length of the
unperturbed periodic orbit family �. If all orbits with length
L
Lmax are included, then there exists a set of energy values
E
Emax for which the exponential factor falls below some
threshold parameter �. This condition immediately gives a
simple relation between all the relevant numerical param-
eters,
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Lmax =
2
− 2Emax ln���

�
�
. �29�

�Note that 0
�
1, and that � has units of energy and thus
Lmax has units of length.� For L��Lmax and E
Emax, all
terms are exponentially smaller than �, and are thus numeri-
cally insignificant. The numerical parameter � is an ampli-
tude cutoff. The largest errors are in the vicinity of Emax
where there are contributions O��� that have been excluded.
For all other values of E
Emax, the excluded terms are ex-
ponentially smaller than �. So, we truncate Eq. �26� and in-
clude all orbits with length L
Lmax. We first specify Emax, �,
and �, and then Lmax is determined from the condition that all
orbits with length L�Lmax have amplitudes smaller than �
�Eq. �29��.

Numerical computation of the lowest 500 quantum ener-
gies for each irreducible representation �converged to near
machine accuracy� was achieved using the Lanczos method
for real symmetric matrices �16�. The Lanczos iteration en-
tails successive applications of the Hamiltonian operator to
an arbitrary state vector represented in a suitable basis. In our
computations, symmetry adaptation of a simple product basis
�i.e., the eigenbasis of the unperturbed system� was em-
ployed to reduce the size of the state vectors by a factor of 4
�in comparison to the unadapted basis�. The precise means of
implementing a symmetry-adapted basis without explicit
construction of the Hamiltonian matrix will not be described
here. Lanczos iteration determines a tridiagonal representa-
tion of the Hamiltonian whose eigenvalues are efficiently
extracted via bisection �17�. However, it is well known that
the Lanczos method produces spurious eigenvalues. For ex-
ample, converged eigenvalues appear as multiply degenerate
�or near degenerate� with increasing degeneracy as the num-
ber of iterations increases. While such spurious degeneracy
is easily identified and eliminated, spurious nondegenerate
eigenvalues also appear. These can be eliminated by con-
structing the associated eigenvector using one-step inverse
iteration. We will not describe this procedure here, but we
should mention that this means of eliminating spurious ei-
genvalues is different from that described in Ref. �16�.

In Fig. 1, we compare the exact CGDOS �27� with its
semiclassical approximation as evaluated from the GCTF
�26� for �=1/8, 1 /4, and 1/2 ��=1�. In our calculations, we
considered the energy window �Emin,Emax�= �50,75� but two
smaller windows are displayed here so that more detail may
be discerned. The prescribed numerical parameters �=10−6,
�=1/40=0.025 �and thus Lmax=1160L�. For all numerical
calculations in this paper, m=1/2, �=1, x1=0, and x2=� so
that L=� and E0=1. It is clear from these representative
calculations that the GCTF accurately reproduces the exact
CGDOS when � is small �e.g., �=1/8�, and can fail as � is
increased. The failure, however, is not as simple as one
might expect. Evidently, the spectral lines corresponding to
perturbed energies whose unperturbed counterparts are
“symmetric energies” become erroneous, whereas the spec-
tral lines corresponding to perturbed energies whose unper-
turbed counterparts are “nonsymmetric energies” are correct
for moderately large values of �. For example, the evolution

of the �symmetric� singlet energy E=62+62=72 under per-
turbation clearly becomes incorrect as the interaction
strength increases; the spectral line produced by the GCTF
differs from the Gaussian line of the exact CGDOS. The
same type of error occurs for the E=50 triplet, which expe-
riences a splitting under perturbation as the initially degen-
erate energies shift by differing amounts. This splitting is of
course too fine to observe directly from the CGDOS, but
again there is a clear difference �when �=1/2� between the
spectral lines produced by quantum and semiclassical me-
chanics. In contrast, the “coarse-grained” evolution of the
E=53 doublet or the E=65 quartet �not shown in Fig. 1�
under perturbation is correctly reproduced by semiclassics.
The difference between the triplet and the doublet �or quar-
tet� is that a symmetric energy E=52+52=50 is one of the
unperturbed triplet energies, whereas none of the unper-
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FIG. 1. The coarse-grained density of states �CGDOS� in the
presence of a weak medium-range ��=1� interparticle interaction.
Two small energy windows �chosen arbitrarily� are shown here and
are representative. The solid line is the exact quantum CGDOS �Eq.
�27��, and the dashed-dotted line is the semiclassical CGDOS ob-
tained from the Gaussian-convolved trace formula �26�. The ampli-
tude cutoff �=10−6, and the variance �=1/40=0.025.
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turbed doublet or quartet energies in question are symmetric
energies. It is not obvious to us why the formalism fails for
certain states and not others, but nevertheless that is the ob-
servation. Notice also that in some cases there are obvious
splittings that are not reproduced by the perturbed trace for-
mulas. Good agreement between quantum and semiclassical
results can be achieved by increasing the coarse-graining
�i.e., the value of ��. We will say more about splittings and
the behavior of the multiplet states under perturbation later
on.

At this point, it is illuminating to study in more detail the
evolution of the singlet states, that is, the states that are non-
degenerate when �=0. From quantum perturbation theory,
we know the energies of these states are simply shifted away
from their unperturbed values for ��0. Semiclassically, the
same behavior ensues �see Fig. 1� as a result of the action
shifts discussed in the previous section. We now want to get
more precise information; we want to obtain numerical esti-
mates of the actual perturbed energies for some small value
of �. Generally speaking, each spectral line generated by the
GCTF that is isolated and has height equal to 1 is a Gaussian
line whose maximum �=1� occurs at a position along the
energy axis to be identified with a semiclassical energy �20�.
Semiclassical energies obtained in this way can be computed
to a specified accuracy by evaluating the GCTF on energy
windows of appropriate size. We start with an energy win-
dow that encloses the entire peak of interest and then sys-
tematically refine the size of the window until the position of
the peak maximum has been located to the desired accuracy.
The convergence can be checked by including many orbits
with length greater than Lmax and verifying that the position
of the peak maximum does not change within the specified
accuracy. The energies will be given to O�10−5�. In the fol-
lowing calculations, the amplitude cutoff �=10−10. It is im-
portant to keep in mind that the exact positions of peak
maxima will generally depend on the specific choice of the
parameter �. The relative numerical importance of the
Thomas-Fermi term also depends on the specific choice of �.
The smaller the value of �, the less important 
̄2�E ;� ,��

becomes and vice versa. However, the leading-order TF term
only affects the height of the peak maximum and not its
position along the energy axis.

Although we have complete freedom in specifying the
variance �, it should not be chosen too small since this will
require that Lmax must be quite large. This is, of course, im-
practical, but there is a more fundamental problem; Creagh’s
perturbative theory is known to fail for long orbits �12�. Be-
sides, the error introduced by including long orbits does not
arise from the semiclassical approximation alone. The GCTF
itself becomes less accurate when long orbits are included.
The reason is that the modulation factor for long orbits is
highly oscillatory for low-lying values of E �see, for ex-
ample, Figs. 2 and 3�. The asymptotic analysis of the convo-
lution integral �Eq. �28�� that yields the GCTF �26� assumes
that the perturbed amplitude of the trace formula is a smooth
slowly varying function of E. �Note that the perturbed am-
plitude includes the modulation factor M�.� To leading or-
der, the amplitude can then be taken outside the convolution
integral since it is approximately constant on an interval of
size �. If the modulation factor is oscillating rapidly in some
energy range �as it does for long orbits�, this assumption is
no longer valid. However, the interest here is not in how the
perturbative procedure breaks down when long orbits are in-
cluded. The important point is that the ��0 GCTF does not
converge to the exact quantum coarse-grained level density
as Lmax→�. Nevertheless, we can still choose a moderately
small value for � and obtain a good estimate of the energy
shift. Note that the variance � must still be small enough to
resolve individual levels. For the analysis of the singlet states
�which are sufficiently isolated�, the value �=0.1 is a good
compromise that satisfies both requirements. The trace for-
mulas are exact for �=0 and any numerical errors arise ex-
clusively from the approximations made in obtaining the
GCTF �26�. In the unperturbed case, the amplitude A��E�
�E−1/4∀�, which is approximately constant on intervals of
size � for E�1. Since all orbit families have this energy
dependence in their amplitudes, the asymptotic analysis of
the convolution integral is accurate for all orbits, and be-
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FIG. 2. The real part of the modulation factor
�Eq. �17� or Eq. �19�� for orbit families �
= �na ,nb� perturbed by a long-range repulsive in-
teraction ��=0.1 and �=1/L=1/��.

SAKHR, DUMONT, AND WHELAN PHYSICAL REVIEW A 74, 052104 �2006�

052104-8



comes more accurate as �→0. So, as �→0 and Lmax→�,
the sum converges to the exact quantum result �27�. Exami-
nation of the �=0 singlet lines reveals that, for 25�E
�100, the errors inherent in the GCTF are O�10−5� when
�=0.1. �For E�100, there is slow, but steady, improve-
ment.� Numerical analysis of the ��0 GCTF confirms that
smaller values of � yield less accurate results, as expected.

It should be emphasized that corrections to the Thomas-
Fermi term are not negligible and these introduce an addi-
tional error. �To the level of precision considered here, the
smooth term does change across the width of a peak even if
that peak is narrow.� A precise determination of this error
requires a separate numerical analysis of the smooth average
density of states, but since the interest here is only to esti-
mate the energy shift, no further analysis of the smooth term
will be undertaken. An estimate of the error can be inferred
from the unperturbed case, where the “perimeter correction”
�the second term of Eq. �8�� causes changes in 
̄2�E� of
O�10−4� across energy windows of size ��0.1 when 10
�E�100 and of O�10−5� or less when E�100. This sug-

gests that for the perturbed case we should expect errors of at
least the same order from neglected corrections to the
Thomas-Fermi term.

In Tables I–IV, the shifts of five low-lying singlets �ex-
cluding the first three singlets� plus one higher-lying singlet
are given for �= ±0.1. In each case, the data were generated
using Lmax=1000L and �=0.1. This amounts to using Nd
=98 095 dynamical orbit families and Nh=500 heteroge-
neous orbit families. A consistent length truncation requires
that both trace formulas �Eqs. �20� and �24�� include only
orbits with length L�Lmax. It is incorrect to simply specify
an upper truncation limit for the sums. Since the dynamical
orbits proliferate much more rapidly than the heterogeneous
orbits, that is, Nd�L�≫Nh�L�, many more of the former
must be included in the truncated sums. For large L, the role
of the heterogeneous orbits is relatively minor, but neverthe-
less important since their contribution ensures the spectral
lines have the correct shape and height.

As the numerics demonstrate, for singlet states of the un-
perturbed system with energy 25�E�500, the GCTF gives
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FIG. 3. Same as Fig. 2, except the orbit fami-
lies �= �na ,nb� are perturbed by a short-range re-
pulsive interaction ��=0.1 and �=L=��.

TABLE I. Perturbed energies for six singlet states of the unperturbed two-body system. The parameters �=0.1 and �=1/L=1/�. This
choice of � corresponds to an interaction that is long-range with respect to the size of the well. The first column specifies the state number
in the symmetric irrep �i.e., the nth state of the symmetric irrep�, and the second and third columns give the exact unperturbed and perturbed
quantum energies, respectively. The fourth and fifth columns are the energies obtained from quantum and semiclassical perturbation theory.
The difference between the exact quantum and semiclassical values is given in the last column. The difference between exact and quantum
perturbation theory �n

qm=En−En
qm=0.000 03 for each given n. For comparison, if �=0.05 in Eq. �26� �so that longer orbits are less

suppressed�, then E20
sc =98.086 57; the semiclassical error ��20

sc =0.000 27� is larger, but the semiclassical energy shift is unchanged to
O�10−3�.

n En
�0� En En

qm En
sc �n

sc

7 32 32.08709 32.08713 32.08664 0.00045

15 72 72.08689 72.08692 72.08664 0.00025

20 98 98.08684 98.08688 98.08664 0.00020

26 128 128.08681 128.08685 128.08664 0.00017

33 162 162.08679 162.08683 162.08664 0.00015

102 512 512.08674 512.08678 512.08664 0.00010
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estimates of their shifts under perturbation accurate to
O�10−3� in the case of long-range repulsive interactions, and
to O�10−2� in the case of short-range repulsive interactions.
The numerical results for attractive interactions are an order
of magnitude better in each case. Thus, the leading-order
semiclassical approximation is more accurate for long-range
interactions. This is to be expected since corrections to the
Thomas-Fermi term are much more significant for short-
range interactions. Numerically, we expect errors of at least
O�10−5� due to the approximate evaluation of the convolu-
tion integral �Eq. �28�� that gives the GCTF and of at least
the same order from neglected corrections to the leading-
order TF term. We also expect the semiclassical trace formu-
las to give accurate energy shifts for large quantum numbers.
This is expected for two reasons: the first is that the GCTF is
more accurate at large energies, and the second is that cor-
rections to the Thomas-Fermi term are typically less impor-
tant at large energies when interactions are repulsive. It is
typical for the semiclassical approximation to become more
accurate at larger energies and clearly this characteristic is
found in the data when interactions are repulsive.

For long-range interactions, the perturbation is quite
slowly varying on the scale of L �the length of the well�.
Generally speaking, from quantum mechanics, we know that
a flat perturbation causes all unperturbed levels to shift by
the same amount. Thus, the quantum energy shifts are ex-
pected to be much the same for all levels when the rate of
change of the interaction potential is small. For short-range
interactions, there is more variation in the amount by which
the low-lying singlets are shifted, but for higher energies the
quantum shifts again become similar. The same characteris-
tics are evident in the semiclassical data; the �leading-order�

semiclassical trace formulas yield the same shift for all sin-
glets when the interaction is long-range, whereas there is
some variation in the shifts when the interaction is short-
range.

Note that both quantum and semiclassical perturbation
theory are more accurate for long-range interactions. Further-
more, when the interaction is repulsive, �qm

SR /�qm
LR�3,

whereas �sc
SR/�sc

LR�6 for all singlets �except the n=102 sin-
glet�, where the superscripts LR and SR denote long-range
and short-range, respectively. The error in the smooth aver-
age density of states should account for the factor of 2. Fi-
nally, a close inspection of the quantum data to O�10−8� re-
veals that the error from quantum perturbation theory slowly
declines as the quantum number is increased when the inter-
action is short-range, but steadily increases when the inter-
action is long-range. �This is true regardless of whether the
interaction is attractive or repulsive.� There is no such dis-
tinction for the leading-order semiclassical approximation; it
simply improves at higher energies when the interaction is
repulsive or becomes worse at higher energies when the in-
teraction is attractive.

The results for attractive interactions are counterintuitive.
The semiclassical energy shifts are more accurate �and often
by an order of magnitude� for attractive interactions as com-
pared to repulsive interactions. �It is worthwhile to mention
here that a similar finding has been reported elsewhere �21�.�
There is no obvious reason to expect that the formalism of
Sec. II should be more accurate for attractive interactions
��
0� than for repulsive interactions ���0�. There is an-
other anomaly for attractive interactions; for moderate to
large energies �E�100�, the semiclassical error increases.
This is unexpected since the GCTF is, in general, more ac-

TABLE II. Same as Table I, except that �=L=�, which corresponds to a short-range repulsive interac-
tion. For each given state n, the error �n

qm=En−En
qm=0.000 09. For comparison, if �=0.05, then E20

sc

=98.017 64; the error �20
sc =0.001 49 is larger, but the semiclassical energy shift is unchanged to O�10−3�.

n En
�0� En En

qm En
sc �n

sc

7 32 32.02094 32.02104 32.01798 0.00296

15 72 72.01940 72.01949 72.01794 0.00146

20 98 98.01913 98.01922 98.01794 0.00119

26 128 128.01899 128.01908 128.01794 0.00105

33 162 162.01891 162.01901 162.01794 0.00097

102 512 512.01879 512.01888 512.01792 0.00087

TABLE III. Same as Table I, except that �=−0.1, which corresponds to a long-range attractive interaction.
The error �n

qm=En−En
qm=0.000 03 for each given state n.

n En
�0� En En

qm En
sc �n

sc

7 32 31.91284 31.91287 31.91313 0.00029

15 72 71.91305 71.91308 71.91313 0.00008

20 98 97.91309 97.91312 97.91312 0.00003

26 128 127.91312 127.91315 127.91312 O�10−6�
33 162 161.91314 161.91317 161.91313 0.00001

102 512 511.91319 511.91322 511.91312 0.00007
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curate at large energies. One possible explanation is that cor-
rections to the Thomas-Fermi term can be significant at large
energies if the interaction is attractive �19�.

In short, apart from some interesting trends that require
further study, good estimates of the perturbed singlet ener-
gies can be obtained from simply identifying the center of
the appropriate spectral lines to a specified accuracy. We ex-
pect the symmetry-broken trace formulas to produce inaccu-
rate results for large interaction strengths. One instance
where this expectation turns out to be false occurs when the
interaction is long-range �e.g., �=1/L=1/��. In this case,
we find that the subset of spectral lines of the quantum CG-
DOS that are poorly reproduced by the GCTF in the
medium-range ��=1� or short-range ��=L=�� cases is ac-
tually rather accurately reproduced by the GCTF for moder-
ately large interaction strengths. In such a case, we can pro-
ceed as before to obtain estimates of the perturbed singlet
energies. It is particularly interesting to consider individual
singlets and track the error as the interaction strength is in-
creased. A representative example is given in Table V. It is a
pleasant surprise that the semiclassical error is less than 1%
when �=1. Even when the spectral line produced by the
GCTF differs appreciably from the quantum spectral line
�see, for example, the perturbed E15

�0�=72 singlet in the bot-
tom right window of Fig. 1�, we can still �although it is
perhaps less meaningful� extract a semiclassical energy by
identifying the maximum of the non-Gaussian line to a speci-
fied accuracy. Exemplary results obtained for the E20

�0�=98
singlet are given in Table VI, and although the way in which
these energies are obtained is less unequivocal than before,
the results are nevertheless accurate.

We return now to the multiplet states. After the interaction
is turned on, the energy levels that were degenerate �when
�=0� split apart and shift by differing amounts relative to the
unperturbed multiplet energy. For �	1, the spacing between
perturbed levels is very small, in fact, most of them are still
essentially degenerate. Even when �=1, the quantum split-
tings are still typically quite small if the interaction is long-
range �e.g., �=1/�� or medium-range �e.g., �=1�. In such
cases, the GCTF still adequately reproduces the quantum
CGDOS �see Fig. 4�. It should be kept in mind that indi-
vidual Gaussian lines will not be resolved when � is larger
than the spacing between energy levels. If the spacing be-
tween several levels is much smaller than �, then a superpo-
sition of all the corresponding Gaussian lines will appear as
only one Gaussian-like line, and the amplitude of that line
indicates the number of levels embodied.

It is not clear from these computations whether the per-
turbed trace formulas can actually reproduce a genuine split-
ting. To answer this question, we could simply use very
small variances, but this is computationally intensive, and as
we have already discussed, the GCTF becomes less accurate
if orbits with very large actions are included in the sums. The
other approach is to drastically increase the interaction
strength so that the spacings between perturbed levels be-
come wider. Except at large energies, we expect the semi-
classical analysis to break down completely for ��1, but we
can evaluate the GCTF for a nonweak interaction strength,
for instance �=5, and still expect reasonably accurate results.
The splitting of some typical multiplets under a nonweak
interaction is shown in Fig. 5. Clearly, first-order semiclassi-
cal perturbation theory cannot reproduce the quantum split-
tings. In fact, it appears that all spectral lines generated by

TABLE IV. Same as Table II, except that �=−0.1, which corresponds to a short-range attractive interac-
tion. For n=26,33,102, the error �n

qm=En−En
qm=0.000 09, whereas for n=7,15,20, the error �n

qm=0.0001.

n En
�0� En En

qm En
sc �n

sc

7 32 31.97887 31.97896 31.98075 0.00188

15 72 71.98041 71.98051 71.98071 0.00030

20 98 97.98068 97.98078 97.98071 0.00003

26 128 127.98082 127.98092 127.98070 0.00012

33 162 161.98090 161.98099 161.98070 0.00020

102 512 511.98103 511.98112 511.98069 0.00034

TABLE V. The evolution of the n=102 singlet state of the symmetric irrep under perturbation by a
long-range ��=1/�� repulsive interaction. The first column specifies the interaction strength, and the second
column the exact quantum energy shift �i.e., �E=E102−E102

�0� �. The third and fourth columns give the corre-
sponding energy shifts obtained from quantum and semiclassical perturbation theory, respectively, and the
fifth and sixth columns give the absolute error of these energy shifts relative to the exact quantum energy
shift. Notice that �for the middle three entries� �sc�2.75�qm.

� �E �Eqm �Esc �qm �sc

1 /10 0.0867 0.0868 0.0866 O�10−5� 0.0001

1/3 0.2889 0.2893 0.2878 0.0004 0.0011

1/2 0.4330 0.4339 0.4306 0.0009 0.0024

2/3 0.5770 0.5785 0.5728 0.0015 0.0042

1 0.8643 0.8678 0.8560 0.0035 0.0083
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the GCTF are shifted by the same amount �relative to the
unperturbed energy� regardless of whether they correspond
to singlet or multiplet states. So it is clear that when the
spacing between perturbed levels is O��� or larger, the
leading-order perturbed trace formulas will not accurately
reproduce the quantum CGDOS, however it is pleasing to
observe that when the splittings are small compared to �, the
GCTF continues to work quite well even for a nonweak in-
teraction strength such as �=5. Of course, the inability of
�first-order� semiclassical perturbation theory to reproduce
quantum splittings is a fundamental deficiency only when the
particles are identical. However, the issue of computational
expense remains even if the particles are nonidentical. Al-
though there are no exact degeneracies �when �=0� in that
case, there are still many near degeneracies, a characteristic
of the fact that the unperturbed system is integrable.

IV. CONCLUSION

Any weak interparticle interaction can be thought of as a
symmetry-breaking perturbation, and it is then possible to
apply the results of the perturbative theory developed by
Creagh �12� to obtain the trace formulas for a weakly inter-
acting two-body system. Two weakly interacting identical
point particles in a square well serves as the simplest non-
trivial example to which the theory can be applied. The
analysis of this problem adequately illustrates many general
aspects of a calculation in higher dimensions. In fact, pre-
cisely the same analysis would apply to dynamical orbits that
derive from isolated one-particle “libration” orbits in higher-
dimensional billiards �regardless of the stability of these or-
bits�. Two examples would be the primitive orbits along the
minor and major axes of the two-dimensional elliptic bil-
liard, and the isolated “diameter orbit” of the two-
dimensional stadium billiard. It is important to understand
that while we could have applied the ideas of Refs. �9,11� to
analyze the example we studied in this paper, we cannot
apply these ideas to the two examples we have just men-
tioned above. In such cases, we can only use the ideas of
Creagh. The generality of Creagh’s perturbative theory
makes it ultimately most useful for the analysis of weak in-
teractions.

The correspondence between semiclassical and quantum
perturbation theory in the context of the few-body problem
can be summarized as follows: Quantum perturbation theory

predicts shifts in energy after an interaction is turned on, and
in semiclassical perturbation theory, these shifts are due to
the action shifts of the periodic orbits. The quantum theory
uses only unperturbed quantum information �i.e., the unper-
turbed eigenstates�, and the semiclassical theory uses only
unperturbed classical information �i.e., the unperturbed peri-
odic orbits�.

For the square-well example, the perturbed contributions
of all the nonprimitive heterogeneous and dynamical orbits
were calculated, and it was possible to obtain a closed form
for all of the action shifts. The fact that the perturbed contri-
butions could be computed for all nonprimitive orbits is quite
significant because we could then pursue a full quantization.
Actually, Creagh’s perturbative theory is not meant to be
used for the purpose of full quantization, but we have shown
that the coarse-grained quantum density of states can be re-
produced from summing the perturbed contributions of each
periodic orbit family. Good numerical estimates of the quan-

TABLE VI. The evolution of the n=20 singlet state of the symmetric irrep under perturbation by a
short-range ��=�� attractive interaction. The columns are as described in the caption of Table V except that
the state in question is different �i.e., �E=E20−E20

�0�, etc.�. Notice that �for the middle three entries� �sc

�2�qm. For comparison, when �=1 and �=−1, then �E=−0.5208, �Esc=−0.5166, and �sc=0.0042.

� �E �Eqm �Esc �qm �sc

−1/10 −0.0193 −0.0192 −0.0193 0.0001 O�10−5�
−1/3 −0.0652 −0.0641 −0.0629 0.0011 0.0023

−1/2 −0.0986 −0.0961 −0.0932 0.0025 0.0054

−2/3 −0.1326 −0.1281 −0.1242 0.0045 0.0084

−1 −0.2024 −0.1922 −0.1889 0.0102 0.0135
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FIG. 4. The coarse-grained density of states �CGDOS� in the
presence of a moderate strength ��=1� and medium-range ��=1�
interparticle interaction. Three different energy windows are shown
typifying the effect of a moderate perturbation on different multi-
plets �doublet, quartet, and triplet�. The solid line is the exact quan-
tum CGDOS �Eq. �27��, and the dashed-dotted line is the semiclas-
sical CGDOS obtained from the Gaussian-convolved trace formula
�26�. The amplitude cutoff �=10−6, and the variance �=0.05. The
unperturbed multiplet lines ��=0� are included for reference.
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tum singlet energies can be obtained �even for moderate in-
teraction strengths� by summing the Gaussian-convolved
perturbed trace formulas and identifying the center of Gauss-
ian spectral lines �or the maximum of non-Gaussian spectral
lines� to a specified accuracy. This is significant because the
system, although simple, is still nonintegrable. At present,
the periodic orbit quantization of nonintegrable systems is
not viable. The analysis of the square-well example suggests
that it might be viable to achieve semiclassical quantization
in other few-body problems that consist of weakly interact-
ing particles in a one-dimensional potential, such as a system
of two or three weakly interacting particles in a one-
dimensional quartic oscillator. The semiclassical analysis of
this example would actually be a good future project.

Some general conclusions �based on the results in Tables
I–IV� can be made regarding the accuracy of the leading-
order semiclassical approximation: �i� it is more accurate for
long-range interactions since corrections to the Thomas-
Fermi term are more important for short-range interactions;
�ii� it is more accurate for attractive interactions, at low en-
ergies; �iii� for repulsive interactions, the semiclassical esti-
mates monotonically improve as the energy increases,
whereas for attractive interactions, the semiclassical esti-
mates are best for the low-lying states, but then become less
accurate for higher quantum numbers. The last property is
surprising since the GCTF itself is more accurate at higher
energies. It is possible that corrections to the Thomas-Fermi
term are more significant at higher energies for attractive
interactions �see, for example, Ref. �19��. More work is re-
quired to understand why �in the case of attractive interac-
tions� the semiclassical approximation is best for small quan-
tum numbers and why it slowly becomes worse for higher
quantum numbers. To pursue these questions, we would have
to go beyond the leading-order semiclassical approximation,
that is, we would have to compute corrections to the
Thomas-Fermi smooth term and possibly go so far as to
evaluate the convolution integrals that produce the GCTF
exactly �i.e., numerically�. Exact numerics would provide a

more precise comparison between quantum and semiclassi-
cal perturbation theory.

The perturbed trace formulas fail to reproduce the multi-
plet splittings observed from quantum mechanics. Each �de-
generate� spectral line of a multiplet was found to shift by
the same amount after the interaction was turned on. This of
course is a fundamental problem only when the particles are
identical. It would be interesting to see whether genuine
splittings would appear if the analysis of the time-translation
symmetry breaking was carried out to higher order in pertur-
bation theory.

Another extension is to explicitly include the particle ex-
change symmetry and decompose the total density of states
�studied here� into the separate densities of symmetric and
antisymmetric states. To take on this problem, it would be a
matter of understanding how the dynamical pseudoperiodic
orbits �7� are affected by interactions. For the square-well
example, these orbits are isolated, and so the type of analysis
discussed in Ref. �9� for the treatment of isolated orbits un-
der perturbation would apply.

A complete analysis of the example studied in this paper
would also involve a thorough investigation of the
Gutzwiller limit ���1�, and an estimation of the range of
interaction strengths for which the Gutzwiller theory and the
perturbative theory yield similar results. This is an essential
first step in developing a uniform theory that could describe
the entire range of behaviors between the noninteracting and
strongly interacting limits. A genuine “uniform approxima-
tion” should recover the Gutzwiller theory in the limit where
the interaction is arbitrarily strong and therefore reproduce
the results of a direct application of the Gutzwiller trace for-
mula. The semiclassical framework introduced here for the
weak-coupling limit should be regarded as a first step toward
this more ambitious goal.

A major research initiative is to apply the theory to
higher-dimensional systems. An immediate and important
example is two weakly interacting particles in a two-
dimensional square billiard. This is the higher-dimensional

205 206 207

1

2

3

4
ρ σ

(E
;ε

,κ
)

ρ σ
(E

;ε
,κ

)

ε=0

204 205 206 207 208
0

1

2

3

4

E

ε=0

212 213 214

1

2

3

4

ε=0

211 212 213 214 215
0

1

2

3

4

E

ε=0

250 251 252

1

2

3

4

ε=0

249 250 251 252 253
0

1

2

3

4

E

ε=0

FIG. 5. The coarse-grained density of states
�CGDOS� in the presence of a nonweak ��=5�
interparticle interaction. As in Fig. 4, different en-
ergy windows are shown. In the upper three win-
dows, the interaction is medium-range ��=1�,
and in the lower three windows, the interaction is
short-range ��=��. The solid line is the exact
quantum CGDOS �Eq. �27��, and the dashed-
dotted line is the semiclassical CGDOS obtained
from the Gaussian-convolved trace formula �26�.
The amplitude cutoff �=10−6, and the variance
�=0.05. The unperturbed multiplet lines ��=0�
are included for reference.
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version of the problem we studied here. Of course, the in-
crease in dimensionality introduces some complications. The
one-particle periodic orbits of the two-dimensional square
are more intricate �although still piecewise linear�, but more
importantly, the one-particle orbits themselves occur in con-
tinuous families. The treatment of the dynamical orbits in
this paper assumes that the one-particle dynamics is free of
any continuous symmetry. In general, if there are other con-
tinuous symmetries, then these must be properly accounted
for in the analysis. The theory of Ref. �12� can still be ap-
plied, but of course the analysis would be more involved
than the analysis of problems like the one we studied here
�22�. The treatment of the heterogeneous orbits would also

require revision and would further require knowledge of
higher-order � corrections. The effect of interactions would
have to be worked out for each of these higher-order correc-
tions. An important reason for choosing the square-well ex-
ample here is that � corrections are not required for the
analysis. We hope to study higher-dimensional systems in
more detail in a future paper.
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