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A general scheme is presented for controlling quantum systems using evolution driven by nonselective von
Neumann measurements, with or without an additional tailored electromagnetic field. As an example, a two-
level quantum system controlled by nonselective quantum measurements is considered. The control goal is to
find optimal system observables such that consecutive nonselective measurement of these observables trans-
forms the system from a given initial state into a state which maximizes the expected value of a target operator
�the objective�. A complete analytical solution is found including explicit expressions for the optimal measured
observables and for the maximal objective value given any target operator, any initial system density matrix,
and any number of measurements. As an illustration, upper bounds on measurement-induced population trans-
fer between the ground and the excited states for any number of measurements are found. The anti-Zeno effect
is recovered in the limit of an infinite number of measurements. In this limit the system becomes completely
controllable. The results establish the degree of control attainable by a finite number of measurements.
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I. INTRODUCTION

A common goal in quantum control is to maximize the
expected value of a given target operator through application
of an external action to the system. Often such an external
action is realized by a suitable tailored coherent control field,
which steers the system from the initial state to a target state
maximizing the expected value of the target operator �1–6�.
A coherent field allows for controlled Hamiltonian evolution
of the system. Another form of action on the system could be
realized by tailoring the environment to induce control
through nonunitary system dynamics �7�. In this approach
the suitably optimized, generally nonequilibrium and time
dependent distribution function of the environment �e.g., in-
coherent radiation or a gas of electrons, atoms or molecules�
is used as a control. Combining this type of incoherent con-
trol by the environment with a tailored coherent control field
allows for manipulation of both the Hamiltonian and dissi-
pative aspects of the system dynamics.

Quantum measurements can also be used as an external
action to drive the system evolution towards the desired con-
trol goal. There are two general types of quantum measure-
ments: instantaneous von Neumann measurements �selective
and nonselective� �8� and continuous measurements �9�. If
the measured operator is Q=�iqiPi, where qi is an eigen-
value of Q with the corresponding projector Pi, then the
result qi of an instantaneous von Neumann measurement of
Q is obtained with probability pi=Tr�Pi�S�, where �S is the
state of the system just before the measurement. The state of
the system just after the selective measurement with the re-
sult qi will be Pi�SPi / pi. If a nonselective measurement of Q
is performed �i.e., if the particular measurement result is not
selected� then the system state just after the measurement
will be �iPi�SPi.

Nonunitary dynamics induced by measurement-driven
quantum evolution was used recently in Ref. �10� for map-
ping an unknown mixed quantum state onto a known target
pure state. This goal was achieved with the help of sequential
selective measurements of two noncommuting observables.
After each measurement the outcome was observed and used
to decide either to perform the next measurement or to stop
the process. The same problem was studied in the presence
of decoherence introduced by the environment �11�. The con-
trol of the population branching ratio between two degener-
ate states by continuous measurements was considered �12�,
while the effect of nonoptimized measurements on control by
lasers was investigated �13�.

Quantum measurements may be used in a feedback con-
trol scenario �14–17�. In this approach continuous observa-
tions are performed, a controller processes the results of the
measurements, and then based on these results modifications
are made in the coherent control field in real time to alter the
behavior of the quantum system. Optimal measurements may
also be used for quantum parameter estimation �18,19�,
where the system state depends on certain c-number param-
eters �i. The goal is to find an optimal measurement strategy
to extract the information about these parameters.

In this paper we explore nonselective von Neumann mea-
surements to control quantum dynamics. Any measurement
performed on the system during its evolution has an influ-
ence on the dynamics. In particular, nonselective measure-
ment of an observable with a nondegenerate spectrum acts
on a quantum system by transforming its density matrix into
diagonal form in the basis of eigenvectors of the operator
corresponding to the observed quantity. Measuring different
observables may produce different changes in the system’s
state. We optimize the measured observables such that their
consecutive measurement modifies the density matrix to
maximize the objective. The general formulation includes the
use of optimal measurements along with a tailored coherent
control field. A particular case corresponds to control only by
measurements such that the coherent control field is not ap-
plied. For this case a complete analytical solution is found
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for a two-level system. Arbitrary target operators and initial
states of the system are considered. The solution includes
explicit expressions for the optimal measured observables
and the maximal objective values attained. While control by
measurements admits an explicit analytical solution for two-
level systems, the generalization to the multilevel case is not
straightforward. The situation becomes even more compli-
cated if coherent control fields are used in addition to opti-
mized measurements. For this case, numerical simulations
are performed in Ref. �20� for several quantum systems con-
trolled by a tailored coherent control field together with op-
timization by learning control of quantum measurements.

The quantum anti-Zeno effect �21� can be used to steer
the system from an initial to a target state. In the anti-
Zeno effect continuously measuring the projector E�t�
=U�t�EU†�t� steers the system into the state E�t�, where E is
a projector leaving the initial state unchanged and U�t� is a
unitary operator. Continuous measurements in the quantum
anti-Zeno effect are obtained as the limit of infinitely fre-
quent von Neumann measurements. With the anti-Zeno ef-
fect the system becomes completely controllable in this limit.
In the laboratory it may be difficult to perform a large num-
ber of measurements in a short time interval. Thus, a balance
may need to be struck between the number of measurements
and the desired degree of control. In this paper we analyti-
cally establish the degree to which the system can be con-
trolled by any given finite number of measurements. This
result allows for determining the optimal control yield in
balance with the cost of performing the measurements.

The paper is organized as follows. In Sec. II the general
concept of control by measurements is outlined. Section III
presents the complete analytical solution for the problem of
control by measurements in a two-level system, and as an
application Sec. IV presents upper bounds on population
transfer by nonselective measurements. In Sec. V the relation
of this analysis with the quantum anti-Zeno effect is estab-
lished. Brief conclusions are presented in Sec. VI.

II. FORMULATION OF CONTROL BY MEASUREMENTS

The control “parameters” in the present work are the ob-
servable operators Q1 , . . . ,QN to be measured. The number
of measurements N can also be optimized if the cost of each
measurement is given. The scheme described here entails the
consecutive laboratory measurement of the observables
Q1 , . . . ,QN on the same physical system, but the measure-
ment results are not recorded and not used for feedback. The
latter two restrictions could be lifted, if desired.

Consider the effect of a nonselective measurement of an
observable Q on the system density matrix. Let Q=�iqiPi be
the spectral decomposition of the observable, where qi is an
eigenvalue and Pi is the corresponding projector such that
Pi

†= Pi, PiPj =�ijPi, and �iPi= I. A nonselective measurement
of the observable Q transforms the system density matrix
� into MQ���ª�iPi�Pi. In particular, measuring an
observable Q which has a nondegenerate spectrum diagonal-
izes the density matrix in the basis of Q. In this case
MQ���=�piPi, where pi=Tr��Pi� is the probability to get
the value qi as the outcome of the measurement.

There are classes of equivalent observables where mea-
suring an observable Q makes the same transformation of the

system density matrix as measuring any other observable Q̃

from the same equivalence class. Two observables Q and Q̃
are measurement equivalent if for any density matrix � one

has MQ���=MQ̃���. The observables Q and Q̃ are meas-
urement equivalent if their spectral decompositions have

the form Q=�iqiPi and Q̃=�iq̃iPi where for i� j one has
qi�qj and q̃i� q̃j. In particular, all observables of the form
Q=qI, where I is the identity operator and q is a real number,
are equivalent to Q= I. The latter observables are trivial in
the sense that measuring any such observable does not
change the system density matrix.

Let �0 be the initial system density matrix. Consecutively
measured observables Q1 , . . . ,QN modify the initial system
density matrix �0 into

�N = MQN
� MQN−1

¯ � MQ1
��0� . �1�

The typical goal in quantum control is to maximize the ex-
pectation value of a target operator � assuming that initially
the system is in a state �0. The objective functional has the
form

JN�Q1, . . . ,QN� = Tr��N�� , �2�

where �N is defined by �1�. The control goal is to find, for
given �0 and �, optimal observables Q1

opt , . . . ,QN
opt which

maximize the objective functional to produce JN
max.

The general case also includes a tailored coherent electro-
magnetic field ��t� as a control where the dynamics of the
system is governed by the two forms of external action: �a�
measurements of observables Q1 , . . . ,QN at the times
t1 , . . . , tN, respectively, and �b� coherent evolution with a
control field between the measurements. The former action
induces nonunitary dynamics in the system. The latter action
produces unitary evolution of the density matrix ��t� be-
tween the measurements according to the equation

d��t�
dt

= − i�H0 − ���t�,��t�� , �3�

where H0 is the free Hamiltonian of the system and � its
dipole moment. The solution of Eq. �3� at a time t, with an
initial condition ��t0�=� at t0� t is given by a unitary trans-
formation of the initial density matrix denoted as U�t0,t����.
In this notation the system density matrix at a target time
T� tN after N measurements will be

��T� = U�tN,T� � MQN
� U�tN−1,tN�

� MQN−1
� ¯ � U�t1,t2� � MQ1

� U�0,t1���0� . �4�

The density matrix ��T�, which is dependent on the control
��t� and Q1 , . . .QN, determines the objective functional of the
form J���t� ,Q1 , . . . ,QN�=Tr���T��� with some target ob-
servable �. Here, in addition to the coherent field ��t�, the
observables Q1 , . . . ,QN are included as variables to be opti-
mized. This general case is difficult to treat analytically, and
for some models numerical simulations may be performed
�20�. In the next section we show that control only by mea-
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surements admits an analytical solution in the case of a two-
level system.

For an atomic multilevel system, practical measurements
of the energy level populations can be performed using co-
herent radiation. For example, measuring the population of
energy levels �1� and �2� of a two-level system can be per-
formed by coupling the ground or the excited level by a laser
pulse to some ancilla upper level and then observing the
spontaneous emission from the ancilla level to a lower en-
ergy level. Such a measurement is described by projectors
P1= �1��1� and P2= �2��2� and corresponds to measuring an
observable of the form Q=q1P1+q2P2 with q1�q2. This
case shows the distinction between the use of coherent radia-
tion for control and for measurements. The coherent radia-
tion used for controlled unitary evolution generally includes
frequencies close to the transition frequencies of the con-
trolled energy levels �e.g., levels �1� and �2� for a two-level
system�. The radiation used for measurements includes com-
ponents with frequencies close to the transition frequencies
between the controlled levels and the ancilla levels, which
moreover should be subject to decoherence upon decay to
the lower energy levels. In general, measurements also can
be performed through collisions between the system and
electrons or atoms when the scattering cross section depends
on the initial state of the system. In this case the scattering
data will provide information on the initial state of the sys-
tem, thus realizing a measurement procedure.

Measurements on a two-level system in an arbitrary or-
thonormal basis �	� and �	�� can be realized using an ancilla
system and inducing an interaction Hamiltonian between
them, which generates a unitary evolution operator U	 such
that for any vector �
�=��	�+��	�� of the initial system one
has U	�
��1��=��	��1��+��	���2��, where �1�� and �2�� are
the energy levels of the ancilla system. The unitary operator
can be chosen as U	= I−2P, where P= �
��
� is the projec-
tor onto the one-dimensional subspace of the composite sys-
tem spanned by the vector �
�= �	����1��− �2��� /	2. Then,
nonselective measurement of the energy level populations of
the ancilla system �i.e., measurement in the basis of ��1�� and
�2��� realizes an indirect measurement of the initial system
in the basis �	� and �	�� and changes its state into
�= ���2�	��	�+ ���2�	���	��.

An indirect arbitrary von Neumann measurement on some
quantum system can be experimentally realized if the system
can be coupled with another appropriate ancilla system �the
ancilla can be identical to the initial system� and any unitary
operator between these two systems can be implemented. For
the case that the measured system is a two-level trapped ion,
the ancilla could be another two-level trapped ion. Arbitrary
unitary operators between the two trapped ions can be imple-
mented using a sequence of at most three controlled-NOT

�CNOT� gates and 15 elementary one-qubit gates �22� �i.e.,
single ion unitary operations�. Therefore experimental real-
izations of CNOT two-qubit gates �23� together with ability to
realize arbitrary one-qubit unitary evolutions allows for gen-
erating any two-qubit unitary operator, in particular, the op-
erator U	 from the preceding paragraph. Then the ability to
measure the ancilla ion in the energy level basis makes arbi-
trary measurements on the initial ion practically possible.

The detailed specification of such a scheme for practical
laboratory realizations of optimal measurements from Sec.
III requires a separate study.

III. CONTROL BY MEASUREMENT IN A TWO-LEVEL
SYSTEM

This section presents the analytical solution for maximiz-
ing the expectation value of any given target observable of a
two-level system by optimized measurements. First, the case
with neglect of system free evolution between the measure-
ments is considered. After that the modification induced by
including the free system dynamics is described. Any non-
trivial observable Q of a two-level system is an operator in
C2 with the form Q=q1P1+q2P2, where q1 and q2 are eigen-
values and P1 and P2 are the corresponding projectors such
that P1P2=0 and P1+ P2= I. The observable Q is measure-
ment equivalent to the projector P1 �or to P2
 I− P1�. Thus,
any nontrivial observable of a two-level system is measure-
ment equivalent to a suitable projector and the problem of
optimizing over the most general measured observables is
equivalent to optimizing over measurements of only the pro-
jectors.

Any density matrix of a two-level system can be repre-
sented as

� = 1
2 �I + w · �� ,

where �= ��1 ,�2 ,�3�
��x ,�y ,�z� is the vector of Pauli ma-
trices, w= �w1 ,w2 ,w3�
�wx ,wy ,wz��R3 is the Stokes vec-
tor, �w � �1, and w ·�=wx�x+wy�y +wz�z. Thus, the set of all
density matrices of a two-level system can be identified with
the unit ball in R3 �i.e., the Bloch sphere�. Given a density
matrix �, the components of its Stokes vector can be calcu-
lated as wi=Tr���i� for i=1,2 ,3.

Pure states correspond to projectors which can be repre-
sented as density matrices with Stokes vectors of unit norm,
�w�=1. Measuring a projector P transforms the initial density
matrix �0 into the new density matrix �1
MP��0� defined
as

�1 = P�0P + �I − P��0�I − P� 
 �0 − �P,�P,�0�� .

Let a0 and a be the Stokes vectors characterizing the
initial density matrix �0 and projector P, respectively �so that
�a�=1�. Using the commutation of Pauli matrices ��k ,�l�
=2i�klm�k, where �klm is the Levi-Civita symbol, one gets

�P,�0� =
1

4
��I + a · ��,�I + a0 · ��� =

1

4 �
k,l=1

3

ak�a0�l��k,�l�

=
i

2 �
k,l,m=1

3

�klmak�a0�l�m =
i

2 �
m=1

3

�a � a0�m�m,

where �a�a0� denotes the vector product of a and a0. This
gives

�1 = 1
2 �I + �a0 + a � �a � a0�� · �� .

Using the Lagrange formula a� �b�c�=b�a ·c�−c�a ·b� for
the double vector product and noticing that �a�=1 produces
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a0 + a � �a � a0� = a0 + a�a · a0� − a0�a�2 = a�a · a0� .

Therefore we finally have

�1 = 1
2 �I + �a · a0��a · ��� ,

such that the Stokes vector of the density matrix after mea-
suring P takes the form w1=a�a ·a0�.

Consider a consecutive measurements of the pro-
jectors P1 , . . . , PN on the same physical system. Let ak for
k=1, . . . ,N be the Stokes vector characterizing projector Pk.
After the last measurement the density matrix will be

�N ª MPN
� MPN−1

¯ � MP1
��0� = 1

2 �I + wN · �� .

Here the Stokes vector wN has the form

wN = aN�aN · aN−1��aN−1 · aN−2� ¯ �a1 · a0�

= aN cos �N cos �N−1 ¯ cos �1�a0� , �5�

where �k is the angle between vectors ak−1 and ak.
The objective functional �2� may be rewritten as follows.

The target Hermitian operator � can be represented
as �=�0I+� ·�, where �0=Tr � is a real number and
�=Tr�����R3 is a three-dimensional real vector. Using
this representation produces JN�a1 , . . . ,aN�=�0+wN ·�. The
control parameters are the unit norm vectors a1 , . . . ,aN
which determine wN. Introducing the target vector
wT=� / ��� of unit norm, �wT�=1, then the objective func-
tional becomes JN�a1 , . . . ,aN�=�0+ ����wN ·wT�. It is clear
from this expression that maximizing the objective is equiva-
lent to maximizing the scalar product wN ·wT.

Let �� be the angle between a0 and the target vector wT
and �N+1 be the angle between vectors aN and wT so that
�i=1

N+1�i���. Here the inequality is used since vectors ak
may in general belong to different planes. The equality may
hold if all vectors a0 , . . . ,aN and wT belong to the same
plane. As a result, the objective functional may be expressed
as

JN�a1, . . . ,aN� = �0 + ����a0�cos �N+1 cos �N ¯ cos �1.

The objective JN is maximized if �1=�2= ¯ =�N=�N+1
=�� / �N+1� so that �i=1

N+1�i=��, and the maximal value of
the objective is

JN
max = �0 + ����a0�
cos

��

N + 1
�N+1

. �6�

The corresponding optimal kth measured observables are
those which are measurement equivalent to the projector
Pk

opt= 1
2 �I+ak

opt ·��, where the vector ak
opt belongs to the plane

formed by a0 and wT and is obtained by rotating the unit
norm vector a0 / �a0� by the angle k�� / �N+1�. Any such ob-
servable has the form

Qk
opt = qkPk

opt + q̃k�I − Pk
opt� , �7�

where qk and q̃k are real numbers with qk� q̃k. It is not im-
portant for the control purposes here which observables from
the equivalence class are chosen. In particular, the projector
Pk

opt could be used as the measured observable. In general, if
the free system evolution is neglected then all the vectors

characterizing optimal observables must belong to the same
plane formed by the Stokes vectors of the initial and final
states.

The Stokes vector of the system density matrix after mea-
suring Pk

opt, in the case that the total number of measure-
ments is N, will be

wN,k = �a0�
cos
��

N + 1
�k

ak
opt. �8�

Thus, each optimal measurement rotates the Stokes vector of
the density matrix by the angle �� / �N+1� and shortens its
length by the factor cos��� / �N+1��.

The analysis above assumes that the free system evo-
lution between the measurements could be neglected. This
limit will be valid if the time between measurements �t is
sufficiently small such that �tEi�1 for the eigenvalues Ei,
i=1,2 , . . . of H0; the limit is also valid if the system is close
to degenerate, Ei�Ej, ∀i , j. In order to go beyond this lim-
iting case, now we will describe the modification induced by
the free dynamics. Suppose that N measurements of observ-

ables Q̃1 , . . . , Q̃N are performed at the fixed time moments
0� t1� t2� ¯ � tN�T and between the measurements the
system evolves with its time independent free Hamiltonian
H0. Then the density matrix ��T� at the target time T is given
by the equation of the form �4� with the unitary evolution
between �k−1�th and kth measurements U�tk−1,tk����
=exp�−i�tk− tk−1�H0�� exp�i�tk− tk−1�H0�. The relation

MQ̃�U�U†�=UMQ���U† with Q=U†Q̃U gives by induction
��T�=e−iTH0�NeiTH0, where �N=MQN

� ¯ �MQ1
��0� is the

density matrix evolved only under the measurements of the

modified operators Qk=eitkH0Q̃ke
−itkH0. Therefore the objec-

tive function for a target operator �̃ in the case of including

the free dynamics, J̃N�Q̃1 , . . . , Q̃N ;�̃�ªTr���T��̃�, equals
the objective function JN�Q1 , . . . ,QN ;��ªTr��N�� without
the free dynamics with the modified target operator �

=eiTH0�̃e−iTH0 and measured observables Qk=eitkH0Q̃ke
−itkH0.

The latter problem was completely solved above and the
optimal measured observables are given by �7�. If Qk

opt are
such optimal measured operators for the objective function
JN�Q1 , . . . ,QN ;�� with neglected free dynamics, then the
optimal measured operators for the objective function

J̃N�Q̃1 , . . . , Q̃N ;�̃� are Q̃k
opt=e−itkH0Qk

opteitkH0. This implies
that, while all the vectors ak

opt corresponding to the optimal
operators Qk

opt belong to the same plane, this is not true for

the vectors ãk
opt corresponding to the operators Q̃k

opt.
Thus, if the free evolution between the measurements is

not important then, for arbitrary initial and target states, the
vectors characterizing optimal measured observables must
belong to the same plane formed by the Stokes vectors of the
initial and final density matrices. If the free evolution is rel-
evant, then the optimal observables undergo additional uni-
tary transformations with the generator H0, which moves
their corresponding vectors out of a plane.

IV. MEASUREMENT-INDUCED POPULATION TRANSFER

Here we apply the general result �6� to the problem of
population transfer between orthogonal states �1� and �2� of a
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two-level system. The initial density matrix is �0= �1��1�. The
target operator is the projector on the excited state,
�= �2��2�, which corresponds to �0=1/2 and �=1/2ez. In
this case a0=−ez, wT=ez and therefore the angle between the
initial and target vectors is ��=� �see Fig. 1�. The maximal
population transfer to the excited level �22�N� as a function
of the number of performed measurements is given by �6�
and has the form

�22�N� =
1

2
�1 + 
cos

�

N + 1
�N+1� . �9�

The function �22�N� for N�50 is plotted in Fig. 2.
Suppose that the goal is to transfer population �22=1−�

to the excited level, where ��1. The asymptotic number of
optimal measurements necessary to meet this goal may be
found as follows:

�22�N� = 1 − � ⇒ 1 + 
cos
�

N + 1
�N+1

= 2 − 2� ⇒ cos
�

N + 1

= �1 − 2��1/�N+1� � 1 −
2�

N + 1
.

Notice that a small value of � requires N to be large. There-
fore the Taylor expansion for cos�� / �N+1�� may be used
which gives the approximate relation

�2

2�N + 1�2 �
2�

N + 1
.

It then follows that the number of measurements necessary to
transfer population �22=1−� to the excited level asymptoti-

cally behaves as N��2 / �4��, which is consistent with the
behavior in Fig. 2 with N=50 and ��0.05.

Figure 1 illustrates the population transfer by optimal
measurements in a two-level system for N=10. The left-hand
plot corresponds to the case with a nontrivial free dynamics
driven by the free Hamiltonian H0= 1

2�z. The 10 observables

Q̃1 , . . . , Q̃10 are measured at the time moments tk=Tk / �N
+1�, where the target time is chosen as T=�, and character-
ized by the unit norm vectors

ãk
opt = − cos
 �k

N + 1
�ez + sin
 �k

N + 1
��cos
 Tk

N + 1
�ex

+ sin
 Tk

N + 1
�ey�, k = 1, . . . ,N �10�

shown on the left-hand plot. The smooth curve passing
through the ends of these vectors represents the continuous
family of the projectors characterizing the anti-Zeno effect in
the limit of infinite number of optimal measurements, as de-
scribed in the next section.

The right-hand plot in Fig. 1 illustrates the evolution of
the system without free dynamics between the measure-
ments. In this case �1= ¯ =�11=� /11 and the optimal ob-
servable for the kth measurement is characterized by the vec-
tor

ak
opt = − cos
 �k

N + 1
�ez + sin
 �k

N + 1
�ex, �11�

which is obtained by rotating the initial vector a0 by the
angle k�1. The system density matrix after the kth measure-
ment has the Stokes vector bk
w10,k= �cos �1�kak

opt. The plot
shows the length of bk decreasing after each measurement by
the factor cos �1. The relation between the two cases is that
each vector ãk

opt describing optimal kth measurement for the
case with free dynamics is obtained by rotating ak

opt by the
angle �k /10 around the z axis. Note that the 10 vectors on

FIG. 1. The plots illustrate evolution of a two-level system dur-
ing the optimal measurement-induced population transfer from the
ground to the excited state. The vectors a0=−ez and wT=ez are the
Stokes vectors of the initial and target states. The total number of
measurements is N=10. The left-hand plot shows the 10 unit norm
vectors describing the optimal measured observables for a case with
nontrivial free system dynamics. The smooth curve passing through
the ends of these vectors describes the projectors for the anti-Zeno
effect in the limit of an infinite number of optimal measurements.
The right-hand plot shows the Stokes vector bk
w10,k, defined by
�8�, of the system state after k optimal measurements with neglected
free dynamics. Each measurement rotates the preceding vector by
the angle �1=� /11 anticlockwise and shortens its length by the
factor cos �1.
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FIG. 2. Maximal measurement-induced population transfer from
the ground to the excited state of a two-level system as a function of
the number of optimal measurements. The maximal population
�22�N� approaches 1 as N→�.
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the left-hand plot of Fig. 1 are the vectors ãk
opt characterizing

the 10 optimal measured observables which are measurement

equivalent to the projectors, i.e., pure states, P̃k
opt= 1

2 �I
+ ãk

opt ·�� and therefore these vectors have unit norm. The 10
vectors bk on the right-hand plot characterize the system den-
sity matrix �= 1

2 �I+bk ·�� after each measurement, which is a
mixed state due to decoherence induced by the measure-
ments, and therefore these vectors have norm less than one.
The shortening of the vectors characterizing the system den-
sity matrix after each measurement for the case illustrated on
the left-hand plot will be the same, as for the case shown on
the right-hand plot, i.e., this shortening is by the factor
cos �1 after each measurement.

Numerical simulations for some models in Ref. �20� also
suggest that the expression �9� gives the estimate for the
maximal population transfer between any pair of orthogonal
levels in any multilevel quantum system. The complete ana-
lytical investigation of this problem remains open for a fu-
ture research.

V. RELATION WITH THE ANTI-ZENO EFFECT

The maximal population transfer to the excited level by a
finite number of measurements satisfies �22�N��1. Since
limn→��cos�� /n��n=1, one has limN→� �22�N�=1, i.e., com-
plete population transfer is attained only in the limit of an
infinite number of measurements which describes the anti-
Zeno effect. To show this behavior consider the projector
E= �1��1 � = 1

2 �I+a0 ·��. The goal is to steer the system from
the initial state �1� at time t=0 into the target state �2� at
time t=T. Define for each t� �0,T� the unitary operator
U�t�=exp�i�y�t /2T�. Then E�t�ªU�t�EU†�t� is the projec-
tor characterized by the Stokes vector wt=−cos��t /T�ez

+sin��t /T�ex, i.e., E�t�= 1
2 �I+wt ·��. According to the anti-

Zeno effect, continuous measurement of the projector E�t�
steers the system at time t into the state characterized by
vector wt. One has wT=ez, i.e., at the target time the system
will be transferred into the state �2�.

The anti-Zeno effect is obtained in the limit of an infinite
number of measurements when the interval between any two
consecutive measurements tends to zero. Consider perform-
ing N measurements of the optimal observables
Q1

opt , . . . ,QN
opt, where Qk

opt= 1
2 �I+ak

opt ·�� and ak
opt is defined by

Eq. �11�. If the dynamics between the measurements is ne-
glected then the state of the system after the kth measure-
ment will be characterized by the vector

wN,k = 
cos
�

N + 1
�k�− cos
 �k

N + 1
�ez + sin
 �k

N + 1
�ex� .

Taking the limit as N, k→� such that the ratio k / �N+1�
= t /T is kept fixed produces

lim
N,k→�

wN,k = − cos��t/T�ez + sin��t/T�ex 
 wt.

Thus, the anti-Zeno effect is recovered in this limit. The
corresponding evolution is characterized by the projector
E�t� describing the rotation of the Stokes vector of the sys-
tem density matrix in the same plane. In general, other evo-
lutions exist which steer the system from the ground to the

excited state with projectors Ẽ�t� which induce rotations out
of a plane. Such projectors can be limits of optimal control
by a finite number of measurements if the free evolution
between the measurements is nontrivial. As an example of
this situation, the smooth curve on the left-hand plot of Fig.
1 describes the optimal anti-Zeno effect characterized by the

projector Ẽ�t�= 1
2 �I+ w̃t ·��, where

w̃t = lim
N,k→�

ãk
opt = − cos��t/T�ez + sin��t/T��cos��t/T�ex

+ sin��t/T�ey� .

Here the vectors ãk
opt defined by �10� characterize the optimal

measurements for the example with the free evolution con-
sidered in Sec. IV, the target time is chosen as T=�, and the
limit is taken with fixed ratio k / �N+1�= t /T.

VI. CONCLUSIONS

In this paper control of quantum systems by nonselective
measurements is considered. The capabilities of optimized
measurements for control of a two-level system are explicitly
investigated. The optimal observables and maximal expecta-
tion value of any target observable are analytically found
given any initial system density matrix and any fixed number
of performed measurements, thus providing a complete ana-
lytical solution for control by measurements in a two-level
system. For any given number of measurements the degree
of control, i.e., the maximum value of the objective, is found.
The relation between the optimal measurements and the
quantum anti-Zeno effect is established. Looking ahead, the
ultimate goal will be specification of laboratory protocols to
make the procedure of control by measurement practical for
realistic systems.
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