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We study the nonequilibrium evolution of the phase coherence of a Bose-Einstein condensate in a one-
dimensional optical lattice as the lattice array is suddenly quenched from a highly-number-squeezed to a
superfluid state. We observe slowly damped phase coherence oscillations in the regime of large filling factor
��100 bosons per site� at a frequency proportional to the generalized Josephson frequency.
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Proposals for Bose-Einstein condensate �BEC� interfer-
ometry have demonstrated that number-squeezed states
can potentially provide robust sub-shot-noise sensitivity
to perturbing interactions �1,2�. The appeal of one recent
proposal by Dunningham and Burnett �3� is the current avail-
ability of number-squeezed states in an optical lattice �4–6�
and the simplicity of the required experimental sequence.
In this proposal, an array of number-squeezed states is
prepared in a suitably deep optical lattice. The lattice depth is
rapidly lowered and the system evolves in the presence of a
perturbing potential energy gradient. The lattice depth is then
restored to its initial value. A final interferometric measure-
ment of array phase coherence is used to characterize the
perturbation. This sequence is analogous to sub-shot-noise
optical interferometry using Fock states as inputs to a
Mach-Zehnder interferometer �1�.

Unlike the optical case, however, this proposal is compli-
cated by both a strong nonlinearity due to the BEC mean-
field interaction and multiple interfering modes. In this work,
we examine the influence of these factors on coherence dy-
namics in an optical lattice. We study the phase coherence
evolution of highly squeezed number states in response to a
sudden reduction in the lattice depth. This sequence induces
on-site phase variance oscillations as the quantum state
evolves, yielding coherence restoration. We observe these
oscillations in the dynamic evolution of interference contrast.
To our knowledge, this work is the first to characterize the
time scale for coherence restoration in the large-filling-factor
regime.

For our experimental parameters �many atoms and lattice
sites�, exact solutions of the many-body equations of motion
are unavailable due to the system’s exponentially large Hil-
bert space. Furthermore, traditional approximations fail in
their ability to model the initial state �7�. Density matrix
renormalization group techniques have recently been used to
study nonequilibrium dynamics of boson lattices with low
filling factors �8�, but they are difficult to extend to large
filling factors. Thus, analysis of this dynamic evolution in an
optical lattice is an interesting problem in its own right.

The Bose-Hubbard Hamiltonian accurately describes the
atom-lattice system �9,10�. Written in terms of single-particle
creation and annihilation operators �âi

† , âi�,

H = − ��
�i,j�

âi
†âj + �g/2��

i

�iâi
†âi

†âiâi + �
i

Viâi
†âi, �1�

where the subscripts index the lowest vibrational mode of
each lattice site. Here � is the tunneling rate between adja-
cent lattice sites, g�i is the mean-field energy due to repul-
sive interactions between two atoms �g=4��2a /m, a is the
s-wave scattering length, and m is the atomic mass� �11�, Ni
is the number of atoms per site, and Vi=�i2 is the external
potential due to a harmonic magnetic trap. The importance of
quantum fluctuations is determined by the ratio g�i /Ni�,
where g�i /Ni��1 indicates the superfluid to Mott-insulator
�MI� crossover �9,10,12,13�. We characterize global array
phase coherence by the quantity D�t�=�i�j�aj

†ai� /NM,
where M is the ratio of the total number of atoms N to the
number of atoms in the central lattice site �7�.

Qualitative understanding of the system dynamics is ob-
tained by solving Eq. �1� for a two-site model. Figure 1�a�
plots the evolution of the number distribution after a sudden
reduction in lattice depth for parameters similar to our ex-
perimental conditions. Figure 1�b� shows the associated
phase distribution �the Fourier transform of the number dis-
tribution coefficients�. For the two-site system, the character-
istic oscillation frequency is the generalized Josephson fre-
quency 	4Nig�i�+4�2 �14,15�. At the first phase revival
�t�6 ms in Fig. 1�b��, phase variance is sub-Poissonian
while number variance is super-Poissonian. In principle, this
enables interferometric phase shift measurements below the
atom shot-noise limit �2�.

We employ the truncated Wigner approximation �TWA�
�16,17� to obtain approximate array dynamics for the full
lattice system. In the TWA, the quantum-mechanical expec-
tation value of an observable is replaced by a semiclassical
ensemble average. Specializing to the lattice system, we con-
sider a set of wave functions � j which evolve according to
the semiclassical, discrete Gross-Pitaevskii equation �GPE�
�7,18�:

i��� j/�t = − ��� j−1 + � j+1� + �Vj + g� j
� j
2�� j . �2�

The initial condition � j�0�=	Nje
i�j, where the phases � j

are sampled from a uniform distribution of values between
0 and 2�, and Nj are determined from the GPE ground-state
solution. We time evolve � j�0� for a large ensemble of
random initial phase distributions and, in Monte Carlo
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fashion, determine D�t� as the statistical average of these
independent GPE simulations �7�. Figure 2 shows an ex-
ample calculation of D�t� for conditions similar to those used
in the experiments described below.

This model is intuitively motivated by the observation
that phase is completely undefined for both a Fock state and
a superposition of coherent states with random phases �19�.
The TWA is accurate for short times and is applied here since
the time evolution occurs in the semiclassical superfluid re-
gime �17�. It has been used to analyze the breakdown of
adiabaticity for lattice squeezing experiments �4� and to
study damping of dipolar motion �20,21�. The TWA results

are consistent with an earlier phonon interpretation of BEC
lattice dynamics �22�.

The apparatus is described in Ref. �4�. 87Rb atoms are
evaporatively cooled in a time-orbiting potential, producing
nearly pure condensates �T /Tc�0.3� with 3	103 atoms in
the F=2,mF=2 state. After adiabatically relaxing the confin-
ing harmonic potential, the BEC is loaded into a vertically
oriented one-dimensional optical lattice. The lattice uses a
retroreflected 
=840 nm laser beam focused to a 50 �m 1/e
intensity radius at the point of overlap with the BEC. This
provides strong transverse confinement and periodic confine-
ment along the propagation axis. At a well depth of
U=63ER �ER /�=�k2 /2m�2�	3.2 kHz, k=2� /
�, the
transverse oscillation frequency is 150 Hz, significantly
larger than the 11 Hz magnetic trap radial frequency �23�.

We load the atoms into the lattice by linearly increasing
the lattice depth to U0 in 200 ms �Fig. 3�a��. The 200 ms
ramp speed is slow enough that on-site number fluctuations
are substantially suppressed by the end of the ramp despite
imperfect adiabaticity �4,6,22,24�. At U0=63ER, we infer
� /�=2�	0.019 Hz, N0=90, and g�0 /N0�=2 for the cen-
tral lattice site �i=0�. We then lower the depth �in 2 ms� to a
final level Uf with a corresponding superfluid groundstate.
Uf ranges from 12ER to 32ER, with 1�g�0 /2���2 Hz and
42
� /2��
1 Hz. The time scale for lowering the poten-
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FIG. 1. �Color� �a� Evolution of the number distribution of a
two-site system following a 200 ms lattice depth ramp to 65ER and
a subsequent diabatic lowering of the depth to 20ER, for Ni=100
atoms. False color exponential scaling denotes probability of
number distribution in one site. �b� Associated phase distribution.

FIG. 2. TWA simulation of D�t� for a final lattice depth of
32ER.
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FIG. 3. �Color� �a� Experimental sequence for the lattice depth
ramp. The lattice is ramped to a peak value U0, with corresponding
reduced number fluctuations, and then rapidly decreased to Uf. �b�
Absorption images of the atom density profile for indicated hold
times. �c� Phase variance oscillation with U0=63ER, Uf =16.6ER,
and � /�=2�	0.67 Hz.
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tial is fast compared to the characteristic time scale for adia-
batic evolution of the many-body ground state but slow with
respect to the oscillation frequency of individual wells.

We stroboscopically follow the array phase coherence
evolution after lowering the lattice depth to Uf by holding
the atoms in the lattice before releasing them and observing
their de Broglie wave interference. We reduce the strength of
the confining magnetic potential �in 300 �s� and hold the
atoms in the lattice+gravity potential for a time sufficient to
introduce a � /2 phase shift between adjacent sites before
extinguishing the lattice light. This � /2 phase shift produces
a two-peaked interference pattern when long-range array
phase coherence exists.

Figure 3�b� displays a series of absorption images of the
atomic density profile as the quantum state evolves. We char-
acterize the interference patterns through the contrast param-
eter �, defined as the width of a single peak to the separation
between the peaks. Large � indicates loss of interference con-
trast. � is obtained by fitting the data to two displaced Gaus-
sians with equal widths. Figure 3�c� shows the oscillatory
response of � as a function of hold time. Coherence restora-
tion is observed, indicating the evolution of relative number
fluctuations. Although it is tempting to identify the state
associated with the maximum return of contrast with a
phase-squeezed state �as in Fig. 1�, our observation cannot
distinguish between this state and other states which also
support relative phase coherence. Future work will be geared
toward an explicit characterization of the high-order coher-
ence properties associated with the state as it dynamically
evolves.

In order to gain further insight into the mechanism under-
lying the contrast oscillations, we study the lattice dynamics
as a function of Uf. The oscillatory response is analyzed by
fitting the functional form A exp�−t /��cos��t� to the data ��
is the characteristic damping time and � the characteristic

frequency�. As Uf is increased, a monotonic decrease in both
� �Fig. 4�a�� and � �Fig. 4�b�� is observed. For reference, we
also plot the characteristic frequencies associated with the
GPE-predicted quadrupole breathing mode in Fig. 4�a� �25�.

The oscillation frequencies can be interpreted in terms of
effective phonon wave vectors qeff. We infer qeff from the
phonon dispersion relation for a uniform lattice �26�:

��q = 	4� sin2�q
/4��2Nig� + 4� sin2�q
/4�� . �3�

For each observed frequency �, we find the corresponding
excitation wave vector qeff such that the lowest-lying phonon
excitation frequency �q is equal to � �Fig. 4�c��. For suffi-
ciently large Uf, � corresponds to a short-wavelength exci-
tation and is proportional to the generalized Josephson fre-
quency. For our parameters, this is much faster than the
single-particle tunneling frequency which has been previ-
ously observed to determine the time scale for the onset of
coherence in a lattice system with low filling factor �5�. It is
interesting to note that an exponential fit to the data extrapo-
lates to 4� /qeff
=1 site at 55ER, a lattice depth close to the
MI crossover.

In order to make contact with the predictions of
TWA theory, we consider the short-time dynamics associated
with the onset of coherence. We characterize the contrast
oscillations through their initial curvature �. To compare
with theory �Fig. 4�d��, we normalize the oscillation ampli-
tudes of D�t� �Fig. 2� and ��t� �Fig. 3�c�� to those values
associated with a return to full coherence �27�. We find that
the TWA effectively captures the short-time dynamics over a
substantial range of Uf.

Lattice depths used for the initial state preparation are
deep enough that this step cannot be considered fully adia-
batic. Therefore, the state at U0 is likely described by a
highly squeezed number state with some additional phonon
excitations �22,24�. We place bounds on the influence of
nonadiabatic behavior in two ways. First, we use the two-site
model to simulate the state preparation ramp for our experi-
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FIG. 4. �Color online� �a� Oscillation frequency as a function of
lattice depth. Dashed line shows the calculated quadrupole mode
excitation spectrum using the GPE. �b� Damping coefficient � vs
lattice depth. �c� 4� /qeff
 lattice sites vs lattice depth. Solid line is
exponential fit to data. �d� Initial curvature � of the phase variance
oscillation vs lattice depth. Solid line depicts results of the TWA.
Shaded region reflects experimental uncertainty.
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FIG. 5. �a� Phase variance oscillations for U0=80ER �black�,
63ER �dark gray� and 50ER �light gray� with Uf =17ER. �b� GPE
simulation of D�t� for lattice sequence in Fig. 3 for U0=80ER

�black� and 50ER �gray�.
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mental conditions. In all cases, number fluctuations of the
initial state are approximately one atom per lattice site. Sec-
ond, we experimentally investigate the dependence of the
oscillations on U0, keeping Uf and the ramp time fixed �Fig.
5�a��. Within the limits of our experimental uncertainties, the
observed � is independent of U0 for 50ER�U0�80ER. In-
tuitively, we understand this invariant behavior by noting
that for the deep lattices used, the dominant nonadiabatic
dephasing mechanism is a homogeneous mechanism whose
origin is the mean-field-induced decoupling of the relative
phases of the Fock-state components associated with the
quantum state at each lattice site �6,28�. In the TWA picture,
such a state is modeled by randomly choosing Ni and �i at
each lattice site. Since the variance in Ni is small, this
amounts to a negligible correction for the dynamics.

We note that the observed independence of dynamics on
U0 rules out a semiclassical �GPE� mechanism whose origin
is remnant phase coherence between lattice sites introduced
by nonadiabaticity during state preparation. Although this in-
homogeneous mechanism is likely masked by the homoge-

neous mechanism described above, we assess its possible
relevance through GPE numerical solutions. Figure 5�b�
shows solutions obtained by integrating Eqs. �2� over the
experimental sequence including the state preparation lattice
ramp, with � j =0 as the initial condition. In this case, the loss
of global phase coherence following state preparation is
driven by site-to-site nonuniformities in the array chemical
potential. In contrast to our observations and the TWA, these
solutions show a strong dependence on U0.

In summary, we have shown that the TWA accurately
models the short time non-equilibrium dynamics for the soft
boson lattice system. Future work will investigate lattice
implementations of sub-shot-noise interferometry.
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