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We investigate boundary critical phenomena from a quantum-information perspective. Bipartite entangle-
ment in the ground state of one-dimensional quantum systems is quantified using the Rényi entropy S�, which
includes the von Neumann entropy ��→1� and the single-copy entanglement ��→�� as special cases. We
identify the contribution of the boundaries to the Rényi entropy, and show that there is an entanglement loss
along boundary renormalization group �RG� flows. This property, which is intimately related to the Affleck-
Ludwig g theorem, is a consequence of majorization relations between the spectra of the reduced density
matrix along the boundary RG flows. We also point out that the bulk contribution to the single-copy entangle-
ment is half of that to the von Neumann entropy, whereas the boundary contribution is the same.
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Recently much work has been done to understand en-
tanglement in quantum many-body systems. In particular, the
behavior of various entanglement measures at or near a
quantum phase transition �1� has received a lot of attention
�2–9�. These entanglement measures include the von Neu-
mann entropy and the single-copy entanglement, among oth-
ers. The former is the most studied measure and quantifies
entanglement in a bipartite system in the so-called
asymptotic regime �10�, whereas the latter was recently sug-
gested to quantify the entanglement present in a single copy
�9�. For a system in a pure state ��� �e.g., the ground state�
that is partitioned into two subsystems A and B, the von
Neumann entropy is S1�−TrA�Alog2�A where �A
=TrB������ is the reduced density matrix for A, and the
single-copy entanglement is S��−log2�1, where �1 is the
largest eigenvalue of �A.

Studies of the von Neumann entropy for quantum spin
chains �3–8� have revealed that its dependence on the size �
of the block A is very different for noncritical and critical
systems. For the former, the von Neumann entropy increases
logarithmically with � until it saturates when � becomes of
order the correlation length �. For the latter, it diverges loga-
rithmically with �, because �=�, and the corresponding �1
+1�-dimensional field theory becomes invariant under con-
formal transformations. Conformal field theory �CFT� pre-
dicts that the prefactor of the logarithmic term in the entropy
scaling is universal and proportional to the so-called central
charge c of the theory �6,11�. Furthermore, it has been shown
numerically �12� that the entanglement loss along the �bulk�
renormalization group �RG� flows, which is consistent with
the CFT predictions for the von Neumann entropy �6,11� and
with Zamolodchikov’s c theorem �13�, can be given a more
“fine-grained” characterization in terms of the majorization
�14� of the reduced density matrix spectra along the RG flow.
A theoretical analysis of majorization in these systems also
appeared recently �15�.

Boundary critical phenomena �16� in one-dimensional
�1D� quantum systems �equivalently, 2D classical systems�
have attracted a lot of interest, especially in the context of
boundary CFT. A closely related subject is the theory of

boundary perturbations of certain conformally invariant
theories, so-called integrable boundary quantum field theory
�17�, which is relevant to quantum spin chains with non-
trivial boundary interactions, impurities in Luttinger liquids,
Kondo physics, tunneling in fractional quantum Hall devices,
and open string theory. In these problems, the Affleck-
Ludwig g theorem �18�, stating that the ground state degen-
eracy g is nonincreasing along boundary RG flows, is analo-
gous to the c theorem for bulk critical phenomena.

In this Rapid Communication we investigate boundary
critical phenomena in quantum spin chains from a quantum-
information perspective. Our findings provide insights into
the information-theoretic explanation of the boundary en-
tropy and the g theorem characterizing the intrinsic irrevers-
ibility due to information loss along boundary RG flows
�19�. We choose the Rényi entropy �also known as the �
entropy� S�= �1−��−1log2TrA�A

� as our entanglement mea-
sure, partly motivated by the fact that both the von Neumann
entropy and the single-copy entanglement are special cases
of the Rényi entropy, corresponding to �→1 and �→�,
respectively. Using CFT we derive expressions for the Rényi
entropy which include a boundary contribution, and show
that a majorization relation underlies an entanglement loss
along boundary RG flows �i.e., when a system with a bound-
ary interaction flows from an unstable to a stable fixed
point�. We support our analytical arguments with numerical
density-matrix renormalization group �DMRG� calculations
�20,21�.

Consider a 1D lattice of interacting spins with lattice
spacing a. Let L be the total length of the system, and let the
two subsystems A and B be blocks of consecutive spins of
length � and L−�, respectively. Then CFT predicts that for
an infinite spin chain at criticality

S� =
c

6
�1 + �−1�log2

�

a
+ c�� �1�

where c is the central charge and c�� is a nonuniversal con-
stant �6�. For a semi-infinite spin chain with the block A
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starting at the origin where a boundary interaction is applied,
we have instead

S� =
c

12
�1 + �−1�log2

2�

a
+

1

2
c�� + Sb. �2�

Here Sb=log2g is the boundary entropy �18�, with g= �B �0�,
where �B� is the so-called boundary state �22–24� and �0� is
the ground state. We emphasize that, compared with the cor-
responding expression for S1 in Ref. �6�, there is an extra
factor 1 /2 in front of c�� and Sb in Eq. �2�.

The corresponding Rényi entropies for finite L are found
from Eqs. �1� and �2� by standard conformal mappings �23�.
As a result, the Rényi entropy for periodic boundary condi-
tions �PBCs� �open boundary conditions �OBCs�� is given by
replacing � /a→ �L /�a�sin �� /L in Eq. �1� �Eq. �2��. For the
OBC case we have assumed that the BCs on the left and
right ends are identical; otherwise one would have to con-
sider the complicating effects of so-called boundary-
condition-changing operators.

From these results one sees that the contribution of the
bulk universal part to the single-copy entanglement S� is
always half of that to the von Neumann entropy S1, thus
extending the conclusion in Ref. �9� for the XX chain �c
=1� to all conformally invariant critical systems. However,
we stress that the contribution of the boundary entropy to S�

does not depend on �.
The details of the CFT derivation of the above results

�which makes use of CFT expressions for TrA�A
� from Ref.

�6�� will be given elsewhere. Here we will instead present a
heuristic argument to justify Eqs. �1� and �2�. The central
charge c measures the �effective� number of gapless excita-
tions. It also describes the way a specific system reacts to the
introduction of a macroscopic length scale into the system
�23�. Therefore, when the entire �infinite� system is parti-
tioned into a block of length � and its environment, one may
expect that the Rényi entropy S� depends only on c and � /a
with some short distance cutoff a, e.g., the lattice spacing for
quantum spin chains. Because both the Rényi entropy and
the central charge are additive, one can see �25� that the
Rényi entropy must be linear as a function of the central
charge, i.e., S�=cf��� /a�+h�, with f� a universal function
and h� a nonuniversal �i.e., model-dependent� function. The
specific form of the function f� may be determined by cal-
culating the Rényi entropy for any exactly solvable model,
for instance the massless Dirac fermion field as done in Ref.
�8� for PBCs, thus confirming Eq. �1�. The calculation may
be extended to the massless Dirac fermion with a confor-
mally invariant boundary condition, leading to the conclu-
sion that h� consists of the nonuniversal bulk part �1/2�c��
and the universal boundary part Sb. The bulk universal part
of Eq. �2� and its counterpart for finite L result from the
substitution c→c /2, �→2� and L→2L in Eq. �1� and its
corresponding counterpart, due to the fact that one may “un-
fold” the system of a finite size L by identifying left movers
at position x �x= ja, with j labeling lattice sites� with right
movers at −x so that the resulting system consists of only
right movers subject to PBCs and with the system size scales
� and L doubled and the number of gapless degrees of free-

dom halved. The factor 1 /2 in front of c�� in the second bulk
term in Eq. �2� also originates from this halving of the num-
ber of gapless degrees of freedom.

We now address the implications of these CFT predictions
for models of semi-infinite quantum spin chains. We first
consider the S=1/2 transverse Ising chain in a boundary
magnetic field, described by

HIsing = − 	
j=0

�

�Sj
xSj+1

x + hSj
z� + hbS0

x . �3�

Here h is the transverse bulk magnetic field, and hb is the
boundary magnetic field. We set h=1/2 so that the model is
bulk critical with central charge c=1/2. The second model is
the S=1/2 XXZ chain, for which

HXXZ = 	
j=0

�

�Sj
xSj+1

x + Sj
ySj+1

y + �Sj
zSj+1

z � + hbS0
x . �4�

Here � denotes the anisotropy and hb is the �transverse�
boundary magnetic field. The model is bulk critical with cen-
tral charge c=1 for −1	�
1.

For both models, the points hb=0 and hb= ±�, corre-
sponding to the free and fixed conformally invariant BCs, are
boundary critical fixed points; the former is unstable and the
latter is stable. A boundary magnetic field hb�0 is generally
a relevant perturbation of the free BC hb=0, and generates a
boundary RG flow of hb towards the fixed point hb=�. For
0	hb	�, the conformal invariance is lost, and the compe-
tition between boundary ordering and bulk criticality intro-
duces a crossover length �hb

d−1 �26�, where d	1 is the
scaling dimension of the relevant boundary perturbation,
characterizing its behavior under scale transformations. For
the Ising model, d=1/2, and for the XXZ model, d=2�R2,
where R=
�1/2��− �1/2�2�arccos � is the compactification
radius. Furthermore, for both models, g for fixed BC is less
than g for free BC, which implies that the Rényi entropy is
less for fixed than for free BC. This is also consistent with
the g theorem �18�, which states that g decreases along
boundary RG flows. For the transverse Ising model, g=1
�free� and g=1/
2 �fixed� �22�; for the XXZ model, g
=�−1/4�2R�−1/2 �free� and g=�1/4R1/2 �fixed� �26�. We em-
phasize that, even away from boundary critical points, Eq.
�2� is still valid for ���, due to bulk criticality.

HXXZ reduces to the isotropic XXX model for �=1 �R
=1/
2��. This case is special, because the boundary pertur-
bation is marginal �d=1�. In fact, g=2−1/4 for both free and
fixed BC. The line from hb=0 to hb=� is a line of fixed
points; there is no RG flow since g is the same everywhere
along the line, as follows from the equivalence to a free
scalar boson field with a dynamical boundary interaction
�27�.

To check the CFT predictions, we analyze quasiexact
DMRG results. Figure 1 shows the entanglement in the bulk
critical transverse Ising model �3� for PBCs and OBCs with
different boundary fields hb. For OBCs, the chain size is L
=800a and the number of retained block states is M =140.
For PBCs we use the DMRG variant described in Ref. �28�,
i.e. a true PBC matrix product state, with L=80a and matrix
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dimension D=24 �corresponding to �D2 retained block ba-
sis states�. The maximum truncated density matrix eigenval-
ues are in the numeric noise �	10−16�. The block size � is
shown as T���, with TPBC���=log2� L

�a sin ��
L

� and TOBC���
= 1

2 log2� 2L
�a sin ��

L
�, appropriate for a linear fit of the finite L

counterparts of �1� and �2�. The fits for PBCs, free OBCs,
and fixed OBCs yield the predicted central charge �c
=0.500,0.502,0.498�1/2� and boundary entropies �Sb

free=
−0.003�0, Sb

fixed=−0.497� log21 /
2�, which can be read
off from the differences of the axis intercepts. The curves for
nonzero hb converge for large � to the fixed BC curve �the
smaller the value of hb, the larger the crossover length ��.
This implies that the boundary entropy for any nonzero hb is
the same as that for fixed BCs, consistent with the explicit
construction of boundary states in Ref. �17�.

Let us now turn to the topic of majorization relations. We
first recall the definition of majorization �14�. Consider two
probability distributions ����i and ����i whose ele-
ments are ordered such that �1��2� ¯ ��r, and similarly
for �. We say that � is majorized by �, written ���, if
	i=1

k �i
	i=1
k �i for k=1, . . . ,r−1 and 	i=1

r �i=	i=1
r �i �=1�.

Here the probability distributions are formed by the eigen-
values of the reduced density matrix �A, and r is the Schmidt
rank. An elementary result �14� states that ��� if and only
if ��������� for all Schur-concave functions � �29�. In
fact, the Rényi entropy is Schur concave for any index �.
Therefore it is necessary �but not sufficient� for the Rényi
entropy for all indices � to be monotonic with some system
parameter �� or hb� for the corresponding spectra of the re-
duced density matrix to be subject to a majorization relation.

The CFT results �1� and �2� show that at �both bulk and
boundary� criticality the Rényi entropy increases monotoni-
cally with the block size � �for this to hold for a finite chain
of length L, � must be less than L /2�. In particular, the larg-
est eigenvalue �1=2−S� of �A decreases with increasing �.
This indicates that �A���A if the block A is a sub-block of
A� �30�. Indeed, the majorization relation follows from the

fact that any two eigenvalue distributions, corresponding to
two different block sizes, only cross once when the eigenval-
ues �i are plotted versus the eigenvalue index i. That is, an
index i* exists, such that �i decreases with increasing � for
i
 i*, and �i increases with increasing � for i� i*. The
uniqueness of this crossing is guaranteed by the fact that the
eigenvalue distribution follows �iq�i for both bulk and
boundary conformal theories, apart from degeneracies ni.
Here q=exp�2�i�� for conformal theories and q=exp�−���
for boundary conformal theories �31�, and �i are integers
related to the scaling dimensions of the descendant operators.
The conformal invariance requires that both � and � should
be proportional to 1/ ln�� /a�. The discreteness of ni and �i

ensures that they do not change when the block size � is
varied �for finite L, � must be restricted to even or odd values
if the model has a parity effect�.

Next, we consider the behavior of the Rényi entropy
along boundary RG flows. By combining our CFT results
with the g theorem, it follows that the Rényi entropy de-
creases �more precisely, does not increase� along a boundary
RG flow. In particular, the largest eigenvalue �1 of �A in-
creases along the boundary RG flow. Furthermore, one may
argue that along the boundary RG flow, the eigenvalues of �A
take the same form �iq�i as at the conformally invariant
fixed point at the end of the flow, except that the dependence
of q on � is different �again, the discreteness of the degen-
eracies ni and �i ensures that they remain the same along the
flow�. However, for any nonzero hb, the bulk criticality re-
quires that the dependence ��1/ ln�� /a� is recovered for �
��. It then follows that there is one and only one crossing
for the eigenvalue distributions versus i along the boundary
RG flow. More precisely, an index i* exists, such that �i
increases for i
 i*, and decreases for i� i* along the flow.
This in turn implies the majorization relation.

A rough estimate for the crossing index i* can be obtained
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FIG. 2. Eigenvalue distributions for the reduced density matrix
of a block of size �=128a in the bulk critical transverse Ising model
�3� for various values of the boundary magnetic field hb. The
quasiexact DMRG results confirm the majorization relation along
the boundary field RG flow �see text�. The inset displays the first
three eigenvalues and shows that the crossing of the spectra occurs
at i*=1.

 0

 0.5

 1

 1.5

 2

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5

bl
oc

k 
vo

n 
N

eu
m

an
n 

en
tr

op
y 

S
1

T(l)

PBC
free, OBC

hb=0.01, OBC
hb=0.03, OBC
hb=0.10, OBC
hb=0.30, OBC

fixed, OBC

FIG. 1. Bipartite entanglement for the bulk critical transverse
Ising model, quantified by the von Neumann entropy S1 of the
reduced density matrix. The block size � is given as T��� �see text�
which allows for a direct check of the CFT predictions �1� and �2�.
The fit yields the predicted boundary entropies.
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from the CFT predictions for the largest eigenvalue �1. This
gives i*��c/6 for PBCs and i*��c/12 for OBCs. Thus the
block size � must be sufficiently large to observe that the
crossing occurs at i*�1. For instance, to see that the second
largest eigenvalue decreases with increasing �, � should at
least be 1800a for the semi-infinite XX chain, as estimated
from the exact solution �32�. DMRG calculations of the re-
duced density matrix spectra show majorization along
boundary RG flows, where eigenvalues down to �10−15 are
considered. Figure 2 shows the crossing point i* of the spec-
tra in the bulk critical transverse Ising model with block size
�=128a and various values of the boundary field hb. The
crossing of the spectra occurs here at i*=1.

For the Heisenberg XXX model ��=1� the Rényi entropy
does not depend on the boundary magnetic field: �S� /�hb
=0. These constraints �of which there is an infinite number,
one for each �� imply that the spectra of �A do not vary with
hb. Therefore the presence of a line of fixed points here
amounts to the statement that all of these critical points share
the same eigenvalue distribution, so there is no boundary RG
flow.

In conclusion, we have investigated the interrelations be-
tween the boundary entropy, the Affleck-Ludwig g theorem,
and entanglement in quantum spin systems with boundary
interactions. The intrinsic irreversibility along boundary RG
flows, as embodied in the Affleck-Ludwig g theorem, is con-
nected with the majorization relation solely characterized by
the ground state itself. The results also bring new insights
into our understanding of 2D classical statistical mechanical
systems. In fact, the majorization relations for the density
submatrix �33,34� spectra of the transfer matrix eigenvectors
corresponding to the largest eigenvalue are still preserved in
2D classical systems, even if it does not make sense to speak
of quantum entanglement for classical cases.

Recently, work �35� appeared that reached the same con-
clusion as us regarding the connection between the von Neu-
mann entropy and the single-copy entanglement for bulk
conformal theories.

We thank Guifré Vidal for enlightening discussions and
comments. H.Q.Z. and J.O.F. thank the Australian Research
Council for support. T.B. thanks the DFG for support.

�1� S. Sachdev, Quantum Phase Transitions �Cambridge Univer-
sity Press, Cambridge, U.K., 1999�.

�2� T. J. Osborne and M. A. Nielsen, Phys. Rev. A 66, 032110
�2002�; A. Osterloh et al., Nature �London� 416, 608 �2002�.

�3� G. Vidal et al., Phys. Rev. Lett. 90, 227902 �2003�; J. I.
Latorre et al., Quantum Inf. Comput. 4, 48 �2004�.

�4� V. E. Korepin, Phys. Rev. Lett. 92, 096402 �2004�; B. Q. Jin
and V. E. Korepin, J. Stat. Phys. 116, 79 �2004�.

�5� G. C. Levine, Phys. Rev. Lett. 93, 266402 �2004�; G. Refael
and J. E. Moore, ibid. 93, 260602 �2004�; J. P. Keating and F.
Mezzadri, ibid. 94, 050501 �2005�; M. B. Plenio et al., ibid.
94, 060503 �2005�.

�6� P. Calabrese and J. Cardy, J. Stat. Mech.: Theory Exp. �2004�
P06002.

�7� H. Casini and M. Huerta, Phys. Lett. B 600, 142 �2004�.
�8� H. Casini et al., J. Stat. Mech.: Theory Exp. �2005�, P07007.
�9� J. Eisert and M. Cramer, Phys. Rev. A 72, 042112 �2005�.

�10� C. H. Bennett et al., Phys. Rev. A 53, 2046 �1996�.
�11� C. Holzhey et al., Nucl. Phys. B 424, 44 �1994�.
�12� J. I. Latorre et al., Phys. Rev. A 71, 034301 �2005�.
�13� A. B. Zamolodchikov, JETP Lett. 43, 731 �1986�.
�14� A. W. Marshall and I. Olkin, Inequalities: Theory of Majoriza-

tion and its Applications �Academic Press, New York, 1979�.
�15� R. Orús, Phys. Rev. A 71, 052327 �2005�.
�16� K. Binder, in Phase Transitions and Critical Phenomena, ed-

ited by C. Domb and J. Lebowitz �Academic, London, 1983�,
Vol. 8.

�17� S. Ghoshal and A. B. Zamolodchikov, Int. J. Mod. Phys. A 9,
3841 �1994�.

�18� I. Affleck and A. W. W. Ludwig, Phys. Rev. Lett. 67, 161
�1991�; D. Friedan and A. Konechny, ibid. 93, 030402 �2004�.

�19� J. Preskill, J. Mod. Opt. 47, 127 �2000�.

�20� S. R. White, Phys. Rev. Lett. 69, 2863 �1992�.
�21� U. Schollwöck, Rev. Mod. Phys. 77, 259 �2005�.
�22� J. Cardy, Nucl. Phys. B 324, 581 �1989�; J. Cardy and D.

Lewellen, Phys. Lett. B 259, 274 �1991�.
�23� P. Di Francesco, P. Mathieu, and D. Sénéchal, Conformal Field

Theory �Springer, Berlin, 1997�.
�24� The boundary states are also well defined for systems off criti-

cality; see Ref. �17�.
�25� For a composite system AB consisting of two noninteracting

systems A and B, we have S�
AB�cAB ,� /a�=S�

A�cA ,� /a�
+S�

B�cB ,� /a� and cAB=cA+cB. This implies that S�
A�cA ,� /a�

=cAf��� /a�+h�
A. So f� is not model specific whereas h� is.

�26� I. Affleck, J. Phys. A 31, 2761 �1998�.
�27� C. G. Callan et al., Nucl. Phys. B 422, 417 �1994�.
�28� F. Verstraete et al., Phys. Rev. Lett. 93, 227205 �2004�.
�29� A function � is Schur concave if ���⇒���������.
�30� A rigorous proof for this fact was attempted in Ref. �15� for

bulk conformal theories, where it was claimed that all eigen-
values except the largest one increase with increasing block
size �. This is not valid, as one can see from the exact solution
for the XX model �32�, which shows that the second largest
eigenvalue first increases with � before it starts decreasing.
The turning point is at � /a�1800. �Please see erratum for Ref.
�15�: R. Orús, Phys. Rev. A 73, 019904�E� �2006�.�

�31� J. Cardy, in Encyclopedia of Mathematical Physics, edited by
J.-P. Françoise et al. �Elsevier, Amsterdam, 2005�.

�32� I. Peschel et al., Ann. Phys. 8, 153 �1999�.
�33� R. J. Baxter, Exactly Solved Models in Statistical Mechanics

�Academic Press, London, 1982�.
�34� T. Nishino, J. Phys. Soc. Jpn. 64, 3598 �1995�.
�35� I. Peschel and J. Zhao, J. Stat. Mech.: Theory Exp. � 2005�,

P11002; R. Orús et al., Phys. Rev. A 73, 060303�R� �2006�.

ZHOU et al. PHYSICAL REVIEW A 74, 050305�R� �2006�

RAPID COMMUNICATIONS

050305-4


