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We introduce a figure of merit for a quantum memory which measures the preservation of entanglement
between a qubit stored in and retrieved from the memory and an auxiliary qubit. We consider a general
quantum memory system consisting of a medium of two level absorbers, with the qubit to be stored encoded
in a single photon. We derive an analytic expression for our figure of merit taking into account Gaussian
fluctuations in the Hamiltonian parameters, which, for example, model inhomogeneous broadening and storage
time dephasing. Finally we specialize to the case of an atomic quantum memory where fluctuations arise
predominantly from Doppler broadening and motional dephasing.
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The ability to store flying qubits in a quantum memory
�QM� is a fundamental component of many quantum com-
munication schemes �1,2�. Numerous possible methods for
storing and retrieving qubits encoded in light pulses have
been proposed �3–5�, and some of these proposals have re-
cently been experimentally realized, achieving, e.g., storage
and retrieval of a single photon on demand �6,7�, and en-
tanglement between light and matter �4,8�. Many promising
candidate systems for QMs such as atomic ensembles �9�,
arrays of quantum dots �10�, or nitrogen-vacancy �NV� cen-
ters in diamond �11� can often effectively be described as
ensembles of N two-level absorbers coupling to the incoming
qubit. We consider two independent ensembles each storing
one of the logical qubit states. The absorbers consist of two
metastable internal states �g� and �e� as shown in Fig. 1�a�,
and a transition �g�→ �e� is effected by the incoming photon
in logical state q via coupling �q. The states �g� and �e� are
usually not directly connected optically, with this transition
often being achieved via an intermediate state �int� and addi-
tional control fields. For most of this paper details of such
additional structure in the absorbing medium are not consid-
ered, and we assume that its effects on the properties of the
absorbers can be subsumed into stochastic fluctuations of the
coupling parameter �q. After a storage time ts another con-
trol field is used to retrieve the photonic qubit. Dephasing
may take place in the memory during the storage time, which
usually leads to different couplings when writing and reading
the qubit.

Using these general assumptions and the notion of en-
tanglement fidelity �12� we derive a figure of merit F that
measures how well a QM setup can preserve entanglement
between a qubit undergoing the memory process �the
memory qubit� and an auxiliary qubit. Our figure of merit F
is different from commonly-used quality measures such as
average fidelity FA for a predefined set of input qubit states
�13�. This captures the ability of a memory to recreate the
initial state of the qubit, and is equal to 1 if and only if the
memory stores and retrieves every state perfectly. However,
depending on the application of the QM, one might not nec-
essarily be concerned with exactly preserving the quantum
state of the qubit. The preservation of entanglement might be
more desirable in some quantum information processing and
quantum communication schemes �14,15�, for example, in a
quantum repeater �1,2� or in the cascaded generation of

graph states �16�. The entanglement fidelity F also directly
relates to the degree of violation of a Bell inequality by an
Einstein-Podolsky-Rosen �EPR� pair of photons, where one
photon is stored and subsequently retrieved from the QM
while the auxiliary qubit is directly detected as schematically
shown in Fig. 1�b�. The setup shown in Fig. 1�b� could thus
be used to measure our figure of merit.

In the system outlined above the memory qubit is encoded
in a subspace of the overall photon Hilbert space HA. The
states of the memory and auxiliary qubits are denoted by �0�
and �1�. The Hilbert spaces of the auxiliary qubit and the
medium are HB and HC, respectively. The system has initial
state �̂0= ��0���0� � �̂C, where ��0��HA � HB and �̂C is the
initial density operator of the medium. We assume that the
absorbers are not correlated initially and characterize a QM
as a quantum operation �M that acts on the photon as
follows:

�M � I:��0���0� → trC�L̂��̂0�� , �1�

where L̂ is a Liouvillian operating on states in HA � HC, and
I is the identity operator on states in HB. We note that in the
work of Ekert et al. �17� a quantum channel for qubits � is
characterized by considering the action of the operator �
� I on two qubit states. The superoperator �M � I preserves
entanglement for all two-qubit states only if �M is unitary
�the converse is well known �18��. This can be seen by using

(a) (b)

FIG. 1. �a� General level structure of an absorber in a QM. A
photon with annihilation operator âq is incident on a medium of N
absorbers, and excites one absorber into state �e� via an intermediate
state �int�. �b� Schematic experimental setup. We consider a photo-
nic qubit entangled with an auxiliary qubit produced by an EPR
source. The photonic qubit is stored in the memory, and the amount
of entanglement that remains after storage is measured.
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a Kraus decomposition of �M. We find that for at least one
initial two-qubit state ��e� the application of a nonunitary �M
will result in a mixed state. Purification of ��M � I����e�
���e�� results in the introduction of an extra ancillary sys-
tem, with which the memory qubit is entangled. By mo-
nogamy of entanglement �19–21�, the entanglement between
the memory and auxiliary qubits decreases.

Motivated by these observations we write a QM
entanglement fidelity as follows:

F��M� = min
��0�

���0�ÛM
† ���M � I����0���0���ÛM��0�	 . �2�

The quantity inside the braces is the entanglement fidelity
�12� for the process �M applied to the state trB���0���0�� �trB

denotes the partial trace over HB�. The entanglement fidelity
was introduced as a measure to characterize how well en-
tanglement is preserved by such a process in �12�, and de-
tailed discussions of its properties can be found in
�12,22,23�. Since the standard definition of entanglement fi-
delity �24� measures preservation of state as well as en-

tanglement we include a unitary ÛM, which acts on HA, to
allow for evolution of the photon that would not decrease the
entanglement present. This unitary is chosen to maximize F,
and thus describes an optimized storage process to which �M
is compared in the same way that gate fidelity �24� measures
the success of a quantum gate. We also minimize over all
pure two-qubit input states so that F is a property only of the
QM that uses the worst-case scenario as a measure of its

success. The QM �M �and hence the Liouvillian L̂� consists
of a read-in process, a period of storage, and a read-out pro-
cess that retrieves the photon on demand a time ts after read-

in. Note that more sophisticated choices for ÛM conditional
on the outcome of measurements on the state of the QM after
retrieving the photon might enable further improvement of
F. However, such schemes are difficult to realize experimen-
tally and are not considered in this paper. Thus if F=1 we
have that �M preserves entanglement between the qubits, but
the final and initial states of the photon may be determinis-
tically different. The representation of the QM with �M
illustrates that for F�1 the memory process will not be
unitary.

We now consider the photon and its interaction with the
ensemble of absorbers. We define the annihilation operator
âq for the photon in state �q� �= âq

†�vac�, where �vac� represents
the vacuum state and q=0, 1 denotes the logical state of the
qubit �the underline distinguishes states in HA from memory
qubit states�. This annihilation operator can be written as

âq =
 dkgq�k�âk,�q
, �3�

where âk,�q
destroys a photon with polarization �q and wave

vector k. The mode functions gq�k� are normalized,
�âq , âq�

† �=	qq�, and for simplicity we have assumed that
each logical state has an associated single polarization
�q. The absorbers are initially in the collective state
�G�= �g1 , . . . ,gN�, and are assumed to coherently couple to
the photon during the whole of the read-in and read-out

processes. The Hamiltonian for the read-in interaction
between the photon in state �q� � and the jth absorber is given

by Ĥq
�j�= ��q,jâq,j
̂eg

�j�+H.c.�, where 
̂eg
�j�= �e� j�g�. During stor-

age each absorber evolves according to the Hamiltonian

ĤS,q
�j� =sq,j�t�
̂ee

�j�, with sq,j�t� some time-dependent detuning.
The read-out interaction of the photon in logical state �q�
with the absorber is modeled by the Hamiltonian

H̃
ˆ

q
�j�= ��̃q,jb̂q,j
̂eg

�j�+H.c.�, with couplings �̃q,j. The depen-

dence of the operators âq,j and b̂q,j on the absorber reflects
the fact that due to motion each absorber will in general
couple to a slightly different mode. We assume that an ap-
propriate choice of control field can restrict this effect to a
phase 	q,j

�a�, so that âq,j = âq exp�i	q,j
�a��, and similarly for the

output photon mode b̂q,j = b̂q exp�i	q,j
�b��. The read-in and read-

out processes are assumed to require a time tp each. In gen-

eral the couplings �q,j and �̃q,j will depend on time t. In the
following we assume a simple time dependence where the
magnitude of the read-in �read-out� coupling is switched on
to a constant value for the time tp that maximizes storage
�retrieval�, then switched off. For simplicity we also

let ��q,j�= ��̃q,j�∀ j, the generalization to different couplings
is straightforward. Inhomogeneous broadening can further-
more lead to phases linearly increasing with time, and during
storage some additional dephasing can occur. As a result
of these assumptions we write �q,j =�q,je

i�Kq,jt� and

�̃q,j =�q,je
i�Mq,jt+fq,j�ts��, where fq,j�ts� appears as a result of

eliminating ĤS,q
�j� from the dynamics. The parameters

�q,j, Kq,j, Mq,j, 	q,j
�a�, 	q,j

�b�, and fq,j�ts� are all assumed to be real
normally-distributed stochastic variables with respect to the
storage medium. For instance, Kq,j is broadened around a

mean value K̄q by a width wK,q and so on.
To obtain an analytical expression for F, we first note that

if Kq,j = K̄q∀ j the system reduces to a two-level problem, and
the evolution during read-in can be solved exactly. To this
end we rewrite the read-in Hamiltonian

Ĥq
�j� = �q,j�eiK̄qt + eiK̄qt�ei	q,j

�K�t − 1��âq,j
̂eg
�j� + H.c.

and treat the term containing the fluctuation 	q,j
�K� in Kq per-

turbatively up to second order, and similarly for H̃
ˆ

q
�j�. Since

any mean broadening could be corrected for, we assume that

K̄q=M̄q=0 for simplicity. The general initial normalized
photon and auxiliary qubit state can be written as
��0�=��0�0�+�0�1�+��1�0�+��1�1�. For each component of

��0� the evolution operator Û according to � jĤq
�j� and � jH̃

ˆ
q
�j�

can be used to calculate the final wave function of the system
at time tf = ts+2tp. Averaging over the ensemble similarly to
�25� allows us to rewrite Eq. �1� as

�M � I:��0���0� → ��Û���0���0� � �G��G��Û†�� , �4�

where ��¯�� denotes averaging over the stochastic Hamil-
tonian variables then tracing out the memory. Since ��0� is
normalized F can be calculated by minimizing over a single
parameter X= ���2+ ��2 in Eq. �2�. This results in
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F = ˆX0
2���b0�2�� + 2X0�1 − X0�Re���b0b1

*��	

+ �1 − X0�2���b1�2��‰ , �5�

where X0 is the value of X that achieves the minimization in
Eq. �2�, and bq is the amplitude of the final output photon in
logical state q. Differentiating F with respect to X gives a
minimum of

X0 =
���b1�2�� − Re���b0b1

*��	
���b0�2�� − 2 Re���b0b1

*��	 + ���b1�2��
, �6�

but if this value lies outside �0,1� then X0=0 or 1. Applying
second-order perturbation theory to the read-in and read-out
processes as previously described gives

���bq�2�� = �1 −
��wK,q

2 + wM,q
2 �

8N��̄q
2 + w�,q

2 � 
�� 1

N
+

�N − 1�
N�1 + w̃�,q

2 �2e−�wa,q
2 +wb,q

2 +wf ,q�ts�
2� , �7�

Re���b0b1
*��	 = �

q=0,1
� e−�wa,q

2 +wb,q
2 +wf ,q�ts�

2�/2

1 + w̃�,q
2 

��1 − �
q=0,1

�4 + �2���wK,q
2 + wM,q

2 �
64N2��̄q

2 + w�,q
2 �  ,

�8�

where w̃�,q=w�,q / �̄q, and �= �1+6w̃�,q
2 +3w̃�,q

4 � / �1+ w̃�,q
2 �2.

We see that F decreases exponentially in wa,q, wb,q, and
wf ,q�ts�, and also decreases as both w̃�,q and wx,q

2 /�q
2 increase

�x=K ,M�. Due to the factors of 1 /N appearing in these latter
terms, it is the exponential terms that will dominate for large
N. Let us also note that to obtain maximum absorption and
emission we set tp=� /2��q

2N�1/2, so the terms containing wx,q

could alternatively be seen to depend quadratically on tp.
Finally, we observe that sufficient conditions for F�1 are
that wa,q ,wb,q ,wf ,q�ts��1 and �K,q ,�M,q��2, with the latter
becoming less important as N→�.

The value of X0 represents the class of states that achieve
the minimum required in Eq. �2�. To illustrate this let us
consider some special cases. �i� If the states �0� � and �1� � of the
photon are absorbed and emitted in the same way �b0=b1�,
then evaluating X0 gives an indeterminate answer, reflecting
the fact that F is minimized by several choices of ��0�.
Evaluation of F in this situation gives a value F= ���b0�2��.

�ii� If state �1� � is perfectly stored, but state �0� � is not stored at
all, then b0=0, X0=1, and F=0. We also compare our mea-
sure with the previously-defined fidelity FA. If entanglement
is preserved, i.e., F=1 then FA=1 if and only if the output
photon has the same mode function as the input photon.
In the case where the photon is stored and emitted with
100% probability, but becomes completely decorrelated
with the auxiliary qubit, FA could vary between 0 and 1
depending on the spatial mode function of the output photon,
but F=1/2.

We now describe an experimental setup �shown in Fig. 2�
that, assuming case �i� above holds, would allow us to mea-
sure F. After read-out but before the beam splitter �BS� the
state of the photons will be

�̂in = âPS
† ��m

�pm�b̂m
out�†�vac��vac�b̂m

out� + p0�vac��vac�	âPS,

where �vac� denotes the vacuum, âPS is the annihilation op-
erator for the mode of photon 2 after the pulse shaper �PS�,
and �b̂m

out	 with m�1 is the set of annihilation operators
corresponding to the eigenmodes of the state of photon 1.
The eigenvalues are in descending order p1� p2�¯ and p0
is the probability of not retrieving the photon on demand.
Noting that most detectors cannot resolve photon number,
the probability of obtaining a click in one of the detectors
Dj �j=1,2� is Pj =�m=1

� pm�1+Om� /4+ p0 /2, and of a detec-
tion in both D1 and D2 is P12=�m=1

� pm�1−Om� /2, where

Om= ��vac�âPS�b̂m
out�†�vac��2 is the overlap of the field modes

after the BS. Both the minimum value of P12 and the maxi-

mum value of P1+ P2 are obtained when âPS= b̂1
out, i.e., when

the mode of photon 2 is precisely the dominant mode of
photon 1 and for this setting p0+ p1= P1+ P2− P12. Hence by
tuning the PS the dominant mode of the memory photon can
be found experimentally. This tuning then corresponds to the

ÛM that maximizes F as in Eq. �2�. We can then deduce
p1= ���b0�2��, and therefore F, by removing the beam splitter
and measuring the probability of the memory photon not
being reemitted on demand.

We conclude our analysis by applying the fidelity measure
F to a specific memory setup. We determine F for a QM
for one single photon state based on off-resonant stimulated
Raman scattering in an ensemble of �-atoms �26�. The
atoms each have mass M and temperature T, and have the

FIG. 2. Experimental method of measuring F requiring storage
of one logical state only. A source S produces a separable pair of
photons, so that photon 1 is stored in the QM and photon 2 enters
the pulse shaper �PS�. The photons interfere at a beam splitter �the
PS includes a time delay�, and coincidence measurements at
detectors D1 and D2 are made.

(a) (b)

FIG. 3. The entanglement fidelity of a Raman QM with �a�
�=4.49�10−14 and �b� �=2.25�10−13. In both cases the photon
bandwidth 	p=0.1�, with �=1013 s−1. The atomic level splittings
used are �g�→ �int�=5�1015 s−1 and �e�→ �int�=3.5�1015 s−1, and
the ensemble consisted of N=108 atoms.
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same internal level structure as the general absorbers consid-
ered in Fig. 1�a�. The photon is incident on the ensemble
and excites the �g�→ �int� transition. A control field drives
�int�↔ �e� and stores the photon as a collective excitation
in the ensemble. The probe and control fields are assumed to
copropagate with carrier wave vectors of magnitude kp and
kc, respectively. Retrieval of the photon is achieved by ap-
plying another control field a time ts after read-in. We as-
sume that the probe and control fields are both far-detuned
�detuning �� from level �int�, so this state can be adiabati-
cally eliminated giving a medium consisting effectively of
two-level atoms. Therefore the main source of stochastic
variation in the coupling of the atoms to the photon arises
from the atomic motion, which we treat semiclassically as-
suming a Boltzmann distribution for atomic velocity compo-
nents v j in the direction of the field propagation. This leads
to Kq,j =Mq,j =v j�c /c, fq,j�ts�=�v j /c, and widths given by
wK,q=wM,q=�c�

1/2, wf ,q=��1/2, where c is the speed of light,
�=kBT /Mc2, �= �kp−kc�cts, and �c=ckc. In this scheme
fq,j�ts� originates from the motion of the atoms during the
storage time and Kq,j and Mq,j arise from the Doppler-
shifting of the field frequencies. The parameter �q=� is de-
fined by the couplings of the photon and control fields to the
atoms, and is assumed to be a constant.

The amplitude of the final photon state can be calculated
as for the general case, which upon substitution into Eq. �5�
yields the following expression for F up to N−2:

F = e−�2�/2�1 − �2���e−�2�/2�1 − �2�� −
3��c

2

2�2N2 . �9�

We see that the two main contributions to the decrease in F
are the Doppler broadening terms, which are quadratic in the
ratio �c

�� /�, and the storage time dephasing terms, which
depend on �2�. This observation results in the requirement
that ����1 in order to achieve F�1 for N�1. Figure 3
shows the entanglement fidelity of the Raman quantum
memory for two different values of �, and the expected
decrease in F with increasing � is observed.

In summary we have introduced a figure of merit F for a
general QM based on gate fidelity and derived an analytical
expression for it. Our calculations took into account stochas-
tic fluctuations in the coupling parameters whose origin
might vary for different QM schemes. We concluded by ap-
plying our formalism to a specific atomic quantum memory.
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