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A formally exact expression for the interaction density response function ��r ,r� ,�� exists in terms of �i� its
noninteracting counterpart �0�r ,r� ,�� and �ii� an exchange �x�-correlation �c� kernel fxc�r ,r� ,��. In the
absence of a first-principles theory for the � dependence of fxc, the adiabatic approximation is most frequently
made in this term, to construct a workable time-dependent density-functional theory. In the present study, a
proposal is put forward to avoid the adiabatic approximation by working in the exchange-only limit in which
fxc is set equal to fx�r ,r� ,��. We then refer to a result for the exchange energy given by Pines and Nozieres to
motivate the assumption that fx= fx�Im �0�r ,r� ,���. The essential proposal here is therefore that the integral
equation to be solved for the interacting density response function � is in the exchange-only case characterized
entirely by the noninteracting response function �0.
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I. BACKGROUND AND OUTLINE

The calculation of excitation energies of molecules and
clusters is an area of great current interest not only for quan-
tum chemistry but also for molecular biophysics. This is
made abundantly clear in the very recent review of Dreuw
and Head-Gordon �1�. Following the lead of earlier authors
�2–5�, March, Rubio, and Alonso �6� �see also Ref. �7�� take
the density response function ��r ,r� ,�� of the interacting
electronic assembly as a starting point in a study of low-
lying excitations in some light atomic ions. As set out, for
example, in Ref. �7� �their Eq. �38��, the formally exact ex-
pression for ��r ,r� ,�� reads

��r,r�,�� = �0�r,r�,�� +� � dr�dr���r,r�,��

� � 1

�r� − r��
+ fxc�r�,r�,����0�r�,r�,�� .

�1�

Setting fxc equal to zero in Eq. �1� recovers the so-called
random-phase approximation �RPA� to the response function.
Unfortunately, given the noninteracting response function �0,
all the many-electron information required to determine
��r ,r� ,�� from the integral equation �1�, is subsumed into
the as yet unknown exchange-correlation kernel fxc�r ,r� ,��.
This must therefore be one focus of any attempt to transcend
existing treatments of TDDFT. Dreuw and Head-Gordon �1�
stress that to date the adiabatic approximation is common in
this context. Our aim in the present study is to make a start
on a, of course still approximate, theory of calculating exci-
tation energies via the poles of ��r ,r� ,�� by releasing the
adiabatic approximation. The price we pay for this generali-
zation is to work here in the �time-dependent� exchange-only
approximation in which the kernel fxc�r ,r� ,�� is replaced by

fx�r ,r� ,��. Our proposal is subsumed then into the state-
ment, to be exemplified below, that

fx�r,r�,�� 	 fx�Im �0�r,r�,��� , �2�

i.e., the frequency dependence of the exchange-only kernel fx
is, in essence, already embedded in �0, which is given ex-
plicitly in the Appendix. To construct the functional of the
right-hand side �RHS� of Eq. �2� is a nontrivial task, which
we make a start on below.

II. TOTAL EXCHANGE ENERGY Ex IN TERMS
OF THE NONINTERACTING FREQUENCY DEPENDENT

RESPONSE FUNCTION �0„r ,r� ,�…

In the recent discussion of Howard and March �8� on the
functional derivative of the noninteracting Dirac density ma-
trix �0�r1 ,r2� with respect to the ground-state electron den-
sity ��r�, they refer to a result for the total exchange energy
Ex of molecules and clusters given by Pines and Nozieres
�9�. This result reads

Ex = −
1

2
� d�

�
dr1dr2

1

�r1 − r2�
�Im �0�r1,r2,��

+ ���r1���r1 − r2������ . �3�

While TDDFT is usually discussed in terms of action func-
tionals, we define the exchange potential in frequency space
as a functional derivative of the exchange energy as given by
Eq. �3�,
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vx�r,�� =
�Ex

���r,��
. �4�

Since the exchange kernel is homogeneous in time, it can be
computed by relating potentials and densities at the same
frequency �10�. With the Pines and Nozieres expression for
Ex we get immediately

fx�r,r�,�� =
�vx�r,��
���r�,��

= −
1

2
� d��

�

dr1dr2

�r1 − r2�
Im

�2�0�r1,r2,���
���r,�����r�,��

, �5�

which confirms our proposition Eq. �2�, that all frequency
dependence of fx is already embedded in the noninteracting
susceptibility �0.

To make further progress, we proceed along the lines of
Shaginyan �11� and compute functional derivatives of �0 us-
ing the chain rule,

��0�r�,r�,�̄�
���r,��

=� � ��0�r�,r�,�̄�
�vs�r1,�1�

�vs�r1,�1�
���r,��

dr1d�1

=
1

2�
� �0

�2��r�,r�,r1,�̄ − �,���0
−1�r,r1,��dr1,

�6�

where �0=�� /�vs and �0
�2�
�2� /�vs

2 is the quadratic re-
sponse function as defined, e.g., in Ref. �12�. This result,
together with Eqs. �3� and �4� constitutes an extension of the
exact exchange potential obtained in Ref. �11� to the time-
dependent case.

In order to compute the kernel fx, a second functional
derivative of �0 needs to be taken, which yields, after some
algebra, the following expression:

�2�0�r�,r�,�̄�
���r,�����r̃,��

=
1

2�
� � �0

−1�r̃,r2,���0
�3��r�,r�,r1,r2,�̄

− 2�,�,���0
−1�r,r1,��dr1dr2

−
1

�2��3 � � � � ��0
−1�r,r2,���0

�2�

��r2,r3,r4,0,���0
−1�r̃,r4,��

� �0
−1�r3,r1,���0

�2��r�,r�,r1,�̄ − �,���

�dr1dr2dr3dr4. �7�

All response functions appearing in Eq. �7� are explicitly
known in terms of Kohn-Sham single-particle orbitals �12�
and could be used in conjunction with Eq. �5� to obtain a
workable expression for the desired exchange-only kernel.
Here, we are looking instead for an approximate description
of fx, in which the frequency dependence is easier to access.
To this end we define the exchange energy density, say
�x�r ,��, from Eq. �3� as

�x�r,�� = −
1

2
� dr�

�

1

�r − r��
�Im �0�r,r�,��

+ ���r���r − r������� , �8�

which is evidently such that

Ex =� � �x�r,��drd� . �9�

We next invoke a generalization of the approximate
exchange-potential, vx

Sl, going back to the very early work of
Slater �13�, who wrote, in time-independent theory,

vx
Sl�r� =

2�x�r�
��r�

. �10�

Combining the ground-state result �10� with the asymptotic
result of one of us �14� that, as r becomes sufficiently large,

lim
r→	

�x�r� = −
e2

2r
��r� , �11�

we obtain the correct limiting term −e2 /r from Eqs. �10� and
�11�. This encourages us to postulate the frequency-
dependent generalization of Eq. �10� as

vx
Sl�r,�� =

2�x�r,��
��r,��

, �12�

where �x�r ,�� is precisely defined in Eq. �8�. This then leads
to the following Slater approximation to the exchange-only
kernel,

fx�r,r�,�� =
2

��r,��
��x�r,��
���r�,��

−
2�x�r,��
��r,��2 ��r − r�� .

�13�

Here, the first term on the RHS of Eq. �13� has been evalu-
ated above. The second term is local in space and its fre-
quency dependence is dominated by the noninteracting den-
sity response function �0, which has poles at the single-
particle KS energy differences. This is in line with the work
of Maitra et al. �15,16�, who showed that the exact nonadia-
batic exchange-correlation kernel fxc needs to exhibit poles
in frequency space to allow for a correct description of
charge-transfer states and those of double excitation charac-
ter. It therefore seems worthwhile to analyze the frequency
dependence of Eq. �13� in more detail, which is however
outside the scope of this paper and is left for future work.

Note added. Recently, we became aware of related earlier
work by Görling �10� as well as Hirata et al. �17� on the
exchange-only problem considered here. While aspects of
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the treatment bear some similarity, we use as a central equa-
tion the Pines-Nozieres result, showing the crucial impor-
tance of Im �0�r ,r� ,�� in characterizing the exchange en-
ergy.

APPENDIX

In contrast to the interacting density response function �,
the independent-particle counterpart �0 is determined by the
usual one-body wave functions 
i�r� of DFT plus the corre-
sponding energies �i. The result is

�0�r,r�,�� = �
ij

�f i − f j�

i

*�r�
 j�r�
 j
*�r��
i�r��

� − �� j − �i� + i�
, �A1�

the quantities f i and f j being Fermi occupation factors. The
summations appearing in Eq. �A1� run over all one-body
orbitals, including continuum states. The quantity
Im �0�r ,r� ,�� entering the ansatz �2� which is central to the
present study can be immediately determined in its fre-
quency dependence from Eq. �A1�. Thus at the exchange-
only level of the present paper, the adiabatic approximation
common to many current treatments is completely bypassed.
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