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We propose a scheme for implementing a two-qubit quantum phase gate for intracavity fields. In the scheme,
two qubits are encoded in zero- and one-photon Fock states of two intracavity modes, and a four-level N-type
atomic ensemble trapped in a cavity mediates the conditional phase gate within a given interaction time. We
also discuss the influence of the atomic spontaneous emission and the decay of the cavity modes on the photon
loss and gate fidelity, showing the scheme is within the current experiment technology.
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Cavity quantum electrodynamics �QED� offers an almost
ideal system for the generation of entangled states and the
implementation of quantum information processing �1�. In
the context of cavity QED, numerous theoretical schemes for
generating entangled states of many atoms and nonclassical
states of cavity fields have been proposed �2�, which led to
experimental realization of the Einstein-Podolsky-Rosen
state �3� of two atoms, Greenberger-Horne-Zeilinger state �4�
of three parties �two atoms plus one cavity mode�,
Schrödinger cat state �5�, and Fock state �6� of a single-mode
cavity field. Most of these schemes are based on the interac-
tion of atoms and a single-mode cavity field. An experiment
was reported for preparing two modes of a superconducting
cavity in a maximally entangled state by using a sequence of
interactions of an atom with two cavity modes �7�. This ex-
periment opened up a new possibility for quantum state en-
gineering and quantum information processing using mul-
tiple modes in a superconducting cavity. In Ref. �8�, a
scheme was proposed to realize a quantum phase gate of two
intracavity modes in which a single detuned atom with cas-
cade configuration mediated the interaction between them.
Recently, Garcia-Maraver et al. �9� showed a single V-type
atom can also be used to realize a two-qubit phase gate be-
tween a vacuum and a single-photon state of two intracavity
modes.

Most of the schemes mentioned above are based on the
interaction of single atoms and a cavity field, and operated in
the strict strong-coupling regime. Recently, it was shown that
the strict strong-coupling condition can be relatively relaxed
if the atomic ensemble was placed in an optical cavity due to
the collective enhancement of an atom-photon interaction.
Several experiments have been reported for continuous vari-
able entanglement using cold atoms �10� and the photon sta-
tistics of the light emitted from an atomic ensemble into a
single cavity mode �11�. Theoretical schemes have also been
proposed for generating entangled spin squeezed states of a
large number of atoms �12�, entangled atomic ensembles
state �13�, and realizing two-mode field squeezing using
atomic ensemble as medium �14�, and carrying out quantum
phase-gate operation for two traveling single photons using
an M-type atomic ensemble trapped in a gas cell �15�, and
implementing the teleportation of an atomic ensemble quan-
tum state �16�.

In this paper, we take an alternative approach to imple-
ment a two-qubit quantum phase gate of two intracavity
modes in which a cloud of atoms is used to enhance a
photon-photon interaction. The motivation of our scheme is
at least twofold. First, it relaxes the requirement of strict
strong-coupling regime and still obtains high fidelity and a
low error rate. Second, a Lamb-Dicke limit is no longer re-
quired since not single atoms, but atomic cloud mediates the
coherent interaction between photons.

Our model consists of an ensemble of N identical N-type
atoms inside an optical cavity, as sketched in Fig. 1�a�. The
energy-level structure is shown in Fig. 1�b�, including two
excited states �2� and �4�, and two stable ground states �1� and
�3�. Each atom interacts with two polarized quantized cavity
modes and a classical laser field. The Hamiltonian is written
as

H = H0 + Hint, �1�

with

H0 = �hah
†ah + �vav

†av + �
k=1

N

�
�=1

4

�����kk��� , �2�

and

Hint = �
k=1

N

	gh�r�k�ah�2�kk�1� + gv�r�k�av�4�kk�3� + ��r�k�

��2�kk�3�e−i�Lt + H.c.
 , �3�

where subscript k represents the kth atom. ah and av are the
annihilation operators associated with two cavity modes,
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FIG. 1. �Color online� �a� Schematic illustration of an atomic
ensemble trapped in a high-Q optical cavity. �b� Energy-level dia-
gram of the trapped N-type atoms, and the transitions �1�↔ �2� and
�3�↔ �4� are resonantly coupled to the cavity modes ah and av,
respectively. The transition �2�↔ �3� is associated with a strong
classical laser field.
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with frequencies �h and �v, respectively. The atomic states
��� ��=1,2 ,3 ,4� have Bohr frequencies ��. The atomic
transitions �1�↔ �2� and �3�↔ �4� are resonantly coupled with
the cavity modes ah and av, with the coupling constants

gh�rk
� � and gv�rk

� �, respectively. While the atomic transition
�2�↔ �3� is resonantly driven by a classical laser field with

the frequency �L and coupling strength ��rk
� �. H.c. stands for

the Hermitian conjugate.
We offer some brief remarks about coupling constants

gh�r��, gv�r��, and ��r�� before we obtain the ultimate expres-
sion of effective Hamiltonian. In a FP-type cavity the cou-
pling factor gh�v��r�� can be expressed by gh�v��h�v��r��, where
�h�v��r�� is the mode function described by �h�v��r��
=sin�kh�v�z�exp�−�x2+y2� /w0,h�v�

2 � �17�. Here w0,h�v� and
kh�v�=2� /�h,v are, respectively, the waist and the wave vec-

tor of the Gaussian cavity mode ah�v�, and rk
� �x ,y ,z� de-

scribes the kth atomic location; z is assumed to be along the
axis of the cavity. For the sake of convenience, we denote

gh�rk
� �=ghk, gv�rk

� �=gvk and ��rk
� �=�k. Then the interaction

Hamiltonian in the interaction picture can be written as

HI = �
k=1

N

	ghkah�2�kk�1� + gvkav�4�kk�3� + �k�2�kk�3� + H.c.
 .

�4�

In general, the Hamiltonian HI is difficult to treat exactly
because there exist the classical driving terms. In order to
obtain physical insight into the dynamics of such a physical
system, some approximations are necessary. To demonstrate
how the system dynamics is modified by the strong classical
field, we introduce the atomic dressed basis �± �k

= 1
�2

��2�k± �3�k�, then HI can be rewritten as

HI = �
k=1

N ��k�� + � kk � + �− �− � kk � − ��

+ 
ghk

�2
ah�� + � + �− � �kk � 1�

+
gvk

�2
av�4 � kk� � + � − � − �� + H.c.�� . �5�

In order to further simplify the dynamics of the system, we
switch to the interaction picture with respect to the
�k=1

N �k��+ �kk�+�− �−�kk�−��. In the strong laser regime, i.e.,
with the choice of ��k�� �ghk� , �gvk�, neglecting the effect of
rapidly oscillating terms and using the time-averaging
method of Refs. �8,18,19�, we can further reduce HI to an
effective interaction Hamiltonian

Heff = �
k=1

N � 1

2�k
�ghk

2 ahah
† − gvk

2 av
†av�

��� + � kk � + � − �− � kk � − ��

+ �ghkgvk

�k
ahav�4 � kk � 1� + H.c.�� . �6�

In the following we consider the temporal evolution under
different initial states in the form of �N atoms�
� �two cavity modes�.

�i� If the initial state of the system is prepared as 	k�1�k
� �h��v�, which means all atoms initially occupy the ground
state �1� and there are two polarized photons h and v in the
cavity. Then Heff is reduced to the form

Heff
�1� = �

k

��kahav�4�kk�1� + H.c.� �7�

with the effective coupling constant �k=ghkgvk /�k.
The time evolution of this system is spanned in the space

	�
0�=	k�1�k � �h��v� , �
k�= �4�k	 j�k
N �1� j � �vac��vac�
. Gov-

erned by Heff
�1�, the system state is described by ���t��

=c0�t��
0�+�kck�t��
k�. According to Schrödinger equation
i�t���t��=Heff

�1����t��, we have

dc0�t�/dt = − i�
k=1

N

�kck, �8a�

dck�t�/dt = − i�kc0. �8b�

Considering the initial conditions we obtain

c0�t� = cos Gt �9�

with G=��k=1
N �k

2.
�ii� If the system state is initially in the state 	k�1�k

� �h��vac�, by letting gv=0, the effective Hamiltonian in the
case of strong laser regime reads

Heff
�2� = 0. �10�

�iii� For the initial state 	k�1�k � �vac��v� or 	i�1�i
� �vac��vac�, obviously, there is no interaction between the
cavity modes and the atoms, so

Heff
�3� = Heff

�4� = 0. �11�

Therefore, with the choice tI=� /G, which can be con-
trolled by the classical laser field, we easily obtain

	k�1�k � �h��v� → − 	k�1�k � �h��v� , �12a�

	k�1�k � �h��vac� → 	k�1�k � �h��vac� , �12b�

	k�1�k � �vac��v� → 	k�1�k � �vac��v� , �12c�

	k�1�k � �vac��vac� → 	k�1�k � �vac��vac� . �12d�

This is a phase gate between two intracavity modes.
In order to demonstrate the feasibility of the present

scheme, we analyze the photon loss during the gate operation
and the fidelity of the phase gate. The decoherence mecha-
nisms arise through three dominant channels: �i� qubit di-
poles decay at the rate �s, cavity decay with the rates 
h and

v, and atomic collisions. A single trajectory in the quantum
jump mode �20� is well suitable for evaluating the effects on
the gate fidelity. We suppose that the photon decays from the
cavity are continuously monitored, and that the single trajec-
tory is specified by the evolution of the system conditioned
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to no-photon detection. The conditional dynamics satisfies
the non-Hermitian Hamiltonian

H��� = HI −
i

2 �
j=2,4

�
k

�s,j�j�kk�j� −
i

2 �
p=h,v


pap
†ap, �13�

where we omit the double excitation effect since the atoms in
the states �1� and �3� cannot be excited again in the case with
a single-photon input, respectively.

For simplicity, we assume 
h=
v=
, �s,2=�s,4=�s, 

=�s, ghk=gvk=g, and �k=� in the following numerical
simulations, so it can be seen G=�Ng2 /�. The initial atom-
cavity state is prepared in ���0��=	k�1�k � ��h��v�+ �h��vac�
+ �vac��v�+ �vac��vac�� /2. After a phase gate, the conditional
state can be described by ���tI��=	k�1�k � ��h,v�h��v�
+�h,0�h��vac�+�0,v�vac��v�+�0,0�vac��vac�� /2 with the
choice of tI=�� / ��Ng2�. Note here ���tI�� has not been
normalized, so the photon loss can be calculated by Ploss
=1− ���tI�����tI��. Figure 2�a� plots the numerical calcula-
tion of the photon loss after a full gate operation for the
initial state ���0��. The photon loss is proportional to 
 /g
due to the assumption 
=�s.

The gate fidelity, which is an efficient measure of the
distance between the quantum logic gates, can be defined as
F����out���ideal��2. Here ��out� is the normalized conditional
output state ���tI�� / ���tI�����tI�� after the actual phase gate,
and ��ideal� is the ideal output state 	k�1�k � �−�h��v�
+ �h��vac�+ �vac��v�+ �vac��vac�� /2. As shown in Fig. 2�b�,
the gate fidelity reaches very high even under a slightly
strong-coupling condition, and it monotonically decreases
when 
 /g0 grows.

We turn to discuss the preparation of the initial cavity
field states. The problem can be switched to prepare the ini-
tial two-photon polarized state and inject them into the cav-
ity. Up to the present, single photons have been produced
successfully in strong-coupling cavity QED �21�, which are
suitable for quantum information processing. In principle,
any two-photon polarized state within the state space 	�h��v�,
�h��h�, �v��v�, �v��h�
, can be expediently prepared. To imple-
ment the phase gate, the above-mentioned scheme can be
used. However, the photon state should be first translated
into the corresponding state space 	�h��v�, �h��vac�, �vac��v�,
�vac��vac�
, which can be carried out using simple linear op-
tical elements. The following key is how to inject photon

qubits from the outside into an optical cavity with high effi-
ciency. Photon injection is one of critical steps for distributed
quantum computation and quantum network �8,22�. Re-
cently, Fattal, Beausoleil, and Yamamoto �23� proposed a
significant scheme to achieve photon injection from the out-
side to the inside of an optical cavity and then store it in the
atomic internal state even with highly imperfect hardware.
However, more theoretical suggestions and experimental re-
alization still provide a challenge.

Moreover, visible photons decay too fast in an optical
cavity. As a result, conventional schemes in which a single
atom interacts with cavity modes, usually need to be oper-
ated in the strict strong-coupling regime and Lamb-Dicke
limit. However, in the case of atomic ensemble, the operation
of the above phase gate is accelerated due to the collective
enhancement of atom-photon interaction �approximately, the
time changes from � /g to � /G�. This allows the full gate
operations in the presence of the decoherence mechanisms,
including the atomic spontaneous emission and cavity decay.
Hence, compared with those single-atom schemes, our
scheme relaxes the requirements of the strong-coupling con-
dition and Lamb-Dicke limit, and can be operated in the
weak-coupling regime in principle. Nevertheless, this relax-
ation cannot be exaggerated with no limit. A slightly strong-
coupling regime �g can be on the same order of magnitude of

 and �s� is usually required caused by some practical ingre-
dients. For instance, on one hand, to avoid collisions the
atom number is limited by the cavity mode volume; on the
other hand, to obtain a large coupling factor g, a small cavity
mode volume is necessary. In the following, we will address
these parameters in a real system.

Finally, we discuss some experimental parameters which
possibly lead to the imperfection of the gate operation. We
consider a low-density vapor of 85Rb in an optical FP cavity.
The atomic configuration can be chosen from the hyperfine
states of 85Rb. For instance, the two lower levels �1� and �3�
are the F=2,3 hyperfine states of the 5S1/2 electronic ground
state, while �2� and �4� are the F=3,4 hyperfine states of the
5P3/2 electronic excited state, respectively. The three impor-
tant cavity QED parameters describing the cavity-atom inter-
action system have been obtained as �g ,
 ,�s� /2�
= �16,1.4,3� MHz �24�. The waist �w� of the cavity modes
and the waist �d� of the homogeneous classical laser beam
are about 35 and 50 �m �24�, respectively, so an approxi-

(a) (b)

FIG. 2. �Color online� Photon loss and fidelity of the phase gate vs 
 /g in �a� and �b�, respectively. Other common parameters: 
=�s,
ghk=gvk=g, N=104, �k=20g.
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mate interaction volume of 5�104 �m3 can be obtained.
Choose atom number N�104, corresponding to an atom
number density of 0.2 �m−3, which is enough to prevent
coherence losses due to the atomic collisions. A cloud of
atoms is released from a magneto-optical trap and falls
through a cavity with a velocity of vm=2 m/s. The interac-
tion time of the atom cloud with the TEM00 mode of the
cavity amounts to about 17.5 �s, which is much lager than
the gate operation time tI, about �� / ��Ng2��6 ns. In addi-
tion, we should switch off the external field �generally, the
coupling strength � is one order of magnitude higher than g
for the sake of the validity of the effective Hamiltionian Heff
and enough coupling strength G=�Ng2 /�� before and after
the gate operations, so the atomic spontaneous emission pos-
sibly plays an important role due to the resonant interaction
between the horizontally polarized cavity mode and the
atomic transition �1�↔ �2�. To overcome this imperfection,
we can introduce another external classical laser and an aux-
iliary atomic ground state �aux�, which is beyond the above-
mentioned state space of system evolution �25�. For instance,
the atoms can be transferred into the stable ground state �aux�

from �1� by operating the additional external classical lasers
before and after the gate operations �25�. In this case atomic
spontaneous emission no longer plays a significant role due
to the neglectable population of the excited states �2� and �4�.

In summary, we have proposed a scheme to carry out a
two-qubit phase gate of intracavity modes by using the four-
level N-type atomic ensemble as a coherent interaction me-
dium. We also discuss the influence of the atomic spontane-
ous emission and the decay of the cavity modes on the
photon loss and gate fidelity. It is shown that the quantum
phase gate has ultrahigh fidelity and small error rate without
the strict strong-coupling condition and Lamb-Dicke limit.
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