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Universal behavior of Gaussian-Klauder states emerges near soft classical turning points, as expressed
through a complex-valued Airy transformation that approximates the wave function. Study of these classical
turning points provides analytic evidence that Gaussian-Klauder states generally display recurrent localization
for many classical orbital periods. Analytic position and momentum moments of the wave function are deter-
mined from this approximation, leading in part to connections with the traditionally chosen positional Gaussian
wave functions as the limit of large energy uncertainty. Application of this procedure to hydrogenic states of
maximal eccentricity leads to the classical limit of recurrent collisional bouncing in the Kepler problem, via the
explicit construction of states that maintain phase space localization for many orbital periods.
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Harmonic oscillator coherent states represent the ideal
when considering classical correspondence of a quantum
system. These coherent states form an overcomplete set of
nondispersive, minimum uncertainty wave functions, whose
position and momentum expectation values forever follow
their classical trajectories �1�. Other useful properties include
alternative representations of operators in coherent state
space and the creation of Husimi-Wigner distributions �2–5�.
Generalization of the harmonic oscillator coherent states to
other systems is motivated by the promise of such properties,
but typically only a subset of these properties may be self-
consistently preserved. Thus, various approaches to general-
ized coherent states have been developed on different lines
of generalization. At least two such approaches have been
explored: group-theoretic and Gaussian-Klauder coherent
states.

Generalized coherent states were early considered a prop-
erty of the simple group structure underlying the harmonic
oscillator �1�, with particular applications desired for the
SO�4� symmetry of the hydrogen atom. However, though the
group-theoretic coherent states for hydrogen possess the use-
ful properties of being nondispersive and localized in both
eccentricity and angular momentum, they are completely de-
localized along the azimuthal angle �i.e., along the classical
orbit� �6�. This group-theoretic approach for hydrogen is then
insufficient to construct states that share the localization
properties of harmonic oscillator coherent states. Lack of lo-
calization in phase space prohibits the investigation of many
questions in classical correspondence that a coherent state
picture might otherwise provide.

A solution to the localization problem was realized with
the Gaussian-Klauder �GK� construction �6� �to be defined in
Eq. �1��. At the expense of allowing eventual delocalization
at some presumably distant time, the GK approach routinely
provides a means for an overcomplete set of long-lived, lo-
calized states that are suitable for classical correspondence.
Low dispersiveness of a state in time is ensured by an em-
phasis on energy localization as primary to phase space lo-
calization, a point revisited quantitatively later in this Brief
Report. In its original application to the hydrogen system,
this approach reduces to a straightforward superposition of

the group-theoretic states to ensure localization of the wave
function along the azimuthal angle �6�. GK states have since
been applied to a wide variety of systems, both with and
without strong group symmetry, to provide evidence that the
GK coherent states are a viable means to establish classical
correspondence for systems with regular spectra �7–9�.

To date, the study of GK states has largely focused on
these results of particular systems as a means to understand
GK states in general. The present report rather establishes
universal properties for a set of one-dimensional �or effec-
tively one-dimensional� quantum systems that possess at
least one soft classical turning point and need not contain
any special group symmetry. By examining the evolution of
the wave function near a turning point, the following text
builds an analytic Airy-transform approximation that is based
on linearity of the potential near this turning point. The Airy
transform approximation predicts a polynomial growth in
time for position and momentum variances and also predicts
the appearance of Gaussians in position for increasing energy
uncertainty. The report concludes with a brief example for
the hydrogen atom: Rydberg coherent states of maximal ec-
centricity, i.e., “bouncing” Rydberg states �these were all but
explicitly written in Ref. �6��. This system is effectively one-
dimensional with a soft classical turning point at the classical
apoapsis, such that turning point behavior may be analyzed
as in the rest of this report.

The simplest definition of a Gaussian-Klauder state, with
an energy eigenstate basis set ��n�� and with nondegenerate
energies En=��n, is

��GK�t�� = Z−1/2	
n

e−�n2/4�2
e−i�nt�n� ,

Z = 	
n

e−�n2/2�2
, �1�

where n0 is the mean quantum number of the state and
�n=n−n0 is the relative quantum number. � is a real param-
eter related to the energy uncertainty.

In analogy to the evenly spaced harmonic oscillator spec-
trum, which ensures exact periodicity in time for the wave
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function �up to a global phase�, a sufficiently narrow portion
of a regular energy spectrum is also linear and exhibits ap-
proximate periodic evolution for states restricted to this en-
ergy window. Long-lived phase space localization for GK
states then relies on energy localization, as expressed
through the parameter �.

Regular spectra are assumed for this paper, such that a
Taylor series is assumed to exist for the energy eigenvalues
around a given mean quantum number n0:

�n = �n0
+

2�

T1
�n +

2�

T2
�n2 + ¯ , �2�

where T1 and T2 are the �signed� period and revival times,
respectively �10�. These times are well separated in the clas-
sical limit, i.e., T1�T2. Higher order terms in Eq. �2� are
ignored for the purposes of this Brief Report, which is con-
sistent with our focus on initial times of the evolution. A GK
state ��GK�t�� in this approximation may be written in terms
of the slowly varying complex parameter �2:

1/�2 = 1/�2 +
8i�t

T2
,

��GK�t�� 
 Z−1/2e−i�n0
t	

n

e−�n2/4�2
e−2�i�nt/T1�n� . �3�

The time dependence of � then characterizes the nonperiodic
portion of an initial evolution.

At this level of detail, a simple measure of the delocaliza-
tion of an evolving GK state is the autocorrelation function
�11,12�

��GK�e−iĤt/���GK� = Z−1	
n

e−�n2/2�2
e−i�nt. �4�

Equation �4� has been analyzed both for initial behavior and
fractional revival behavior �10�. From such an analysis, the
initial time before the onset of revival behavior is estimated:

	initial �
�T2�

42�
. �5�

The dependence of Eq. �5� on � suggests an inverse relation-
ship between energy uncertainty and the time before the first
complete delocalization of the state in phase space �consid-
erations of Eq. �11� to come will further support this�. Un-
fortunately, the autocorrelation function generally provides
limited detailed information on this matter. For example, Eq.
�4� is completely insensitive to initial phases of the energy
eigenstate expansion coefficients.

Explicit construction of wave functions is a much more
satisfactory measure of delocalization than the autocorrela-
tion function. Specifically for this report, GK states are con-
sidered for the one-dimensional Schrödinger equation with
position variable x and potential V�x�. Assuming V�x� is a
smooth function in x, energy eigenstates of the Schrödinger
equation may be approximated by means of the Airy uniform
approximation, which supplies a solution both near and far
away from a single given turning point �13�. Near the turning
point, this solution reduces to the usual Airy approximation

�n�x� 
 Nn
−1/2Ai� x − xn


n
� ,


n � �2m�V��xn��/�2�−1/3 �6�

with xn the turning point position at eigenenergy En, Nn a
scaling constant to match the Airy approximation to the exact
normalized eigenfunction, and 
n the characteristic Airy
length of the turning point.

The key approximation in this paper is related to the rela-
tive constancy of Nn

−1/2 and 
n compared to xn as n is varied.
As such, these variables are set to the constants N=Nn0

and

=
n0

. The variation of xn is only taken to first order:

xn 
 xn0
+ ��n �7�

with �= �
�xn

�n �n0
. These approximations may appear restrictive,

but several examples exist where the following analysis
leads to meaningful results �e.g., many power law potentials
and the Rydberg atom example in the latter part of this Brief
Report�.

With these assumptions, and with time evaluated at mul-
tiples of the fundamental period T1, the GK positional wave
function near the turning point is �ignoring the overall phase
e−i�n0

t�

�GK�y,t� 
 N−1/2	
�n

e−�n2/4�2
Ai� y − ��n



� , �8�

where y=x−xn0
, and � has the implicit time dependence of

Eq. �3�. Equation �8� is a discrete sum approximation to the
Airy transform of a Gaussian, which may be written as the
identity �13�

1
4��2 � e−x2/4�2

Ai� y − x



�dx

= exp�2� +
2

3
6�Ai�� + 4� , �9�

where �=y /
 and 2=�2 /
2, and �2 may be complex. Up to
a multiplicative constant, Eq. �9� approximates the turning
point wave function with the choice of complex parameter
2=�2�2 /
2.

The accuracy of Eq. �9� in approximating Eq. �8� for a
given � may be determined through treatment of Eq. �8� with
the Poisson summation formula �14�, though this is not done
here. Of note is that while the result in Eq. �9� is typically
square integrable over �, Eq. �8� is not square integrable
over all of y. This peculiarity is related to the failure for the
oscillating portion of Airy functions to represent the exact
orthonormal eigenfunctions far from the turning point. For
reasons of square-integrability and analyticity, Eq. �9� will be
understood as the approximate wave function of choice, from
which calculations will be derived.

The momentum space representation of Eq. �9� �notice
this representation involves Fourier transforming the convo-
lution on the left hand side of Eq. �9�� straightforwardly
leads to the computation of a moment generating function.
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Defining p�=−i��, A=Re�2�, and B=Im�2�, then the lead-
ing moments of the normalized turning point GK state in Eq.
�9� are

��� = −
1

4A
,

���2� =
1

8A2 +
B2

A
+ A ,

�p�� = 0,

��p�
2 � =

1

4A
,

���2���p�
2 � =

1

32A3 +
B2

4A2 +
1

4
�10�

with an again implicit time dependence. Strong dependence
of the variances on A indicates that the primary factor in

delocalization of a GK state is the smallness of Re�2�. In-
deed, Re�2� becomes vanishingly small with increasing
time �Eq. �3��.

The time dependence of Eq. �10� may be given explicitly
as expressions that are polynomial in time:

���2��t� = � 1

8g2�4 + g�2� +
16�2

g2 � t

T2
�2

+
512�4�4

g2 � t

T2
�4

,

��p�
2 ��t� =

1

4g�2 +
16�2�2

g
� t

T2
�2

�11�

with g=�2 /
2 a dimensionless ratio. Estimates of the packet
delocalization time 	 may be determined through Eq. �11�.
For instance, if attaining some large positional uncertainty
��0

2 at some time 	 defines delocalization, and additionally
���2��t� is assumed to be dominated by the t4 term, then the
	� �T2� /� dependence in the autocorrelation estimate �5� is
recovered. Delocalization in the classical limit is again dem-
onstrated to be slow relative to the orbital period, as a con-
sequence of the large ratio �T2� / �T1�.

Equation �10� predicts that for large Re�2�, the total un-
certainty ���2���p�

2 � of the state approaches the minimal
1 /4, indicating that the state is a Gaussian in position and
momentum space. Thus, the positional Gaussian states that
have been often used in the investigation of quantum dynam-
ics may be represented by GK states with large energy un-
certainties �but not so large that the assumptions of this paper
are violated�.

Also found are minimum positional uncertainty states, as
determined at initial times �Im�2�=0�. By Eq. �10�, such
states arise for the turning point system when Re�2�min

=2−2/3
0.63 to give a minimum width ���2�min

= �3/2�2−2/3
0.94. This is a sensible result: the minimum
initial positional width for a GK state at the turning point is
on the same order as the local Airy natural length 
. The
minimum width states separate initial conditions into those
that tend to represent either Gaussians �Re�2��Re�2�min�
or Airy functions with exponential damping �Re�2�
�Re�2�min�.

Application of turning point dynamics to maximally ec-
centric Rydberg atoms provides an interesting example
�maximally eccentric eigenstates have a prominent role in
the theory of Rydberg molecules �15��. Maximally eccentric
Rydberg states are constructed by the same procedure as the
generalized GK coherent states of the hydrogen atom
�6�, existing as the opposite limit to circular states. The set
of maximally eccentric eigenstates derive from the
SO�3� � SO�3� decomposition of hydrogen’s SO�4� dynami-
cal group �6,16�, though expression of these states in coordi-
nate form is often best given in parabolic coordinates
�=r�1+cos �� and �=r�1−cos ��, with r and � the usual
radius and polar angle, respectively �17�. Attention is di-
rected to the differential equation satisfied by the � part of
the maximally eccentric eigenfunctions �17�

0.0 2.0 x 105 4.0 x 105 6.0 x 105

ξ

0.0 2.0 x 105 4.0 x 105 6.0 x 105

ξ

(b)

(a)

FIG. 1. A maximally eccentric GK Rydberg state, with mean
quantum number k0=400 and quantum number uncertainty �2=1,
given at �a� initial time and �b� at 10 periods. Plots display the
probability density ���2 �with arbitrary scale, fixed by normaliza-
tion� against the parabolic coordinate � �in atomic units�. Relatively
small changes between the wave functions in �a� and �b� are a
consequence of a small energy uncertainty leading to increased tem-
poral stability.

BRIEF REPORTS PHYSICAL REVIEW A 74, 044101 �2006�

044101-3



�2�

��2 +
1

�

��

��
+ �−

1

4�k + 1�2 +
1

�

2k + 1

2k + 2
�� = 0 �12�

with integers k�0, and the usual energy quantum number
equal to n=k+1. If the ��

�� term is ignored for the large �
associated with the classical turning point �this can be done
consistently for large energies�, then the GK state at this
turning point follows from the Airy transform principles ear-
lier in this report. These maximally eccentric “bouncing”
states may then be analyzed at the turning point as a one-
dimensional problem. With a few short calculations, good
localization in position space relative to the semimajor axis
may be demonstrated �the large-k asymptotic limit for the
ratio of minimum initial width ���2�min to the semimajor
axis is proportional to k−2/3, which becomes small in the limit
of large k�. This localization in � can also be demonstrated to
ensure localization in the full phase space, as a result of the
factor e−�/2�k+1� that multiplies maximally eccentric eigen-
states �17�. Figure 1 illustrates one example of a maximally
eccentric GK state.

Estimates of the time before delocalization of the maxi-
mally eccentric GK states follow from Eq. �5�, which de-
pends only on the local details of the spectrum around a
given quantum number. Due to the degeneracy of the hydro-
gen atom, these estimates then correspond exactly to circular
GK states of the same energy uncertainty and mean quantum
number �covered earlier in Ref. �6��.

Experimental realization of these bouncing states may be
impractical, due to the rapid decay of eccentric states into
circular states �18�. Theoretical implications include, how-
ever, a classical limit of Keplarian orbits with eccentricity

very near 1. This limit is not entirely obvious, since perma-
nent polarization of the state along a given direction follows
from the SO�4� symmetry of the Coulomb system �classi-
cally, from the conservation of the Runge-Lenz vector and
angular momentum�. The situation is in contrast to circular
coherent states, which may be formed for a wide variety of
central potentials.

In summary, application of Gaussian-Klauder states to in-
tegrable quantum systems has been demonstrated here and
elsewhere to be a viable means of addressing generalized
coherent states. In particular, the simplicity of the problem
near soft classical turning points provides an analytical
handle on the phase space localization �and packet shape� of
GK states. The turning point formalism in this way lends
credence to the estimates derived from the autocorrelation
function in Eq. �4�, e.g., the estimates of localization life-
times. Relevance of this machinery to the hydrogen problem
occurs in the examination of maximally eccentric “bounc-
ing” states, whose classical limit is the recurrent radial col-
lisions of a localized classical ensemble with the force center.

Such success has been based entirely on integrable quan-
tum systems, where energy spectra and eigenfunctions re-
main well behaved. However, the usefulness of GK states
applied to near-integrable systems is unclear. Our prelimi-
nary studies of this problem for the periodically time-
perturbed case have offered an interesting analogy to classi-
cal adiabatic theory: find a given order adiabatically-
approximated Hamiltonian Had and use the GK states of this
smoothed problem as a coherent state approximation for the
exact problem. This would seem a fitting answer to the co-
herent states of a near-integrable system.
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