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A semiclassical theory of single and multimode lasing is derived for open complex or random media using
a self-consistent linear response formulation. Unlike standard approaches which use closed cavity solutions to
describe the lasing modes, we introduce an appropriate discrete basis of functions which describe also the
intensity and angular emission pattern outside the cavity. This constant flux (CF) basis is dictated by the Green
function which arises when formulating the steady state Maxwell-Bloch equations as a self-consistent linear
response problem. This basis is similar to the quasibound state basis which is familiar in resonator theory and
it obeys biorthogonality relations with a set of dual functions. Within a single-pole approximation for the Green
function the lasing modes are proportional to these CF states and their intensities and lasing frequencies are
determined by a set of nonlinear equations. When a near threshold approximation is made to these equations a
generalized version of the Haken-Sauermann equations for multimode lasing is obtained, appropriate for open
cavities. Illustrative results from these equations are given for single and few mode lasing states, for the case
of dielectric cavity lasers. The standard near threshold approximation is found to be unreliable. Applications to
wave-chaotic cavities and random lasers are discussed.
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I. INTRODUCTION

A long-standing problem in laser theory is the formulation
of a model for lasing which correctly treats the openness of
the lasing medium and/or cavity and the nonlinearity of the
coupled matter-field equations. This mathematical challenge
has become of great relevance with the current high interest
in complex or random lasers, for which the mode geometry
is not fixed by the placement and orientation of mirrors and
one typically has multimode lasing behavior. In this case
many spatially complex internal modes contribute to the ex-
ternal emission pattern and we currently lack any theory to
predict the directionality of emission patterns and to under-
stand and predict the output power as a function of pump
strength. One class of systems of particular interest in this
regard are dielectric cavity lasers with complex and some-
times chaotic ray dynamics [1,2]; another class is the so-
called “random” lasers [3,4] in which light undergoes diffu-
sive motion within the gain medium. In the former case the
laser will typically have relatively high-Q modes whose las-
ing properties are nonetheless determined by complicated
competition between spatially complex modes. The latter
part of this work will focus on the dielectric cavity case
although the formalism we are developing should be useful
for both random lasers and for certain conventional lasers in
which mode competition is important. We believe the current
approach solves the problem of treating the openness of the
cavity in the simplest possible manner, and makes clear the
connection between the resonances (or quasibound states) of
the passive (cold) cavity and the lasing modes of the active
cavity. In particular if a periodic or multiperiodic solution of
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the Maxwell-Bloch (MB) equations exists, then the lasing
modes and frequencies are determined by a set of self-
consistent integral equations the kernel of which is the Green
function of the linear problem with outgoing wave boundary
conditions. When the modes are relatively high Q a simple
approximation to this Green function implies that the spatial
modes are given by a certain set of states which we refer to
as constant flux (CF) states. The effects of spatial-hole burn-
ing are then described by interactions between these modes,
which unlike previous theories, are modes which exist in all
space and can thus be used to predict output power and emis-
sion patterns from complex or random two- and three-
dimensional laser cavities. Throughout this work we employ
the semiclassical description of lasing implied by the MB
equations, so the effects of field quantization, such as quan-
tum fluctuations, are not included.

The modal description of lasing assumes that the laser is
in a regime in which the steady-state electric field in the
pumped medium E(x,7) (which we will henceforth refer to
as the “cavity”) has a finite number of frequencies and hence
by Fourier transform can be seen as a sum of nonlinear
modes E M(X,Q M). It is now well known that lasers can have
chaotic temporal dynamics which cannot be described by a
finite number of frequencies [5-8]. For clarity we wish to
emphasize that we are not treating lasers which exhibit dy-
namical chaos in this sense; the “chaotic lasers” we are treat-
ing are those with complex modal patterns which can be
related to the chaotic motion of light rays in the geometric
optics limit. A term for this type of laser consistent with
usage in the field of quantum chaos is “wave chaotic.” The
temporal dynamics we are treating is conventional multi-
mode (MM) lasing, typical of the vast majority of lasers.
There have been a number of interesting experiments for
which the emission patterns from deformed (nonspherical or
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cylindrical) dielectric cavity lasers have not been explainable
in terms of conventional “whispering gallery” modes, but
instead required careful analysis of different modal patterns
with different ray-optical interpretations [9—16]. Furthermore
several experiments have found a dramatic variation of the
output power for a given pump strength with the shape of the
laser cavity [9,10]. Our current formalism is proposed to de-
scribe and predict the results of such experiments, which are
inadequately treated by standard approaches.

There are several methods to predict or describe lasing
modes and emission in this case of multiperiodic steady state
solutions. The simplest approach is to work with the “cold
cavity” (CC); i.e., to find the electromagnetic solutions for
the Helmholtz equation describing light in the cavity neglect-
ing gain and nonlinear effects. If the lasing modes have high-
Q values then the nonlinear solutions are often very similar
spatially to these CC modes [17,18] and from the experimen-
tally observed MM lasing frequency spectrum one can asso-
ciate the lasing state with a sum of cold cavity modes (or a
single mode if only one frequency is present). Within this CC
approximation a further approximation is to treat the cavity
as closed and work with Hermitian modes of a perfectly
confining cavity. The Gaussian modes of Fabry-Perot reso-
nators shown in textbooks are solutions of this type.

Another more common approach within the CC approxi-
mation is to approximate the lasing modes by the quasibound
(OB) states or resonances of the cavity. These states are de-
fined as the solutions of the linear Maxwell wave equation
(in the absence of gain) which satisfy the boundary condi-
tions at the cavity boundary and only have outgoing waves at
infinity. This outgoing wave boundary condition can only be
satisfied for discrete complex values of k=g—iy (with y
>() which means that the outgoing spherical waves will
grow as exp[ yr] as r— 0. Such modes are not Hermitian and
are not orthogonal to one another (though a modified or-
thogonality relation can be defined in separable non-
Hermitian problems [19,20]). The quantity y determines the
Q value of the resonance which can then be used in formu-
lating the laser theory. The Fox-Li method [21] dating from
the early days of laser theory is one technique for finding
such quasibound modes; there are a number of modern meth-
ods for doing this as well [1,22-25]. This theoretical ap-
proach has been widely applied to analyze post factor the
modes of wave-chaotic or random lasers (see [1] for refer-
ences). Its obvious drawback is that the method is not pre-
dictive. First, a larger set of QB modes is found and a subset,
the lasing modes, are chosen as those which “look” like the
experimental results. Furthermore, there is no means within
this approach to understand and predict the output power of
the laser.

The standard approach to go beyond the CC approxima-
tion is to use the simplest semiclassical lasing theory, de-
scribing a pumped medium of two-level atoms coupled to
light within a cavity, known as the Maxwell-Bloch equations.
Our theory below is based on analysis of these MB equa-
tions. The MB equations can be analyzed to find single-
frequency solutions, usually approximated by single modes
of the cold cavity. One then finds that it is the highest-Q cold
cavity mode which lases first and that its frequency is shifted
from the cold cavity frequency towards the atomic transition
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frequency but not by a large amount if the Q of the cavity is
sufficiently high [5,14,17,26]. The spatial field distribution is
typically assumed unchanged from the CC mode which can
be approximated by the closed cavity mode or the corre-
sponding CC resonance. The complication in the theory
comes when one attempts to describe multimode lasing. First
the general nonlinear MB equations cannot be solved ana-
Iytically using a modal expansion of the electric field. Exact
numerical solution of the equations can be done for some
cases and is useful [ 18]; however, this becomes computation-
ally intractable in the short wavelength limit of interest here
and it is difficult to extract qualitative physical ideas from
such an approach. A nice method due to Haken [27] dates
back to the early days of laser theory; one limit of our theory
is an extension of this approach. The Haken method expands
the electric field which solves the MB equations as a sum of
CC modes and writes an equation of motion for the ampli-
tude of each mode which can be reduced to a (constrained)
linear equation for the modal intensities in the near threshold
approximation. The major drawback of the Haken approach
is that it is formulated in terms of the modes of the ideal
closed cavity and calculates only the internal field intensities
of these modes; thus without some ad hoc assumptions it
does not predict output power or directional emission pat-
terns. This is done to exploit the orthogonality of closed
cavity modes which simplifies the mathematical description.
For comparison to our results below, the Haken near thresh-
old MM lasing equations for the steady-state electric field
intensities 7, are

1= =3 5@ Ay, ()
0 v

where «,.D,,g({),) are the cavity decay rate, pump
strength, and laser gain profile, respectively (in appropriately
scaled units) and

A= [ Exig e )

is a matrix which describes interactions between CC modes
®,(x),¢,(x). The complexity of modal solutions in space
thus determines the lasing amplitudes through the properties
of this matrix. This equation was derived by Haken and
Sauermann in 1963 to describe the effects of spatial hole
burning: the fact that lasing modes deplete the inversion in a
spatially varying manner which can then allow many modes
to lase in steady-state when the pump is sufficiently strong. A
statistical analysis of certain aspects of these equations for
the case of closed cavities described by random matrix
theory was performed by Misirpashaev and Beenakker some
time ago [28].

Note that while Eq. (1) appears to be a simple inhomoge-
neous linear equation for the {/,}, it cannot be trivially in-
verted to yield these intensities since we have the additional
constraint that 7,=0,V,. The equation thus needs to be
solved by an iterative procedure. In a recent work [29] we
describe this procedure and used it along with some ad hoc
assumptions to calculate multimode output intensities for de-

043822-2



SELF-CONSISTENT MULTIMODE LASING THEORY FOR...

formed dielectric cylinder lasers, making contact with the
experimental results of Ref. [9].

In the current work we present a formalism which gives a
generalization of Eq. (1), and which avoids these ad hoc
assumptions. The basic innovation of the approach is to for-
mulate the solution of the MB equations as a self-consistent
linear response problem and write this solution in terms of
the Green function of the wave equation with the boundary
condition of constant outgoing flux at infinity. Using this
Green function the lasing solutions and frequencies are de-
termined by an integral equation which can be used to de-
scribe multimode lasing in both high-Q and low-Q cavities,
and in random media (acting as a cavity). To describe such
complex cavity modes it is useful to represent this Green
function in terms of a new set of linear eigenfunctions which
satisfy the wave equation with real wave vector but purely
outgoing boundary conditions; we refer to these functions as
constant flux (CF) states. They are similar to the resonant
solutions of the cold cavity in that they have a complex wave
vector inside the lasing medium, but they differ in that they
have a real wave vector outside the medium and hence give
a well-defined field at infinity. Like the quasibound states,
the CF states are not orthogonal, and the Green function
involves both the CF states and their biorthogonal partners
which represent states of constant incoming flux from infin-
ity. The use of biorthogonal pairs of resonator states is well
established in resonator theory, and it is well known that the
two states correspond to different directions of propagation
through the apparatus (see Ref. [30], pp. 847-857). Our CF
states are just a generalization of this idea. The new feature
here is that we represent the non-linear lasing mode in terms
of these biorthogonal functions. Moreover we show that a
simple “single-pole” approximation to the Green function
implies that the lasing modes are proportional to the CF
states and leads to a generalization of the Haken-Sauermann
multi-mode lasing equations in terms of CF states. Iterative
solutions of these equations predict the multimode lasing
states both inside and outside the cavity and hence provide a
predictive theory of output power and directional emission
from complex cavities.

The paper is organized as follows. In Sec. II we derive the
self-consistent integral equation for the lasing modes assum-
ing that a multiperiodic solutions exists. To do this we intro-
duce a Green function for the inhomogeneous wave equation
within the cavity. In Sec. III we discuss the boundary condi-
tions on this Green function and its spectral representation.
We show that in order to satisfy the outgoing wave boundary
conditions this spectral representation is expressed in terms
of two sets of biorthogonal functions (the CF states). The
approximation corresponding to standard multimode lasing
theory is to approximate the Green function by the contribu-
tion of the single-pole nearest to the lasing frequency. This
implies that the lasing modes are proportional to a single CF
state. We discuss examples of CF states for a slab [one di-
mensional (1D)], cylinder (2D), and deformed cylindrical di-
electric cavity. In Sec. IV we derive the multimode lasing
equations which follow from this approximation, leading to
linear and nonlinear generalizations of the Haken-Sauermann
equations, valid for the open cavity. In Sec. V we discuss
iterative methods for solving these equations for the modal
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intensities and the lasing frequencies and then present solu-
tions for the single and two mode cases, beyond the standard
Haken-Sauermann near threshold approximations. Our re-
sults suggest that the near threshold approximation intro-
duces significant error and greatly overestimates the number
of lasing modes at a given pump power. We summarize our
results in Sec. VI and provide further detail on CF states in
the Appendix.

II. DERIVATION OF THE SELF-CONSISTENT
SEMICLASSICAL LASER EQUATIONS

Following the standard semiclassical laser theory [5,27],
we start with the Maxwell-Bloch equations (MB) in the form

Ve Li = ST (), 3)
C C
. 2
Pt=—(iw, + yL)P++‘,g—ED, 4)
ih
) 2 .
D=vy(Dy-D)~ EE[(PV - P*]. (5)

This is a set of nonlinearly coupled spatiotemporal partial
differential equations for the electric field amplitude E(x,1),
the  macroscopic  polarization  P(x,1)=n,[gp»(X,1)
+g py(x,t)]=P*+P~, and the inversion D(x,?)
=n[pn(x,1)=py(x,1)]. Here, P*=(P")'=n,gp,. The pa-
rameters entering the equations are as follows: Dy is the ex-
ternal pump strength, g is the dipole moment matrix element,
v, and 7, are phenomenological damping constants for the
polarization and the inversion, respectively, and c is the
speed of light. Note that E, D, and P are real valued fields.

We will make the following assumptions:

(i) We focus here on a scalar field E defined in two space
dimensions x=(x,y). For instance, in the case of a dielectric
cylinder laser with arbitrary cross section, E will denote the z
component of the electric or magnetic field for k£,=0 modes
(see Ref. [1] for the justification of this model in the case of
a dielectric cylinder laser).

(i) We assume a uniform, homogeneously broadened
atomic medium with density of atoms n,, atomic transition
frequency w,, and the quantum mechanical density matrix
pij(x,1).

We decompose P=P;+Py;, into a linear component P
(for instance the nonresonant response of the substrate mate-
rial), and a nonlinear resonant component Py; due to the gain
medium, here taken to be the uniformly distributed set of
two-level atoms. Let

P, (x,1) = J dr’ x(x,t—1t")E(x,t"). (6)

Decomposing the fields P=P;+ Py; and E as
F(x,t) = FY(x,1)e” % + F~(x,1)e'", (7)

where F=(E,P;,Py;), and using the slowly varying enve-
lope approximation and the rotating wave approximation,
Eq. (3) becomes
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10} 2iw A’
V2€+_;(€+47TPL)+ 2
c

“(é+4mp,) = 2 P

(8)

The envelope equations corresponding to Egs. (3)—(5) be-
come

6‘2

d(h%e) = ZL[wZﬁZ +*V?e + 2imw pyy 9)
wa
g2
DNL=— Y1PNLF %eD» (10)
. 2 * *
D=7’H(D0—D)—£(€PNL_PNL6 ). (11)

Here, py;(x,1)=Py,(x,1), pr(x,t)=P[(X,1), e(x,1)=E*(x,1),
and 7% stands for the convolution operator [dt'n*(x,t—1t").
The time-dependent index of refraction n(x,7) is related to
x(x,1) by n’(x,f)=1+4mx(x,1). In the derivation of these
equations we have assumed that the residual time depen-
dence of the envelopes is much slower than w, and that w,
> v, and dropped the terms proportional to €, py; , W, Pnr.Pr-

The properties of the index of refraction n(x,t) of the
background medium will depend on the particular complex
lasing system under investigation; for dielectric cavity lasers
it will be constant in the cavity and unity outside, for a ran-
dom laser it will vary randomly in space within some region
and then fall off to unity at the edges of the medium. For the
wave-chaotic dielectric cavity the “randomness” comes from
the scattering at an irregularly shaped boundary. In what fol-
lows the background index of refraction can be either con-
stant in space within a boundary, or varying in space within
some boundary and then uniform outside, allowing for treat-
ment of both cases. We will also replace py; by p henceforth.

We assume now that the fields p(x,7) and e(x,) are mul-
tiperiodic in time

px,1) =2 p(x)e M, e(x,0)= 2V, (x)e M (12)

in the steady state. In contrast to previous approaches
[5,26,31-34], we leave the spatial functions p,(x) and ¥, (x)
to be unknown functions and (1, to be the unknown lasing
frequencies to be determined. Such a solution with a finite
number of discrete frequencies (a “multimode” lasing solu-
tion) is only possible if the inversion is approximately sta-
tionary [35]. Henceforth, we will assume this to be the case.
Note also that this solution has zero linewidth, hence we
neglect any line broadening effects due to quantum fluctua-
tions (which is not captured within the semiclassical laser
theory), including the additional quantum broadening arising
from the nonorthogonality of the modes (Petermann factor)
[36]. From Eq. (10), the ansatz equation (12), and the time
independence of the inversion, we obtain

g  DW)

pu(x)="

v 13

and
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Dy

153 (@)W, 0F
e .
Here, g(Q)= Y 1(Q%++%) is the gain profile and e,
=h\y, y,/2g gives the typical electric field scale. Henceforth
we will measure the lasing modes and polarization,
¥ ,(x),p,(x) in units of e.. We can then rewrite Eq. (9) in
the form

D(x) = (14)

[iw,di* + wgﬁz + 2V e(x,1) = — 477w§p(x,t). (15)

Substituting the results for p,(x) into Eq. (15), the pumped
atomic medium becomes equivalent to a multiperiodic forc-
ing term on the right side of the Eq. (15), given by

.8 Dy
il ]+ g(Q,) W,

- 477w§p(x,t) =—47w

1 .
XS ———— W, %, (16)
w = IQM +v

where the polarization which is the source for e(x,7)
=2, ¥ M(X)e"nﬂ’ is itself a nonlinear function of {V¥,}. Thus
Eq. (15) gives a self-consistent set of equations for the mode
amplitudes W ,(x) and lasing frequencies (1.

To derive from Eq. (15) an integral equation for each
W ,(x), we first Laplace transform Eq. (15) to the frequency
domain

(@, + ©)2(x, 0)e(x, w) + *V?e(x,0) = — 470 (X, 0).
(17)

Here, n*(x, w)=1+4m¥(x, ), the Laplace transforms are de-
fined by ﬁ(w):ﬁ [idte’“*'p(1), and we only retain the in-
finitesimal imaginary part of the frequency, €, when it is
needed for convergence. Note that the real frequency vari-
able w corresponds to the residual time dependence of p(x,1)
after removing the rapid variation at frequency w,> w, and
hence we have used w’+2ww, =~ (w,+w)>.

Initially we treat the right-hand side of Eq. (17) as a given
source and introduce a Green function for the inhomoge-
neous equation, which ensures that the solution e(x,w) sat-
isfies the appropriate boundary conditions, i.e., that the field
has only outgoing contributions. Assuming for the moment
that such a Green function exists we can immediately write a
formal solution to Eq. (15) within the cavity

R
o 2mi(0—Q, +ie)

A’
=-— “f dx'G(x,x'|w)p(x",w). (18)
c cavity

The integral on the right-hand side of Eq. (18) is only over
the cavity because the source (pumped medium) is zero out-
side of the cavity. The cavity Green function satisfies the
equation
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2
V2l c(;")(m 0)? |Gx.X|0) = Sx-x')  (19)

which formally inverts Eq. (17) to yield Eq. (18) for the
electric field component e(x, w) for x within the cavity. Out-
side the cavity the wave equation changes and a different
Green function would be needed to invert the equation.
However as the cavity Green function determines the solu-
tion on the boundary of the cavity, one can just use the out-
going wave boundary condition to fix the solution outside.
This will be done through our definition of the CF states
below.

Both sides of Eq. (18) involve sums over the modes u
weighted by the factor 1/27i(w—{),+i€) which will give
the multiperiodic time dependence of the solution when it is
inverse Laplace transformed. The analytic structure of the
relevant Green function can be shown to produce no addi-
tional harmonic dependence in time as f—oe so that it is
possible to equate the residues of these real poles to yield an
integral equation for each of the modes ¥ ,(x),

47'rw§g2D0
fic* (- i, +vy,)
X f dx’ G(X’X/|Q,u)qjﬂ(xl) .
cavity 1+ 2 g(Qy)|\I,V(X,)|2

v, (x)=i

20)

This set of nonlinear integral equations for the lasing modes
is completely general assuming multiperiodic solutions ex-
ists. If the modes of the cavity are sufficiently high Q that the
imaginary part of their frequency is much smaller than the
typical mode spacing then one can introduce an approxima-
tion for the Green function of Eq. (20) which leads to gen-
eralizations of the conventional multimode lasing equations
(see below). However, it is possible to work directly with Eq.
(20) when, as in a random “diffusive” cavity, the assumption
of well-separated high-Q modes is not correct. In this case
different approximations to the Green function, similar to
those made for disordered electronic systems, would be more
appropriate and would yield composite lasing modes gener-
ated from many very broad cold cavity resonances. We will
not pursue this direction in the current work, but wish to
point out the feasibility of such an approach.

III. BIORTHOGONAL CONSTANT FLUX STATES
A. General definition and properties

To express the lasing solutions W ,(x) as an expansion in
a set of linear cavity modes we now introduce a spectral
representation of the Green function G(x,x’ | ) of the form

Ny (X, )@, (x', @)
G(X’X |w) - ?n: nm(k)[(k + ka)z - (km + ka)z] '

where k=w/c, k,=w,/c, 7,,(k) is a normalization constant
defined in Eq. (28) below and the functions in the numerator
are chosen so that G satisfies the outgoing wave boundary
conditions. It is here that the non-Hermitian nature of these

(21)
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boundary conditions requires a change from the standard ap-
proach utilizing closed cavity (Hermitian) modes. We needed
to introduce in Eq. (21) mwo sets of functions which are bior-
thogonal [37] {¢,,(x, )}, {@,,(X, w)}. The set {¢p,,(x,w)} sat-
isfies the eigenvalue equation

= V2ou(x,0) = (X, 0) (ky + ko) p(x,0),  (22)

defined in the cavity, D. While the Green function of Eq.
(21) is only used to find the electric field inside the cavity
(and would give an incorrect answer for the electric field
outside), one can define the functions ¢,, outside the cavity
as well. Outside the cavity they satisfy the free wave equa-
tion with the fixed external wave vector, k,+k (not k,+k,,),

= V2ou(x,0) = (ke + k)@ (x, @), (23)

with the outgoing wave boundary conditions expressed in d
dimensions by

r(d—l)/ZQDm(r N oc’w) — ei(ka+k)r, (24)
equivalently it can be expressed as a linear homogeneous
boundary condition on the function @, (x)=r4"12¢ (r) in
the form d In ®/dr=i(k,+k) as r— .

Thus each ¢, satisfies a different differential equation in-
side and outside the cavity but are connected by the continu-
ity conditions

(Pm|@‘ = (Pm|(7D+’ an (Pm|(9’D_ = an (Pm|m+s (25)

at the boundary of the cavity (here 9D denotes the boundary
of D and 4, is the normal derivative on dD) [39]. This choice
guarantees that in the approximation developed below, in
which each lasing mode is proportional to a single ¢,,, the
electric field will also be continuous at the dielectric bound-
ary, satisfy the free wave equation outside, and have only
outgoing components at infinity. The spectral representation,
Eq. (21), is only meaningful for x,x’ within the cavity and
on its boundary. We will focus on the typical case in which
one can impose the outgoing wave boundary condition di-
rectly on the cavity boundary (as in the slab and cylinder
examples given below). In this case the eigenvalues (k,,
+k,)? are determined by linear homogeneous boundary con-
ditions on a finite region, and are complex due to the com-
plexity of the logarithmic derivative at the boundary.

Note however that this condition differs subtly from the
condition defining the quasibound (QB) states, for which the
complex eigenvalue k,, itself would appear in the logarithmic
derivative at the boundary, and hence in the external outgo-
ing wave. As a result, as noted earlier, the QB states grow
exponentially at infinity and carry infinite flux outwards. The
states ¢,, we have just defined have real wave vector at in-
finity and carry constant flux; hence we refer to them as
constant flux (CF) states.

The CF states have appeared naturally from the condition
that the Green function of Eq. (18) satisfy the correct radia-
tion boundary condition; this allows us to formulate a lasing
theory valid for an open cavity in terms of these states. In the
simplest approximation, to be developed below, the lasing
modes are just single CF states (those above threshold for a
given pump power), each scaled by an overall intensity fac-
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tor determined by solving Eq. (20), or its near-threshold ap-
proximation, which turns out to be a generalization of the
Haken-Sauermann equations. Note that CF states have com-
plex wave vector inside the cavity, and are amplified while
traveling in the gain medium, but real wave vector and con-
served flux outside as one expects for lasing modes (see Fig.
2 below). We show in the Appendix that for high-Q modes
the CF wave vector inside the medium is very close to that of
the corresponding QB state, justifying the use of QB states to
calculate the Q value of lasing modes, as is often done.

As mentioned already, due to the non-Hermitian nature of
the associated eigenvalue problem we need to introduce a
second set of functions, which satisfy different boundary
conditions, in order to represent the Green function of Eq.
(21). The functions {@,,(x, w)} satisfy

- V28,,(x, ) = [n2(x,0)] (k,, + k,)* &,,(X, ) (26)
with the continuity conditions (25) but with the incoming
wave boundary condition

d-1)

r( /Z(ﬁm(r N oc,w) —~ e—i(ka+k)r. (27)

It can easily be shown [37] that k%=(k2)" and &,,(x,®)
=0, (X, ).

The key properties which motivates the use of the two
sets of functions in the spectral representation is that they
satisfy biorthogonality with respect to the following inner
product

«%mwafﬂ#mw@mw%mw=mmmm
D

(28)
and form a complete basis within the cavity [37]

1
N @)

n(x,0) >, On(X, 0) gB:I(x’,w) =o6x-x'). (29)

The normalization factor 7,, can be set equal to unity for any
specific choice of the frequency w, but it is useful to retain it
explicitly in some contexts to denote that the normalization
depends on w. Note that we have here the usual Hermitian
inner product, except that it is defined between eigenfunc-
tions living in adjoint spaces. These pairs of functions with
eigenvalues related by complex conjugation are called bior-
thogonal pairs or partners.

The boundary condition (27) clearly has the meaning that
the adjoint CF states have constant incoming flux at infinity.
For these states one can view the source as being at infinity
and emitting radiation which impinges on the dielectric me-
dium and then decays inwards at the same rate as the CF
states grow while moving outwards from the origin. In other
words the dielectric medium acts as an amplifying medium
for outgoing CF states and as an absorbing medium for in-
going (adjoint) CF states.

B. CF states and multimode lasing

The importance of CF states becomes clear when we con-
sider the self-consistent integral equations for the lasing
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modes (20) using the CF spectral representation of the Green
function. We can write Eq. (21) in the form

2 —*
G(X,X,|w) — C_E QDm(X, a))(pm(X ’w)

2(’)(1 m 77}%(("))(('0_ wm) (30)

where we have used the fact that w,> w,w,, As already
noted, the {k,,=w,,(w)/c=q,,—ik,} are complex but for the
high finesse cavities their imaginary parts, «,,, will be small
compared to the typical spacing between their real parts.
Therefore, for the case of cavities with high finesse, the
Green function is going to be multiply-peaked as a function
of w (which is real) around the values w= cq,,. The mth term
in the spectral sum is large when w=cgq,,=w,,, proportional
to 1/k,,; whereas the other terms will have denominators at
least as large as d¢g, the mean spacing between the real part
of the eigenfrequencies (which is roughly the same as the
mode spacing of the closed cavity). This spacing is constant
in 1D, and only decreases as some power of the parameter
kR (R is the typical linear size of the resonator) in higher
dimensions, whereas the imaginary quantities «,, can be ex-
ponentially small in this parameter. For typical dielectric
cavity resonators there are many high-Q modes for which
k,<<6q and the Green function will be dominated by the
single nearest CF pole at w=w,,. It is thus natural to intro-
duce the single-pole approximation to the CF Green function
in which we replace the full Green function near the lasing
frequencies by the single term involving the nearest pole in
the spectral representation [40].

Thus we assume that the possible lasing frequencies are in
one-to-one correspondence with the real parts of the CF ei-
genvalues {w,,=cq,}. We write w,~Q,+doh—ixh («i
>0). In the single-pole approximation, the lasing modes are
given by W ,(x)=a/, ¢/ (x) and are just proportional to single
CF states. Note that not all CF states will lase; the solution,
Eq. (20), will find that many of the coefficients a’ are zero;
the remainder will give the intensities of the various lasing
modes. Thus, as noted above, the lasing modes at this level
of approximation are identical to (a subset of) the CF states
up to an overall scale factor. We will work within this ap-
proximation for the remainder of this article, so we can now
adopt a simpler notation, dropping the subscript m: a’,
1, (%) — 0, ().

Having just shown that CF states are the correct functions
to describe solutions for high-Q lasing modes of open reso-
nators, before we discuss the derivation and solution of the
lasing equations for their intensities and frequencies, we will
examine some examples of CF states and relate them to the
more familiar QB states. Henceforth we focus on the case of
dielectric cavity lasers with uniform index

C. Examples of CF states
1. One-dimensional CF state

The simplest example of a set of CF states which also has
the virtue of being essentially exactly solvable are the states
of a semiinfinite slab laser (see Fig. 1). Note that this ex-
ample is also a crude model for an edge-emitting semicon-
ductor laser cavity.
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n>1 _— =
—_—

—>

FIG. 1. Schematic of a dielectric slab cavity of index n, and
length a with perfectly reflecting mirror at the origin.

Consider a dielectric medium of index n=ng which is uni-
form and infinite in the y,z directions and extends from x
=0 to x=a in the x direction. At x=0 it is terminated in a
perfectly reflecting mirror and from x=a to % there is
vacuum (n=1). To clarify the difference between the CF
states and the usual cold cavity resonances, first let us con-
sider the quasibound states of such a resonator. These are
defined as the solutions of

~ Tiu(x) = iy (x) (31)
and the boundary condition (which can be moved to the in-

terface) d,¢,,(x=a)=ik,,¢,(x=a). The complex eigenfre-
quencies of this problem are the solution of

tan(nk,a) = — iny (32)
which can be explicitly solved to yield

Vl0+1

~ 1
nok,,a=m(m+ 1/2) — iE ln( ) = ny(q,, — ixp)a,

ng— 1
(33)

where m=1,2,...,%. Note that the imaginary part of the
wave vector is always negative, as it should be, and in this
case is constant, corresponding to the fixed transmissivity of
a dielectric interface of index n, at normal incidence. Since
these resonances are outgoing at infinity, each QB state var-
ies as e*m*oc et 0¥ and grows exponentially at infinity as
mentioned in the general discussion of QB states in the In-
troduction.

Now consider the CF states; inside the medium they sat-
isfy exactly the same equation and the continuity conditions
at the dielectric interface are the same as well, but the CF
state outside the dielectric satisfies the wave equation with a
fixed external wave vector

- a)zggom(x) = k2(Pm(x) > (34)

and with the corresponding outgoing wave boundary condi-
tion, d,¢,,(x=a)=ike,,(x=a). This defines a family of basis
states depending on the choice of the real external frequency
w=ck. These eigenvalues satisfy the equation

k
tan(nok,,a) = — inof. (35)

In the Appendix it is shown that this is a well-defined eigen-
value problem for any value of k and the eigenvalues are
always complex with negative imaginary part, similar to the
usual QB states. But again, unlike the QB states, since k is
real, these states simply oscillate at infinity as ¢’ and carry
a constant outgoing flux.

One can see that if k is chosen to be equal to g,,, the real
part of the mth QB state wave vector, then the two eigen-
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FIG. 2. (Color online) Solutions of the QB and CF state eigen-
value equations for a dielectric slab cavity with ny=2. (a) A QB
state at k,a=11.51917306—0.53647930i. (b) A CF state at k,a
=11.55535804-0.53100809; with external wave vector ka
=11.51917306. Since the eigenvalues are almost the same the two
solutions are almost identical within the cavity and show large am-
plification, but they differ qualitatively outside as the QB intensity
grows exponentially while the CF intensity remains constant as re-
quired for a true lasing solution.

value conditions are almost the same in this vicinity. Note
however that for every choice of the external wave vector k
there is an infinite set of CF eigenvalues. It is shown in the
Appendix that from that infinite set there is one mth CF state
with a wave vector very close to that of the corresponding
QB state for k=g,,. Specifically, the difference between the
wave vector of the mth QB state and the corresponding CF
state is given by

S (Vlo)
(ka)*’

_ NnoK
nO(qm - qm)a = Ok ¢ > nO(Km - KO)a = (36)

where f(ny) is a number of order unity depending on the
index, n,. Hence this difference is small in the semiclassical
limit, ka> 1. Moreover both the CF and QB states are of the
form A sin(k,,x) within the dielectric, so if their complex
wave vectors are close, then the CF and QB states are almost
identical in the medium. Thus we see that the standard cold
cavity resonances are almost equal to the lasing mode, but
not exactly equal. Because the CF states are sines of complex
wave vector they will oscillate and increase in amplitude
within the medium (Fig. 2).
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As noted in the general discussion, these CF states are not
orthogonal when integrated within the medium. It is there-
fore useful to define adjoint CF states which satisfy the com-
plex conjugate differential equation, and with the incoming
boundary condition at infinity, d,¢,,(x=a)=—ike¢,,(x=a). It is
easy to show that the eigenvalues k, and eigenfunctions @,
of this problem are the complex conjugates of the CF eigen-
values k,,, and eigenfunctions ¢,,. In the Appendix it is con-
firmed that these functions satisfy the orthogonality relation
Jadxng e, (x) &, (x) = [adxng sin(ngk,x)sin(nok,x) = 77,,(0) 8,y
and the normalization constant 7,,(w) is calculated. The bior-
thogonality of these functions follows from the boundary
conditions at x=a.

2. Cylindrical CF states

The next case of interest is the case of a circular (2D) or
cylindrical (3D) dielectric resonator of uniform index n, and
radius R. The CF eigenvalues can be found by applying the
conditions Egs. (24) and (25) for the circle (2D) and cylinder
(3D, solutions uniform in z direction). Solutions can be la-
beled by their good angular momentum index in the z direc-
tion, M, leading to a countably infinite sequence of eigenval-
ues for each value of M (which we will label by m). The
states take the form

Jy(nok,,r)e=™®, r<R,
) =9 Ju(nok,R .
P (r,q’),w) M(’lo m )H;I(kr)e:quS’ F>R
Hyy(k,R)
(37)
and the CF eigenvalue condition is found to be
Jy(nok,,R)H (kR 1 k
ok, RH(KR) 1 k a8

Ty(nokn,RVH (KR) gk,

Note that this equation differs from that defining the QB
states for this problem simply in that the corresponding QB
eigenvalue condition would have k,, appearing in the argu-
ments of H;{,,, the external solutions, as well as in the argu-
ments of J,, the internal solutions.

As for the slab resonator discussed above, if we choose
w=cq,, the real part of a specific QB state frequency, then
we will find one CF eigenvalue close to the complex QB
state eigenvalue, as long as the QB state itself has small
imaginary frequency (high Q). A comparison of two such
corresponding states is given in Fig. 3. Further analysis of
the 2D case is given in the Appendix.

3. CF states for general shapes

The CF boundary conditions for a general dielectric body
of arbitrary shape and uniform index of refraction n are still
easily formulated in terms of outgoing spherical waves at
infinity, since the object will appear pointlike at arbitrary
large distances. We simply require that the CF states satisfy
the wave equation with index n( within the medium and that
far away they have the form (in 2D)

PHYSICAL REVIEW A 74, 043822 (2006)

(b) r/a

FIG. 3. (Color online) Solutions of the QB and CF state eigen-
value equations for a cylindrical dielectric resonator with ny=1.3
and angular momentum quantum number M=40. (a) A QB state at
k,,R=71.17700357-0.74936509i. (b) A CF state at k,R
=71.19539070-0.74853902i with external wave vector kR
=71.17700357. Again the two solutions are almost identical within
the cavity; outside the QB solution grows while the CF solution
decays as 1/r to conserve flux in 2D. The amplification of the
solutions within the cavity is less obvious since both solutions have
the usual peak at the caustic at r/a=0.45; the decay away from this
peak is actually slower going outwards then it would be for the cold
cavity due to the amplification.

1.
@u(r — %, ) =fm(¢)Ee’k’- (39)

In order to satisfy this boundary condition it will be neces-
sary to solve the wave equation within the body by some
method and continue it sufficiently far outside to a sphere or
circle enclosing the body at which radius the interior solution
can be connected to a superposition of outgoing waves with
the wave-vector k. The situation is simplified if the dielectric
body has a smooth shape and is not too far from spherical, in
which case a Rayleigh (Bessel) expansion can be imple-
mented within the cavity and can be matched to outgoing
Hankel functions directly on the boundary specified by R(¢)

> aydy(nok,e™?, . R(¢),
M

o1 ) = A (0
% Yy (kr)e™®, o R(¢).

The continuity boundary conditions on the boundary can be
easily cast into a secular equation and the eigenvalue condi-
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(b)

FIG. 4. (Color online) False color plots of CF solutions for a
dielectric cavity with a quadrupolar deformation R(¢)=R(1
+€ecos2¢) at €=0.16 and an index of refraction n=3.3 at external
wave vector kRy=20.0. (left) A bouncing ball mode at k,,R,
=20.48417472-0.09782270i and (right) a bowtie mode at k,,R
=19.71417046-0.040257141i. Modes of the bowtie type were
found to lase in the experiments of Ref. [9].

tion replaced by a singularity condition. The method is then
identical to that described in Ref. [1] for finding the QB
states of such an asymmetric resonant cavity (ARC) except
that the matrix S which appears from the matching condi-
tions is slightly different. Two examples from implementing
this method for CF states are shown in Fig. 4 below.

IV. GENERALIZED MULTIMODE LASING EQUATIONS

A. Nonlinear multimode equations

We now return to the formulation of the multimode lasing
equations within the single-pole approximation to the Green
function. The outgoing lasing field e(x, w) is only nonzero at
the lasing frequencies; we approximate the Green function
in the vicinity of =}, by the term arising from the nearest
pole, ie, Gx.x'|w=0,)= [czgo#(X,Q#)gB;(x’ Q)1
[20,(Q,-0,(Q,)]. Here and henceforth we will assume the
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CF modes to be properly normalized. Equation (20) now
takes the form

1 Y1
wtiKg,) (=i, +y,)

a,| 1-iD
" 0(—5w

y f B Q)0
cavity 1+ E g(QV)|aV|2|QDV(X,’QV)|2
(41)
where 50 is the scaled pumping rate given by
-~ 27w,g*
0= —Do. (42)
fiy,

We are looking for lasing solutions to these equations, i.e.,
solutions where at least one a,#0 and positive. Since a,,
=0,V is always a solution for the steady-state equations,
once we reach a pump level at which nonzero solutions exist,
we must check their stability.

This can only be done by writing time-dependent equa-
tions for the CF state amplitudes a,(r) (analogous to the
standard modal expansions) and determining the effect of a
small deviation from the coexisting solutions with a,,=0 and
a,#0. Previous work based on the standard theory finds
[35] that whenever a solution with a,# 0 exists, the a,=0
solutions are unstable to small deviations, which then flow to
the finite amplitude solution with the largest number of las-
ing modes. We assume this property for the current work and
will explore this stability issue in subsequent work. Ruling
out the identically zero solutions, and defining I,=|a,|?, the
general nonlinear multimode problem can be cast in the form

(- 6w, +iKk,)(—iQ, +
1+z( w, ui,)( iQ, h)=FM(IV), 43)
Dyy,
where
F)=1- f o B 0)0U00)
cavity 1+ E g(Qy)IV|QDy(X’,QV)|

(44)

and we must look for the solution with the maximum number
of nonzero positive 7,. Note that the CF states ¢,(x) in the
definition of F,, are understood to be evaluated for w={1,
and normalized to unity at this frequency. We will refer to
the full nonlinear form of the self-consistent equation as the
nonlinear Haken-Sauermann (NLHS) equations; these equa-
tions can be treated numerically and we will present results
for the single- and two-mode cases below.

B. Generalized Haken-Sauermann equations

To treat the multimode case more simply and to make
contact with the standard Haken-Sauermann treatment
we now make the near threshold approximation for F,
expanding the denominator of the integrand as 1/[1
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+2,8(Q)|a,@,(x")P]=1-2,4(Q,)|a,¢,(x")|*. This leads to
the cubic nonlinearity assumed in standard texts[5,26]. We
then arrive at the generalized (linear) Haken-Sauermann
(GHS) equations for the modal intensities,
4 00t IC Y 5 0,0, @45)
Dyy. v

where the overlap matrix A,

Alw:fdx’

In the limit in which y, >}, and the frequency shift dw,
=~ 0 we recover the standard form of the HS equation [Eq. (1)
above], with the important difference that the overlap matrix
A,, is differently defined; it is complex and involves the
integral of three outgoing CF states and one biorthogonal
incoming state, whereas the usual HS equations A ,,, involves
the squared moduli of two closed cavity states and is purely
real. This new form allows us to determine iteratively the
lasing frequency shifts in the multimode case, whereas the
real approximation does not. A second difference is that in
the usual HS equations the cavity widths «, are put in by
hand at this point, as the closed cavity states have zero width.
In our approach the widths appear automatically as the
imaginary parts of the complex wave vectors of the CF
states. Finally we note that in this formulation the theory of
interacting lasing modes can be seen to have some similarity
to the theory of interacting electrons in quantum dots, as the
overlap matrix A, is similar to a mesoscopic two-body ma-
trix element. When the resonator involved has complex (e.g.,
wave chaotic) modes these matrix elements will fluctuate
and depend sensitively on external parameters such as shape
and pump profile. Concepts from random matrix theory and
semiclassical quantum mechanics may be useful in analyzing
these interactions; an example of this approach using the
usual near threshold HS equations is the work of Misirpa-
shaev and Beenakker [28].

is given by

8,(x) e, (x")]e,(x"). (46)

V. SOLUTION OF THE GENERALIZED HS EQUATIONS
A. Iterative method

Both the nonlinear form (20) and linear form (45) of the
generalized HS equations require a self-consistent iterative
solution since the function F,(/,) in its exact and linearized
form depends on the unknown lasing frequencies (), as well
as the unknown intensities /,. Recall that the quantities dw,,
and «,, which appear explicitly in the NLHS and GHS equa-
tions are the difference between the lasing frequency (1, and
the nearest CF state complex frequency w,,(£2,); thus both of
these quantities are determined by the real lasing frequen-
cies. Therefore an initial ansatz for the lasing frequencies is
required in order to begin the root search to determine the
{1,}. Conceptually the linear and nonlinear cases are solved
by similar iterative schemes, the only difference being that in
the linear case (GHS) the root search becomes equivalent to
inverting a linear system. In the linear case the solution must
observe the constraint that /,=0 while in the nonlinear case
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the positive roots, if they exist, have to be determined (as
1,=0 is always a solution).

At least two approaches are possible. One can start with
the N quasibound state frequencies which have real parts
within a linewidth y, of w, and use Re[wZ”]EQZ” as the
initial iterate for the real lasing frequencies. A second ap-
proach is to linearize the eigenvalue equation around the
atomic frequency w,, assuming that the imaginary parts of
the CF frequencies do not change rapidly so that one can use
the imaginary parts determined by solving the CF eigenvalue
condition at w, as a starting point for the iteration. Each of
these approaches has advantages and can lead to a tractable
scheme, as we will discuss below in the context of specific
examples. We will describe the first approach here.

We first separate the real and imaginary parts of Eq. (45),

1-

5 [60w,,+ K,y ]=Re[F,] (47)
0Y1

- 0w,y +Q,k,=Dyy, Im[F,], (48)

where we have dropped the tilde on D,. Our initial guess for
the lasing frequencies is 0= Q"b The quantities
ow,,Q,,k,,F, in Eq. (47) are all functlons of the true las-
ing frequenmes Q,,. However we will approximate them by
their values at the Q(O let 5w£?)—Re[ (Q(O))] Q(O) f
=—Im[w,(Q 0’)] F,=F,{0%)= F“’ Eq. “(47) then be-
comes

1-

Doy [66 )00 + kV'y J=Re[F){1,})].  (49)
0/L

This equation can be solved for the modal intensities IE}O) by
varying the pump power and looking for positive roots for
different trial sets of lasing modes. In practice one easily
finds the threshold for the first mode to lase and then in-
creases the pump in steps above this.

Having determined the intensities, Eq. (47) yields an ex-
pression for the lasmg frequencies by substituting (), Q(O)
+8Q,, dw, —6w -0, K, —K(O and solving for 59

S (0)+D I F(O) (O)Q 0)
_ v.(8w,” + Dy Im[ )]) K C(50)

N, = ©
yl+;<

These equations yield the updated lasing frequencies QS)
which can be reinserted into the equations to obtain higher
iterations. We should note that Egs. (49) and (50) are correct
to O(8Q2,) and O(&Qi), respectively, and we have neglected
terms of O(dw,,/dw) which can be shown to be small in the
short wavelength limit. Thus Egs. (49) and (50) are expected
to converge rapidly with iteration number. In very recent
work we have developed a somewhat different iterative
method which treats the lasing frequency and intensity of the
same footing and which is found to converge rapidly [41].
The equation for the frequency shifts is a generalization
of well-known results for the single-mode case and the
closed cavity. First note that for the closed cavity the func-
tion F, is real and does not enter the imaginary part of the
HS equations; hence the pump strength drops out. In addi-

tion, in a standard treatment the real frequency shift 5w£?) 18
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assumed to be zero since one begins with the cold cavity
frequency, so one obtains

_ QO
80, = 4 (51)
Y.+ K

This gives the well-known result that when the cavity width
is large compared to the atomic relaxation rate one obtains

bﬂﬂ:—Qf)HQM:O, i.e., lasing at the atomic frequency w,;
when «%'< < v, (the cavity mode is much narrower than

the atomic linewidth) one obtains &2, —(K(O)/ v l)Q(O)
—Q, = Q(O —Re[wqb] i.e., lasing at the cold caV1ty fre-
quency Our generahzatlon shows that openness of the cavity
introduces the pump strength into these equations and im-
plies a change of the lasing frequencies with pump strength.
This is a prediction of our theory which can in principle be
tested experimentally.

B. Single-mode solutions
1. Near-threshold behavior

The simplest solution of Egs. (49) and (50) is the case
where the electric field is oscillating at a single frequency
). Then, we can solve Egs. (49) and (50) straightforwardly
for 7, and (),

I#WI A (52)

With uniform pumping this equation implies that the first
mode to lase (and the only one in the single-mode approxi-
mation) is indeed the mode with the highest Q, correspond-
ing to the CF state with the smallest value of its imaginary
wave vector . (Of course, in a realistic scenario the laser
typically will not remain single mode for the whole range of
pump rates D, and other modes can begin to oscillate.) As
noted above, unlike the closed cavity single-mode theory, for
which the lasing frequency is independent of pump strength,
in this case we find

Y1 a)( )+ ?’lDog(Q(O )Im[A(O) ]1
Q,= ) (53)
YL t+K,

The first term in the numerator gives the ‘“center-of-mass”
formula for the lasing frequency discussed above, but the
second term is proportional to /,, and demonstrates that there
is a frequency pulling or pushing effect even in the single-
mode case which depends on the pump strength and on the
imaginary part of the inverse mode volume, A . The gener-
alization to multi-mode lasing is trivial here Wlth the factor
Im[A,, ]I, simply replaced by X, Im[A ]I, [cf. Eq. (45)].

2. Far from threshold behavior

To generalize the above results to arbitrary pump rates we
simply replace in Egs. (49) and (50) F, by its exact expres-
sion
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FIG. 5. (Color online) Single-mode single-pole solutions for the
modal intensity vs pump strength D, for a circular dielectric reso-
nator with an index of refraction n=2.0 and gain center at w,
=50.0. (a) Single-mode solution for the intensity / of the mode with
an angular momentum quantum number M =40 lying closest to the
gain center. Dashed line near-threshold solution; solid line, exact
solution for modal intensities /; dot-dashed line, far-from threshold
approximation discussed in the text (plotted only for 7>120). (b)
Lasing frequency () as a function of the pump strength D,. Note
that () is measured from its value at the lasing threshold given by
(=49.6668 and the shift is towards the gain center frequency.

2ux) e, (x)
F =1 _f dx ! ¥4 M
g cavity 1 +g(Q )|¢,u(x’)|2]

(54)

where it is understood that the CF states are calculated at the
iteration frequency (), = QZ)

In Fig. 5 we show an example of the proposed iteration
scheme for a dielectric resonator of circular cross section.
There are several observations we can make here. First of all,
the intensity calculated from the near-threshold theory
greatly underestimates the actual intensity at higher pump
strengths D,. As we shall further discuss below in Sec. V C,
this will have important consequences for mode competition
in the multimode regime as the nonlinear thresholds will be
substantially different from those predicted by the near-
threshold approximation. Second, as seen in Fig. 5(b) we
now obtain a frequency shift that is power dependent, with a
nonlinear dependence on the lasing intensities. This depen-
dence is stronger the leakier the lasing mode. Third, the exact
formula leads to an approximately linear dependence of the
modal intensity /,, on D,. This linear dependence is termed
“saturation” in laser texts because it is much slower than the
near threshold rise, but it is still a much stronger dependence
than predicted by the near threshold HS theory.
One can obtain a naive approximation for [, by
replacing 1+g(Q,)|¢@,(x")[*I, in the denomlnator with
8(Q,)|@,(x")1,, then

Re[® ]
1= <—#—g(;M)K#>D0 (55)

where
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®,= f dx’ e oux) (56)
cavity

where ¢, (x")=—iArg[¢,(x")]. For comparison, we plot the

result of this expression in Fig. 5(b) (dot-dashed line). We

see that this formula is qualitatively correct but overesti-

mates the modal intensity.

C. Two-mode solutions

The numerical effort required to solve the linear and non-
linear generalized HS equations for a nontrivial case, e.g., a
dielectric cavity with fifty modes underneath the gain curve,
is substantial. Moreover the interesting questions require
varying the pump strength and the shape of the cavity. In
earlier work we have done extensive calculations along these
lines using the near threshold HS equations for the closed
cavity and then using reasonable but uncontrolled approxi-
mations to evaluate the modal intensities outside the cavity
[29]. The current generalized formalism gives us a method to
evaluate emission directionality and output intensities cor-
rectly and without any approximations beyond the usual ones
allowing a multimode solution. It also presents a formulation
of the lasing equations valid away from the threshold, using
the general function, F(I,), defined in Eq. (44) above. A
striking shortcoming of the near threshold approximation
that we found in our earlier work [29] is that it appears to
overestimate greatly the number of lasing modes compared
to the experimental observations [9]. Here we will not
present realistic calculations on complex cavities using our
generalized formalism; we defer such calculations to future
work. Instead we present a simple comparison of the near-
threshold and nonlinear lasing solutions for the two-mode
case, which confirms that the widely used near threshold
approximation can introduce a large quantitative error in the
lasing thresholds and hence overestimates greatly the number
of lasing modes for a given pump power in the complex
dielectric cavity lasers we are studying. We solve Eq. (43)
for two interacting modes of the dielectric cylinder (other
modes which might also lase are neglected). In Figs. 6 and 7
we show the results. For mode 1, with the lower threshold,
the near-threshold and nonlinear calculation give the same
threshold as they must (D,=0.11), and then deviate substan-
tially well above threshold as we already saw in the previous
section. Mode 2, which would have a threshold of D,
~(.18 without mode competition has a threshold of D,
~().25 in the near-threshold approximation, including the ef-
fects of mode competition, but has a correct threshold, taking
nonlinear effects into account, of Dy=0.41. Hence we see
that in the large interval 0.25<D;<<0.41 the near-threshold
theory predicts that two modes would be lasing and with
comparable intensity, while the full theory predicts only one
lasing mode. Moreover, because of this delay, when mode 2
does begin to lase, its intensity lags mode 1 by an order of
magnitude in contrast to the prediction of the near threshold
analysis. We expect these discrepancies to be enhanced if
there are many competing modes and many fewer modes to
be lasing at a given pump power than predicted by the near-
threshold theory. These issues will be explored in detail in
future work.
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FIG. 6. (Color online) A single-pole two-mode solution for the
modal intensities as a function of pump strength D, for a circular
dielectric resonator with an index of refraction n=2.0 and gain cen-
ter at w,=20.0. We have chosen y, =50 using effectively a flat gain
curve. The two modes have the angular momentum quantum num-
bers M ;=20 and (b) M,=18, respectively. The modal intensities I,
and I, are given in (a) and (b). Solid lines denotes the exact solu-
tion, while we plot the near threshold approximate solution in
dashed lines. The noninteracting thresholds are given by Dg;t)
=0.1069 and Dfi)=0.1767 [marked with vertical arrow in (b)]. By
definition modal interactions cannot change the first threshold,
which is thus the same in the near-threshold and exact solutions.
However interactions dramatically modify subsequent thresholds; in
this case the second threshold is increased to Df;)=0‘2464 in the
near threshold approximation, but actually should be increased
much more, to D£2)=0.4139, based on the exact solution. This in-
dicates that even taking modal interactions into account through the
near-threshold approximation is inadequate and likely greatly over-
estimates the number of lasing modes at a given pump power.

VI. SUMMARY AND CONCLUSIONS

We have reformulated semiclassical lasing theory to treat
open cavities, with particular attention to complex and ran-
dom lasers, for which the output power and directional emis-
sion patterns are not trivially found from knowledge of the
internal modal intensities. We begin from the assumption that
a steady-state multiperiodic lasing solution exists and is
stable. A key idea is to formulate the theory in terms of the
self-consistent linear response to the polarization described

x 107
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FIG. 7. (Color online) The corresponding laser frequency varia-
tion with pump power for the example in Fig. 6 as a function of
pump strength D, for the exact solution. The frequencies of the two
modes are measured with respect to their values at their respective
lasing thresholds given by €,=19.8584 (full line) and Q,
=20.3764 (dashed line). Note that since the gain center is w,
=20.0 both modes are pulled towards the gain center.
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by an outgoing Green function. This yields a set of self-
consistent integral equations for the lasing modes which can
be solved by various means. The approach which is closest
to conventional multimode lasing theory is to write a spectral
representation of this Green function in terms of outgoing
states with constant flux. For high Q cavities these states are
similar but distinct from the usual resonances or quasibound
states; they satisfy useful biorthogonality relations with ad-
joint functions. The Green function is then approximated by
a single pole near each lasing frequency implying the lasing
mode is just an intensity /,, times a single CF state. General
and near-threshold equations then follow for these intensities
I, and for the lasing frequencies (),. The near threshold
equations are generalizations of the well-known Haken-
Sauermann equations derived for a closed cavity. These
equations can account for the effects of mode competition
and spatial hole burning which are important but difficult to
treat in complex cavity lasers. An iterative scheme was de-
scribed for solving these equations and some illustrative re-
sults were given for the single-mode and two-mode cases.
The one- and two-mode solutions indicate that the near-
threshold approximation substantially overestimates the
number lasing modes well above threshold and underesti-
mates their output power.

In our view this approach clarifies the longstanding ques-
tion of how to treat rigorously open cavities within semiclas-
sical lasing theory. It now remains to apply this formalism to
cases of interest: dielectric microcavity lasers of interesting
shape, cavities with fully chaotic ray motion, and lasing from
random media.
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APPENDIX: PROPERTIES OF THE CONSTANT FLUX
BASIS

In this Appendix we will explore the constant flux (CF)
states, as defined in Sec. Il C 1. We investigate the analyti-
cally tractable cases of the 1D dielectric slab laser and the
2D cylindrical laser, and argue that the qualitative features of
the solutions for these simple geometries should also hold for
more general shapes. Here we focus on three properties of
the CF basis. First, that for each high-Q QB state of the
cavity there exists a single CF state with similar real and
imaginary part and hence very similar behavior within the
cavity (where they satisfy the same differential equation with
just a slightly shifted eigenvalue). Second, we prove that all
the CF states have eigenvalues with negative imaginary
parts, corresponding to amplification of the wave within the
cavity. Third, we confirm explicitly the biorthogonality of the
two (outgoing and incoming) CF bases within the cavity for
a general geometry.

1. Dielectric slab cavity

As stated in Sec. III C 1, for a semi-infinite dielectric
“slab” resonator the QB and CF eigenvalue equations are
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tan(ngk,,a) = — ing (A1)

and

tan(ngk,,a) = — ino(qm_—kmm>, (A2)

where l;mEqm—iEm and k,=gq,,—ik,, are the complex QB
and CF wave numbers, a is the length of the slab, ng is the
(possibly complex) uniform index of refraction, and k is the
wave number corresponding to the external Fourier fre-
quency. As in the main text we use tildes to denote quantities
associated with the QB states. We also define the dimension-
less quantities x,,=nyq,,a, ¥,,=—noK,a, and z=ngka. Using
trigonometric identities, we can expand both equations into
real and imaginary parts,

cot g, (1 —tanh® &,,)

0, A3
cot® g, + tanh® &, (A3)

tanh &,,(cot> 7, + 1) B

-y, A4
cot’ g, + tanh® &, 0 (A4)

and

cot x,,(1 —tanh? y,) _ NoYm,

= . (AS)
cot? x,, + tanh? y,, z

tanh y,,(cot® x,, + 1) _ ngXy,

=- A6
cot’ x,, + tanh? y,, z (46)

In the method used to solve the multimode laser equations
presented in this paper, the Green’s function is approximated
by a single pole, i.e., by a single CF state in the spectral
representation of Eq. (30). We are therefore especially inter-
ested in finding solutions to the CF eigenvalue equation with
real part close to the wave vector, k, appearing as a param-
eter in the CF eigenvalue equation. Furthermore, since we
expect the real part of the QB mode frequencies to provide a
first approximation to the actual lasing frequencies, we look
for solutions to the CF eigenvalue equations with the exter-
nal Fourier frequency set equal to the real part of a quasi-
bound mode frequency. Equations (A3)—(A6) suggest that,
for each QB mode with a sufficiently short wavelength, a
corresponding CF solution exists with approximately the
same eigenvalue, since in this limit x:nOEma is large. In that
case the right-hand side of Eq. (A5) is small so that Eq. (A5)
is nearly identical to Eq. (A3), and for ¢,,~x Eq. (A6) ap-
proaches Eq. (A4).

The solution to Egs. (A3) and (A4) was given in the text
by Eq. (33), and Egs. (A5) and (A6) can be solved for
tanh y,, and cot x,,,,

tanh y,,

[
- (cot® x,, + 1) = V(cot® x,, + 1)? = 4(ngx,,/z)* cot® x,,

s

2npx,/z
(A7)
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cotx,,

(1= tanh?y,,) = V(1 — tanh? y,,)? — 4(ngy, /) tanh® y,,
- 2”0)’m/Z ’

(A8)

Note that in order to self-consistently choose solutions to
Eqgs. (A7) and (A8) which are close to QB solutions, we must
select the minus signs in both equations. We now expand Eq.
(AS) in the small difference 8g,,=q./~q,»

Ox,,(1 - l/n(z)) o

o A9
1Un? 4 (49)

Assuming that 8y, is, at most, first order in the small param-
eter 77!, we can replace y,, with K, leading to

Su,(nd—1) ~ - 2, (A10)
Z

Or, using the expression for «, from Eq. (33) and the defi-
nitions of x,, and z,

_In[(ng+ Di(ng=1)] 1
" 2(n(2) -1) noa*k’

5q (Al1)

We see the difference between real part of the CF resonance
and the external frequency is small when (1) the external
frequency is set near the real part of a QB resonance and (2)
the semiclassical parameter z~! is small. To find an approxi-
mation for «,,, as well as to justify the approximation used in
deriving Eq. (A11) that y,,= k,,, we next expand Eq. (A7) to
second order in &g, and x~!. After some manipulation we
obtain

5sz_

1 ln<n0+l>(l+ln[(no+1)/(n0—1)]>
2(ng— 1) 2

I _J)]1

nya’k>  (ka)*a’

no—'l

(A12)

which is the result quoted in Sec. III C 1. Thus we see that
8q,, is first order and Jk,, is second order in z~!. Figure 8
shows that the approximation used here agrees well with the
numerically evaluated results for the difference between the
QB and the nearest CF wave vector.

2. Cylindrical dielectric cavity

It is well known that for a cylindrical cavity, there exist
whispering gallery mode solutions to the QB eigenvalue
equation that have very small widths, k,,. Moreover, it is
these modes which will dominate lasing emission from di-
electric cylinder lasers. In this section we show that there
exist corresponding solutions to the CF eigenvalue equations
close to these QB solutions. Specifically, the difference be-
tween the CF and QB lifetimes is proportional to a small
factor times the QB lifetimes; hence these CF and QB states
have almost identical lifetimes.

The QB eigenvalue equation for a cylindrical resonator is

PHYSICAL REVIEW A 74, 043822 (2006)

¢.0003

0.00025

Gm—gm 0.0002

Gm
0.00015
0.0001
0.00005
0
40 60 80 100 120 140 160
(a) dm
0
-0.0002
: -0.0004
Rm—Em
Km
-0.0006
A
-0.0008
A
40 60 80 100 120 140 160
(b} Gm

FIG. 8. The difference between the CF and QB eigenvalues for
a 1D dielectric slab resonator, as a function of the real part of the
QB ecigenvalue. (a) The fractional difference between the real part
of the eigenvalues, and (b) the fractional difference between the
complex parts. In both plots, the triangles represent the actual dif-
ference, found numerically, which is compared to the linear ap-
proximation, Eq. (A12), derived in the text and represented by the
solid curves.

d ~ ~ d ~ ~
w10k R0k, R) = - HL (ke RV (i, R) .
r r

(A13)

Within the regime of interest where the modes are well
trapped (and the index of refraction is not too small), we can
approximate the Hankel and Bessel functions appearing in

this equation by the Debye approximations [38]. Define
tanh a=\1-(k,R/M)* and tan B=\(nok,,R/M)*~1. In
terms of these variables, the Debye approximations are

M (tanh a—a)

Ik, R) = (A14)

\27M tanh @

—M(tanh a—a)
e
\/ =7M tanh «
2

cos(M tan B— M B — w/4)

1 9
\/— M tanh o
2

(A15)

JM(nOka) = (A16)
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_ sin(M tan 8- MB - m/4)

YM(”Oka) = 1
\/ —aM tanh «
2

Note that in the regime in which these approximations are
valid, we can ignore the r dependence outside the exponent
when we evaluate its derivatives, so that the eigenvalue
equation is approximately

(A17)

et +2ie ™
et —=2ie™#

where we have defined A=M(tan B—B)—m/4 and u
=M (tanh a— «). By expanding in the small quantity &,, and
neglecting e* compared to e (which is valid for well
trapped modes), we can derive an approximate expression
for k,,,

tan Btan A = tanh « , (A18)

_ Mtanha
~—— M

— (Al 9)
3@’ g(ng 1)

A similar, but not identical, result was obtained by Nockel
[23], where it was pointed out that the small factor e** could
be interpreted as the exponential decay factor due to tunnel-
ing.

The eigenvalue equation for CF modes in a cylindrical
resonator has the same form as Eq. (A13) above for QB
states except that the functions «, 8, N, and w appearing in
the CF equation are evaluated at different arguments. Explic-

itly, N and 3 are evaluated at k,,R=k, R+ 8(k, R), whereas u
and « are evaluated at the external Fourier frequency, which
we have set equal to g,,. We can then expand in the small
quantities &(k,,R) and K,,. To first order, the imaginary part of
this equation yields

Km

5 m =y N,
(1<) M(n(z)— 1)tanh o

(A20)

where it is understood that tanh « is evaluated at tanh «

=/1-(k,,R/M)2 Note that in the semiclassical regime whis-
pering gallery modes have a high M value, so the difference
between the lifetimes for the CF and QB mode is a small
factor times the already small QB lifetime ,, (see Fig. 9).

3. General argument that Im(k,,) =-k,, <0

We were able to show above explicitly that for the CF
eigenvalue closest to the corresponding QB state eigenvalue,
k,,>>0 for both the 1D slab laser and the 2D cylindrical laser.
Here we show that this result holds generally for all CF
eigenvalues and for arbitrary geometries. This is important
because the exact CF Green function involves all CF eigen-
values and it would be unphysical for it to have poles in the
positive imaginary plane.

The equation satisfied by the CF states is

ndk2 ¢,(x) (inside),

— 2 =
VZ,(x) {kchm(X) (outside).

We define a vector flux as fm=%((p;V gom—qpngo;). The
outgoing wave boundary conditions, as expressed in the

(A21)
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FIG. 9. (a) The log of the imaginary part of the QB resonance
eigenvalue for a cylindrical resonator with ny=2, plotted against the
real part of the eigenvalue; triangles represent numerical results
compared to the analytic approximation of Eq. (A19). (b) The frac-
tional difference between the CF and QB lifetimes vs the real part
of the QB eigenvalue for the same resonator. Triangles are numeri-
cal results, solid line the approximation of Eq. (A20). We have
plotted the sequence corresponding to angular momentum M =50.

main text by Eq. (24), imply that if we integrate the radial
component of f over increasingly larger spheres S (or circles
in the 2D case) with origin within the cavity, the value of this
integral approaches a positive constant proportional to k:

f f-dA —k f e (B)de. (A22)
S

Note that V -f vanishes outside the cavity, whereas inside it is
equal to —n2@,,@, Im(k2)=2n3| ¢, .- By using the diver-
gence theorem and the CF equation we can also write this
integral as

J f. dA:f \v -de=2nSqumf || dx.
S Int(S) cavity

(A23)

Comparing Egs. (A22) and (A23) we can see that in order to
satisfy Eq. (A22), which follows from the outgoing wave
boundary condition, we must have «,,>0.

4. Biorthogonality of incoming and outgoing CF states

Consider a solution to the CF eigenvalue equation ¢,
with eigenvalue k,,, along with an adjoint solution ¢, with
. * . . . . .
eigenvalue k, for a cavity with a uniform index of refraction
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ng. Using the fact that these two functions satisfy the eigen-
value equations (22) and (26) respectively, we have

2012 2
nO(kn - km)
cavity

dX¢;1¢m = f dx(¢2V2¢m - (vazg_oy;)
cavity

boundary

- eV &,)-dA, (A24)

where the last integral is over the surface of the cavity
boundary. Outside the cavity we have V-(&,V ¢,,—¢,,V &,)
=0, so we can in fact replace the integral over the cavity
boundary with an integral over a large sphere S enclosing the
cavity. We can then invoke the outgoing and/or incoming
wave boundary conditions to evaluate the surface integral
explicitly:

f(cﬁ,’;v@m—somV@Z)-dA
S

s
For the case k, #k,,, Eqs. (A24) and (A25) therefore imply

f dxn@, ¢, =0. (A26)
cavity

It should be noted that, although the CF functions are defined
to exist both inside and outside the cavity, the inner product
is defined by an integral over the cavity interior only. The
biorthogonality of the CF states is therefore determined com-
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pletely by their behavior within the cavity and at its bound-
ary; we merely use the behavior of the CF functions at in-
finity to show that the surface term in Eq. (A24) vanishes
whenever the CF states satisfy the outgoing and/or incoming
boundary conditions.

We can check the biorthogonality of the CF states explic-
itly for the case of the dielectric slab cavity, and also calcu-
late the normalization factor 7,,(w) defined in Eq. (28). In
the cavity interior we have

(Pn(X) = Sil’l(l’l()knx) (A27)
and
(,_Dfn = sin(ngk,,x). (A28)
We can then write the inner product (for the case m # n) as
f ng sin(ngk,x)sin(ngk,x)dx
0

_ycos(ngk,a)cos(nok,,a)

= "o 2”10
« (tan(nokna) — tan(ngk,,a)
kn - km

t k.a) +t k
_ tan(ngk,a) + tan(ng ma>)=0' (429)
k,+k,,

Where we have used the eigenvalue equation (A2). The nor-
malization is
f “ anj (1 sin 2(nok,,a)

ng sin®(nok,x)dx = — Yok a)
0m

. 5 ) = ().

(A30)
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