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The spin state of an atomic ensemble can be viewed as two bosonic modes, i.e., a quantum signal mode and
a c-numbered “local oscillator” mode when large numbers of spin-1/2 atoms are spin polarized along a certain
axis and collectively manipulated within the vicinity of the axis. We present a concrete procedure, which
determines the spin-excitation-number distribution, i.e., the diagonal elements of the density matrix in the
Dicke basis for the collective spin state. By seeing the collective spin state as a statistical mixture of the
inherently entangled Dicke states, the physical picture of its multiparticle entanglement is made clear.
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I. INTRODUCTION

Squeezing the spin-projection noise �1� below the stan-
dard quantum limit �2� necessarily means multiparticle en-
tanglement among elementary spins �3,4�. Such a squeezed
spin state �SSS� �3� is believed to improve the precision of
atomic clocks �5–7�, and to boost the sensitivity of atomic
magnetometers �8� and atomic interferometers �9,10�.

The SSSs have been generated in several laboratories
since the pioneering experiment with cold cesium atoms
�11�. To characterize the quantum nature of the SSSs, the

spin operators are usually bosonized such that X̂A= Ĵy /�Jx

and P̂A= Ĵz /�Jx, where �Ĵy , Ĵz�= iJx with Jx��Ĵx� being a
c-numbered quantity �11,12� and these variances are ana-
lyzed in an analogous fashion to quantum optics �13�. Given
that in quantum optics a single-mode squeezed state does not
evoke the concept of multiparticle entanglement, the connec-
tion between the SSSs and their entanglement seems to be
obscure at first glance.

Here we provide a different view on the collective spin
state. In our framework the spin operators are considered to
be made up of two bosonic modes, i.e., a quantum signal
mode and a c-numbered “local oscillator �LO�” mode. This
viewpoint smoothly links the quadratures and the density
matrix in the inherently entangled Dicke basis, just like the
link between the quadratures and the density matrix in the
inherently nonclassical Fock basis in quantum optics
�13–15�. We show a concrete procedure to reconstruct the
spin-excitation-number distribution, i.e., the diagonal ele-
ments of the density matrix in the Dicke basis for general
collective spin states including the SSSs. The resultant sta-
tistics of spin excitations give us a clear physical picture of
multiparticle entanglement for collective spin states.

II. SYMMETRIC COLLECTIVE SPIN
AS TWO BOSONIC MODES

We start by examining the optical homodyne detection
from a perspective more appropriate for grasping the concept

of a “LO” mode in a collective spin system. Let b̂V and b̂H
denote the annihilation operators for the quantum mode and
the LO mode, respectively. The dynamics of the two bosonic
modes can be analyzed by angular momentum operators
�Stokes operators� �16�, which are given by

Ŝx = �b̂V
† b̂V − b̂H

† b̂H� ,

Ŝy = �b̂V
† b̂H + b̂H

† b̂V� ,

Ŝz = − i�b̂V
† b̂H − b̂H

† b̂V� . �1�

The operator b̂H for the LO mode can be assumed to
be a c-numbered quantity �ne−i� since the number of pho-

tons excited in this mode, �b̂H
† b̂H�=n, is enormously large.

The angular momentum operator Ŝz then becomes Ŝz

=−�2n�sin �q̂V+cos �p̂V�, where q̂V��b̂V
† + b̂V� /�2 and p̂V

� i�b̂V
† − b̂V� /�2 are the quadrature operators. The operator Ŝz

is thus nothing but the observable of the homodyne detection
�13� with � representing the LO phase and �n representing
the mean LO amplitude.

The converse of the above argument also holds: the dy-
namics of a collection of N spin-1/2 atoms with the symmet-

ric collective spin operators �17�, Ĵx, Ĵy, and Ĵz, can be ana-
lyzed by two bosonic modes. The corresponding annihilation
operators â↑ and â↓ for spin-up and spin-down modes are
defined as â↑ 	M�↑=�M 	M −1�↑ and â↓ 	M�↓=�M 	M −1�↓,
respectively. Since the x axis is defined as the quantization
axis, we have

Ĵx =
1

2
�â↑

†â↑ − â↓
†â↓� ,

Ĵy =
1

2
�â↑

†â↓ + â↓
†â↑� ,

Ĵz = −
i

2
�â↑

†â↓ − â↓
†â↑� . �2�
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When all atoms are condensed in the spin-down mode, the
state can be written as 	0�↑ � 	N�↓. This state is called the
coherent spin state �CSS� �2�, which defines the standard

quantum limit, and is the eigenstate of the operator Ĵx in Eq.
�2� with the eigenvalue −N /2. 	M�↑ � 	N−M�↓ then corre-

sponds to the eigenstate of the operator Ĵx with the eigen-
value −N /2+M, that is, M atoms excited into the spin-up
mode with N−M atoms remaining spin down, and is a mul-
tiparticle entangled state except for M =0 and N. For in-
stance, the state 	1�↑ � 	N−1�↓ can be described in terms of
elementary spins �	↑ �i and 	↓ �i� as

	1�↑ � 	N − 1�↓ =
1

�N
�	↑�1	↓�2 ¯ 	↓�N�

+
1

�N
�	↓�1	↑�2 ¯ 	↓�N� ¯

+
1

�N
�	↓�1	↓�2 ¯ 	↑�N� �3�

and does have multiparticle entanglement �4�. Given that a
collective state belongs to the symmetric subspace of the full
Hilbert space �spanned by 2N states of N spin-1/2 atoms�, it
can be expressed by using these entangled states, namely, by
the Dicke basis.

With this second quantized formalism of a spin degree of
freedom, the above treatment of optical homodyne detection
can be translated into the language of a collective spin. For

states in the vicinity of the CSS �	0�↑ � 	N�↓�, the operator Ĵz

can be modified to

Ĵz = − �N/2�sin �q̂↑ + cos �p̂↑� . �4�

This follows from the assumption that the operator â↓ for the
spin-down mode is a c-numbered quantity �Ne−i�, since the
number of spin-down atoms ��â↓

†â↓�=N� is enormously large.

Here q̂↑��b̂↑
†+ b̂↑� /�2 and p̂↑� i�b̂↑

†− b̂↑� /�2 are the collec-
tive spin analogues of the quadrature operators �the physical
meaning of the quadrature distribution for the collective spin
is briefly discussed in the Appendix�. This approximation is
similar to that for the optical homodyne detection and some-

what different from the spin quadratures X̂A and P̂A �11,12�
as we explicitly introduce two bosonic modes. The atoms
condensed in the spin-down mode act as the “LO” mode,
collectively amplifying the tiny differences of the quadrature
distributions for the spin-up atomic states. This suggests that
tomographic measurements �13� of the quantum state of the
collective-spin excitations, such as the squeezed spin state
�SSS� �3� and the Dicke state �17�, may be possible in an
analogous fashion to the tomography of the squeezed state of
light �14� and the single-photon state �15�, respectively.

III. TOMOGRAPHIC MEASUREMENT
OF COLLECTIVE SPIN

Let us consider how to measure the quadrature for a col-

lective spin, i.e., the operator Ĵz in Eq. �4�. In order to do this,
it is required for us to access only the symmetric collective

spin operators �17�, i.e., to validate the second quantized
formalism of spin. Although the most intuitive approach may

be to measure Ĵz by the Stern-Gerlach technique, the atoms
respond to the Stern-Gerlach magnetic field individually
rather than collectively �18�. Kuzmich et al. showed that the
atomic ensemble collectively interacts with an off-resonant

optical probe and that the collective spin operator Ĵz can be
measured in a quantum nondemolition �QND� way �19�. Re-
cently, Julsgaard et al. �20� have applied this technique to
the tomography of collective spin in the context of the
quantum-memory experiment, in which they proved that the

conjugate variables of light, i.e., the quadratures X̂L and P̂L

were faithfully mapped onto the atomic quadratures P̂A and

X̂A �p̂↑ and q̂↑ in our language�, respectively. The effective
Hamiltonian describing the spin QND measurement, namely,
the dispersive vector light-shift interaction, is given by
�19,21�

ĤI = � gŜzĴz, �5�

where g is the field-atom coupling coefficient, Ŝz is

the Stokes operator defined by Eq. �1�, and Ĵz is the angular
momentum operator defined by Eq. �2�. Note that the

bosonic operators b̂V and b̂H in Eq. �1� now represent the
annihilation operators for horizontally and vertically polar-
ized photons, respectively. In the Heisenberg picture, the set

of Stokes operators, which is initially defined by Ŝ�0�
= 
Ŝx�0� , Ŝy�0� , Ŝz�0��, evolves into

�Ŝx���

Ŝy���

Ŝz���

 = �cos�g�Ĵz� − sin�g�Ĵz� 0

sin�g�Ĵz� cos�g�Ĵz� 0

0 0 1

�Ŝx�0�

Ŝy�0�

Ŝz�0�

 , �6�

after passage of the interaction time �. The set of angular

momentum operators, Ĵ�0�, evolves similarly with Ĵ and Ŝ

interchanged. Here, Ĵz�0�= Ĵz���= Ĵz and Ŝz�0�= Ŝz���= Ŝz

since Ĵz and Ŝz commutes with the interaction Hamiltonian
given by Eq. �5�. When the initial state for the optical probe
is set for horizontally polarized light, 	0�V � 	n�H, which is

given by the eigenstate of the operator Ŝx�0� with the eigen-

value −n. Then the measurement of the operator Ŝy���, which
can be realized by the balanced polarimeter �19�, effectively
works as the quadrature measurement for a collective spin.

To illustrate this concept, the operator Ŝy��� in Eq. �6� can be

rewritten as Ŝy����g�Ĵz�0�Ŝx�0�+ Ŝy�0� by assuming g��Ĵz�
�1. Considering the initial condition for the optical probe,

the operators Ŝx�0� and Ŝy�0� can be approximated by Ŝx�0�
=−n and Ŝy�0�=�n�b̂V

†�0�+ b̂V�0����2nq̂V�0�, respectively.
This manipulation again applies the fact that the operator

b̂H�0� is deemed to be a c-numbered quantity �ne−i�, that is,

�b̂H
† �0�b̂H�0��=n�1. Here, the phase � between the two

modes, 	0�V and 	n�H, is irrelevant and is set at 0. We then
have
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Ŝy��� � g�n�N/2�sin �q̂↑�0� + cos �p̂↑�0�� + �2nq̂V�0� .

�7�

The “LO” phase for the collective spin � corresponds to the
azimuthal angle about the x axis and can be controlled by the
magnetic field along the x axis �12,20,22�. The observable of

the balanced polarimeter Ŝy��� can thus be viewed as the
amplified quadrature for a collective spin, though it includes
an additional term �2nq̂V�0�, which represents the shot noise
due to the optical probe.

To keep things simple let us normalize the operator Ŝy���
as Q̂� Ŝy��� /N where N���g�n�N /2�2+ ��2n�2�1/2. Then
we have

Q̂ = ���sin �q̂↑�0� + cos �p̂↑�0�� + �1 − �q̂V�0� , �8�

with ��=g�n�N /2 /N. Let P�Q ,����Q ,� 	 �	0�VV�0 	
� �̂↑� 	Q ,�� denote the histogram obtained by the measure-

ment of the operator Q̂, where 	Q ,�� is the eigenstate of the

operator Q̂ with the eigenvalue Q. Here, �↑ represents the
density matrix of the spin-up mode before the field-atom
interaction. The optical-noise term �2nq̂V�0� prevents simple
reconstruction of the density matrix �↑. This is essentially the
same situation where detector inefficiencies and optical
losses degrade the quadrature distribution for the original
photonic state, necessitating loss-error compensation for the
reconstruction of the original state �13,23,24�. Following the
argument on detection-loss-induced error in the optical ho-
modyne detection �13�, the histogram P�Q ,�� is given by

P�Q,�� = �
−	

	

dq�P↑
����q��PV�Q − ��q�

�1 − �
� , �9�

with the quadrature distribution for the collective spin state

P↑
����q��↑�q,�	�̂↑	q,��↑, �10�

and the �-invariant quadrature distribution for the optical
probe

PV�q��V�q	�	0�VV�0	�	q�V = �1/�
�exp�− q2� , �11�

which is the Gaussian distribution describing the shot noise.
Here 	q ,��↑ and 	q�V are the eigenstates of the operators
�sin �q̂↑+cos �p̂↑� and q̂V, respectively. The measurement of

Ŝy��� thus yields the smoothed quadrature distribution for the
collective spin. The tomographic reconstruction of �̂↑ can
then be realized by changing the “LO” phase � via the Lar-
mor precession with compensation for optical shot noise as
demonstrated by Julsgaard et al. �20�.

IV. RECONSTRUCTION OF SPIN-EXCITATION-NUMBER
DISTRIBUTION

The tomographic reconstruction of �̂↑ gives us an insight
into the multiparticle entanglement of the spin systems when
our two-mode �quantum and c-numbered “LO” modes�
framework is employed. The concept of the multiparticle en-
tanglement appears because of the fact that the basis states,

e.g., 	1�↑ � 	N−1�↓, are inherently entangled states as seen in
Eq. �3�. The complete information of the density matrix can
be obtained by the similar procedure of quantum optics out-
lined in Refs. �13,23,24�. The reconstruction procedure so
simple as the one restricted to just acquiring diagonal ele-
ments of the density matrix, which might be easier to imple-
ment, gives us a clear physical picture of multiparticle en-
tanglement for collective spin states. Thus we now
recapitulate a concrete procedure for determining the diago-
nal elements of the density matrix in the entangled Dicke
basis. By physically or numerically averaging the “LO”
phase � in Eq. �9�, we have �13,23,24�

P�Q� �
1

2

�

0

2


d�P�Q,�� = �
M=0

	

AM
����Q��MM , �12�

where �MM�↑�M 	 �̂↑ 	M�↑ and

AM
����Q� = �

m=0

M
M ! �1 − ��M−m�m

�M − m� ! m!

Hm
2 �Q�exp�− Q2�

�
2mm!
,

�13�

with Hm�q� denoting the Hermite polynomials. Repeating R

times the measurement of Q̂ affords the histogram 
k��,
where k� represents the number of events that occurred in
such a way that the measured value of Q belongs to the bin
with width �Q and central point Q�. The probability of ob-
taining a specific histogram 
k�� is given by �23�

P�
k��	
�MM�� = R ! �
�

1

k�!
P�

k�, �14�

where P�� P�Q���Q. Equations �12� and �14� thus provide
the relationship between the measurable histogram 
k�� and
the distribution of the spin-excitation number 
�MM�.

Two obstacles are encountered in reconstructing 
�MM�
from the measured histogram 
k��: the distribution 
�MM�
must satisfy the condition �MM 
0 for any M, and the num-
ber of unknown parameters 
�MM� is large �i.e., the same as
the atom number N, although �MM �0 for M �1�. To satisfy
positivity constraints for 
�MM� and restrict the parameter
space with a cutoff parameter K, a new set of parameters

�M� is defined by 
�00=�0

2 /��K� ,�11=�1
2 /��K� , . . . ,�KK

=�K
2 /��K�� with ��K�=�0

2+�1
2+ ¯ +�K

2 . To search for the best
estimate of 
�M� and choose the most appropriate cutoff pa-
rameter K, the maximum likelihood method with Akaike’s
information criterion �AIC� is employed �25,26�. The best
estimate of 
�M� with the best cutoff parameter K can be
found by numerically minimizing the AIC,

A�K��
k��	
�M�� = − 2 ln�P�K��
k��	
�MM��� + 2K . �15�

Here, the first term denotes the log-likelihood function for
the K-dimensional parametric model of P�
k�� 	 
�MM��, and
the second term serves to suppress K and thus reduce the
error due to redundant parameters �25,26�.

Histograms 
k�� for the CSS 	0�↑, SSS Ŝ��=1� 	0�↑ �where

Ŝ��� is the squeezing operator �13��, and Dicke state 	1�↑
were generated by Monte Carlo simulation �20 000 samples�
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with consideration of shot noise due to the optical probe. The
histograms and reconstructed spin-excitation-number distri-
butions for the three states are shown in Fig. 1. In this figure,
the signal-to-noise ratio is fixed at � / �1−��=1, since it can
be estimated separately in experiments. The result for the
SSS �Fig. 1�b�� exhibits the collective-spin counterpart of the
oscillatory number distribution �14�. The disappearance of
odd-number spin excitations, such as 	1�↑ and 	3�↑, is a gen-
eral feature of the squeezing below the standard quantum
limit �27�. The phase-averaged SSS �Fig. 1�b�� can thus be
expressed by a classical mixture of a separable CSS and
entangled Dicke states. In this way, the statistics of spin ex-
citations in the entangled Dicke states give us a clear physi-
cal picture of multiparticle entanglement for collective spin
states �28�. It should be emphasized that the characteristics of
the small number of atoms ��â↑

†â↑��1� in the spin-up mode,
i.e., the quantum mode, are emergent in the changes in the
quadrature distributions via a macroscopic number of atoms
�e.g., �â↓

†â↓��1011 �22�, or 1012 �12�� condensed in the spin-
down mode, i.e., the “LO” mode.

V. EXPERIMENTAL FEASIBILITY

Recently, the reconstruction of the CSS has been reported
by Julsgaard et al. �20� in the context of the dispersive
quantum-memory experiment. To observe the nontrivial
spin-excitation-number distributions for, e.g., the SSS and
Dicke state, several schemes might be used:

�1� The aforementioned dispersive quantum-memory
scheme could lead to the observations of the spin-excitation-
number distributions for the SSS and Dicke state by mapping
a squeezed state of light and a single-photon state, respec-
tively, onto collective spin states.

�2� Instead of the coherent media transfer between light
and collective atomic spin via dispersive quantum memory,
measurement-induced nonunitary schemes can also be uti-
lized to generate the nonclassical spin state. For the SSS the
preparation and observation of the spin-excitation-number
distribution shown in Fig. 1�b� is readily envisaged from the

experimental results �12,22�. To observe the Dicke state 	1�↑,
the scheme proposed by Takahashi et al. �29� may be used by
incorporating single-photon detection. The so-called DLCZ
scheme �30� may also be used for generating the pseudospin
analog of the Dicke state, and the hyperfine-dependent scalar
or tensor light-shift interaction �6,7� can be used to measure

Q̂ of Eq. �8� instead of the vector light-shift interaction �Eq.
�5��. Also noted is the experiment done by Black et al. �31�.
With their cavity-based magnetic storage configuration, the
Dicke state generation and observation could be realized in a
straightforward manner.

�3� Finally, we mention the resonant quantum-memory
scheme with dark-state polariton �32�. This scheme may also
fit into our reconstruction scheme when one employs the
experimental geometry similar to that of Black et al. �31�,
i.e., a “coupling” laser beam and a “probe” laser beam for
electromagnetically induced transparency forming the mag-
netic storage configuration. We think that it is worth doing to
investigate further the difference between the quantum states
of collective atomic memory in a dispersive scheme �20� and
the resonant scheme with a dark-state polariton �32�.

VI. CONCLUSION

We show that the quantum state of the collective spin
excitation can be reconstructed from the quadrature distribu-
tion, which can be obtained by the spin QND measurements.
The present reconstruction scheme works for any states pro-
vided the mean spin excitation in the quantum mode is suf-
ficiently small compared to that of the “LO” mode. Although
this fact may exclude the application of our reconstruction
scheme to, e.g., the superradiant Dicke state 	N /2�↑
� 	N /2�↓ �17� and the cluster state �33�, the scheme may be a
useful tool for investigating the multiparticle entanglement
of atomic collective-spin systems. Further extension to other
systems such as nuclear collective-spin systems �35� can
readily be envisioned.

FIG. 1. �Color online� Simulated phase-
averaged quadrature distributions 
k��, where k�

represents the number of events that occurred in
such a way that the measured value of Q in Eq.
�8� belongs to the bin with width �Q and central
point Q� �upper� and estimated spin-excitation-
number distributions �lower, front row� for the �a�
CSS 	0�↑, �b� SSS Ŝ��=1� 	0�↑, and �c� Dicke
state 	1�↑. The true number distributions used to
simulate the quadrature distributions 
k�� are
shown in the back row of the lower figures. The
resultant cutoff parameters for minimizing the
AIC �Eq. �15�� are �a� K=1, �b� K=9, and �c�
K=1.
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APPENDIX: PHYSICAL MEANING
OF SPIN QUADRATURE

What is the physical meaning of the quadrature distribu-
tion for collective spin? We preliminarily set �=
 /2 without
loss of generality. The quadrature operator q̂↑ appears as a

result of the approximation of Ĵz in Eq. �4�. Thus the quadra-
ture distribution P↑�q� �Eq. �10�� is originally

Pz�m� � �Ĵz = m	�̂↑	Ĵz = m� . �A1�

For example, Pz�m� for the CSS, �̂↑= 	0�↑↑�0	 �	Ĵx=−N /2�
��Ĵx=−N /2 	 �, can be written as

Pz�m� = ��Ĵz = m�Ĵx = − �N

2
��2

= �dm,−N/2
N/2 �


2
��2

,

�A2�

with dm,−N/2
N/2 �
 /2� being the nontrivial part of the rotation

matrix element for a spin-N /2 system �34�. From the explicit
expression �34�,

dm,−N/2
N/2 �


2
� =

N!
���N/2� + m� ! ��N/2� − m�!

�1

2
�N/2

,

�A3�

and the de Moivre-Laplace theorem, we have a Gaussian
distribution, given by

Pz�m� �
1

�
�N/2�
exp�−

m2

N/2
� , �A4�

as the large-N limit. This form is equivalent to the
�N /2-folded quadrature distribution for the CSS state, which
is given by P↑�q�=↑�q 	 �	0�↑↑�0 	 � 	q�↑.

As another example, the quadrature distribution for the
Dicke state, �̂↑= 	1�↑↑�1	 �	Ĵx=−�N /2�+1��Ĵx=−�N /2�+1 	 �,
can be written as

Pz�m� = ��Ĵz = m�Ĵx = − �N

2
+ 1��2

= �dm,−�N/2�+1
N/2 �


2
��2

,

�A5�

and its large-N limit becomes

Pz�m� �
1

�
�N/2�
�− 2

m2

N/2
�exp�−

m2

N/2
� .

This form is again equivalent to the �N /2-folded quadrature
distribution for the state of a single-spin excitation, that is,
P↑�q�=↑�q 	 �	1�↑↑�1 	 � 	q�↑. Thus the �N /2-folded spin quadra-
ture P↑�q� is just the probability distribution of a collective
spin projecting onto the z axis, i.e., Pz�m�, in the large-N
limit.
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