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Translational transverse shifts drastically affect pattern formation in a noisy system with optical feedback.
These strong nonlocal interactions may give rise to large domains of convective instability resulting in various
types of two-dimensional �2D� noise-sustained structures. These “basic patterns” are investigated and their
thresholds and properties are analytically derived. Corresponding 2D experimental patterns are shown to be in
complete agreement with theory. Surprisingly enough, some patterns that are purely sustained by noise are
found to be nondrifting in contrast with the commonly widespread situation in which convective instabilities
lead to traveling patterns.
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Pattern formation always occurs through the spontaneous
symmetry breaking of a ground state. Just above the thresh-
old corresponding to this symmetry breaking, only perturba-
tions at a critical wavelength are destabilized and expand
through the whole transverse space, giving rise to a variety
of patterns. In the standard analytical approach of spatial
instabilities, the critical wave number that is destabilized at
threshold and its associated growth rate are determined, but
little attention is paid to the question of the emergence
mechanisms and of the transverse spreading of the pattern.
Indeed, whether it occurs globally everywhere in the system
or it rises up locally and then invades the system by different
propagation or amplification processes is an important issue.
This inherent question of spatiotemporal evolution of local-
ized perturbations and the subsequent aspects of propagation
is crucial in extended transverse systems with a transverse
asymmetric nonlocal interaction. This is the case of convec-
tive systems where the reflection symmetry is broken and
patterns may drift at the onset of instabilities. In such sys-
tems, beyond translational symmetry breaking �or first
threshold�, an initial local perturbation at a critical wave-
length is advected away by the nonlocal interaction as it
simultaneously grows. Then, two cases are observed: �i� the
advection is “faster” than the growth of the initial local dis-
turbance so that the system returns locally to its initial ho-
mogeneous equilibrium state; �ii� the growth dominates the
drift upstream so that the system reaches a patterned state.
The first regime reveals the occurrence of a convective insta-
bility �CI� and the second one characterizes the transition to
an absolute instability �AI�. The two associated final states
obtained at long time are the homogeneous state and the
patterned one, respectively. This difference drastically
changes as soon as noise is present in the system �1�. In the
case of the convective regime, the noise acts as a continuous
microscopic perturbation source that is selectively spatially
amplified to give rise to the noise-sustained pattern. Namely,
a noise-sustained structure �NSS� is observed for the convec-
tive regime and a self-sustained pattern for the absolute re-

gime. Thus, a structured state is observed for both regimes
with no simple distinction between them in terms of their
spatiotemporal evolution.

The concepts of convective and absolute instabilities were
first developed in the context of plasma physics �2�, and later
successfully used in hydrodynamics �3�. So far, convective
instabilities leading to noise-sustained structures were theo-
retically predicted in such diverse fields as open flows �4�,
optics �5�, traffic flow �6�, and crystal growth �7�. On the
experimental side, noise-sustained structures were obtained
in hydrodynamics �8–10� and later in a spatially extended
one-dimensional �1D� optical system �1�. In contrast with 1D
systems where the advection does not change the nature of
the pattern �rolls�, in 2D systems the dynamics is richer in
term of new patterns, symmetries, wave-vector selection
with respect to the drift direction, etc. Moreover, most ex-
periments have been achieved in 1D systems and, as far as
we know, NSS have not yet been experimentally evidenced
in a 2D system. The purpose of this paper is to investigate
theoretically and experimentally 2D noise-sustained pattern
formation in an optical system with an asymmetric nonlocal
interaction. The system considered here is a Kerr slice me-
dium with optical feedback where the backward beam is
shifted transversely �11,12�. It allows us to generate and ob-
serve different types of basic 2D experimental noise-
sustained structures that are destabilized from the homoge-
neous state at the first convective threshold.

The paper is organized as follows. Section I briefly recalls
the main concepts peculiar to convective and absolute insta-
bilities. The model in the presence of a translational displace-
ment and its associated dispersion relation are given in Sec.
II. The analytical investigations and predictions, in the ideal
situation in which noise is neglected and the incident wave is
a plane wave, of all the different types of possible basic
“convective modes,” their associated thresholds and proper-
ties are summarized in Sec. III. Then, the experimentally
expected NSS are obtained from numerical simulations car-
ried out in the experimental conditions. In Sec. IV, we deter-
mine the absolute thresholds that are compared afterwards
with the convective ones found in Sec. III. This allows us to
delimit the regions of purely convective modes. Experimen-
tal findings are then compared with analytical predictions in
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Sec. V, showing excellent agreement. Concluding remarks
are given in the final section.

I. CONVECTIVE AND ABSOLUTE INSTABILITIES

The standard theoretical approach of the convective and
absolute instabilities consists in finding the response of the
system to an initial localized perturbation and is provided by
the Green function G�r , t� �3,13�, where r= �x ,y� represents
the spatial coordinate in the transverse plane. The formal
expression of G�r , t� is an integral over a finite band of wave
vectors k= �kx ,ky� that can rarely be calculated. However, its
evolution over long times can be evaluated by the steepest-
descent method �14�. In that case, the response of the system
to a local perturbation is asymptotically determined by the
value of G�r , t� estimated at the complex wave vector k*

corresponding to a saddle point of the underlying linear dis-
persion relation. The dominant wave packet, propagating at
group velocity �r / t�, that corresponds to the wave vector k*

is defined by

� ���k�
�k

�
k*

=
r

t
, �1�

where ��k� is the complex frequency of linear perturbations
satisfying the dispersion relation. The set of rays �r / t� cor-
responding to asymptotically diverging values of G�r , t� de-
fines a wave packet, originating from the initial localized
perturbation and propagating in the spatiotemporal domain
�r , t� �Fig. 1�. Its evolution provides us with the nature, either

convective or absolute, of the instability. In the former case,
the wave packet spreads slower than the drift so that it dis-
appears at long times �convective regime� �Fig. 1�c��. In the
second case, the wave packet spread is faster than its advec-
tion so that a pattern invades the whole transverse space
�absolute regime� �Fig. 1�e��.

The classification of the wave-packet asymptotic evolu-
tions can still be made by the study of the �temporal and
spatial� growth rate ��r / t� �Fig. 1� of the destabilized wave
vectors associated with each ray �r / t� in the packet that con-
stitutes the perturbation �n�r , t�,

�n�r,t� � ei�k·r−��k�t� = e�−ki·r/t+�i�k��tei�kr·r−�r�k�t�

= e��r/t�tei�krr−�r�k�t�,

where �=�r+ i�i and k=kr+ iki are complex to account for
both temporal and spatial growth rates. The analysis of
��r / t� �see the caption of Fig. 1� then gives relations on
��k� that provide the thresholds of convective and absolute
instabilities and their corresponding wave vectors. These re-

lations are summarized in Table I, where Vg
� is the group

velocity of the wave packet and �kr� ���i��kc
=0� means

� ��i

�kx
r �kc

=0 and � ��i

�ky
r �kc

=0.

II. DISPERSION RELATION

Table I shows that the expression of the dispersion rela-
tion ��k� is required to locate the different types of struc-
tures that are destabilized at the convective threshold. This

FIG. 1. Schematic diagram of the different types of wave-packet time evolution from an initial perturbation localized at the origin for the
�a� stable, �c� convectively unstable, and �e� absolute unstable regimes in a 1D configuration. The cases �b� and �d� correspond to the
thresholds of the last two regimes. The control parameter is increased from �a� to �e�. � is the growth rate of the wave packets propagating
at velocities x / t along the rays �x / t� in the spatiotemporal diagrams �x , t�. The convective threshold is observed when the global maximum
of the growth rate reaches zero �point C of case �b�� whereas the absolute threshold is reached when the growth rate of the wave packet
having a vanishing group velocity reaches zero �point A of case �d��. �x / t�L and �x / t�R correspond to the slow and fast frontiers of the wave
packets defined by ���x / t�L or R�=0, which are the front solutions limiting the wave packets.
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relation is obtained from the model of our setup �Fig. 2�
based on the well known feedback optical system first intro-
duced by Akhmanov et al. �15� and later developed by Firth
and d’Alessandro �16�. Here, the model is modified to ac-
count for the nonlocality and for the noise. It reads

�− ��
2 +

�

�t
+ 1	n�r,t� = �F�r��2 + �B�r,t��2 + 
���r,t� ,

�2�

B�r,t� = 
RF0ei���
2

�ei�n�x−h,y,t�g�r�� , �3�

where n�r , t� stands for the refractive index of the nonlinear
nematic liquid crystal �LC� layer; t and r=�x ,y� are the time
and transverse space variables scaled with respect to the re-
laxation time 	 and the diffusion length ld; R is the mirror
intensity reflectivity. We have set �=d /k0ld

2, where d is the
slice-mirror distance and k0 is the optical wave number of the
field. The nonlocality arises from the term �x−h� in the ex-
pression of the backward beam B, where h represents the
lateral shift along the x axis due to the tilted mirror as indi-
cated in Fig. 1. ��r , t� accounts for thermal noise and de-
scribes a Gaussian stochastic process of zero mean and cor-
relation ��*�r , t���r� , t���=
�r−r��
�t− t��, ���r , t���r� , t���
=0. The level of noise is controlled by the parameter �. F is
the forward input optical field; its transverse profile is ac-
counted for using F�r�=F0g�r�, with g�r�=exp�−�x2

+y2� /w2� for a Gaussian pump beam of radius w and g=1
for the uniform �plane wave� case. B is the backward optical
field �16�. The Kerr effect is parametrized by �, which is

positive �negative� for a focusing �defocusing� medium.
Starting from the above equations, in the plane-wave ap-

proximation �g�r�=1� and in the absence of noise ��=0�, a
linear stability analysis provides us with the dispersion rela-
tion. Assuming perturbations of the stationary state n0
=F0

2�1+R� in the form �n�r , t��exp i�k ·r−��k�t� with k
= �kx ,ky�, we obtain the following dispersion relation:

� = �r + i�i = − i�1 + k2 − � sin��k2�exp�ihkx�� , �4�

where �=2RF0
2��� is the reduced intensity control parameter.

The above expression shows that the presence of h leads to a
complex dispersion relation, meaning that, in addition to the
classical temporal instabilities �k real and � complex�, there
are also spatial amplifications �k complex�.

Our interest now is to determine to what extent the trans-
verse shift influences and more importantly affects the for-
mation of the different types of basic patterns or “modes”
that destabilize at convective threshold, their domain of con-
vectivity �up to the absolute threshold�, and their properties.
Interactions and competitions between such patterns are be-
yond the scope of the present work.

III. CONVECTIVE MODES AND THEIR THRESHOLDS

Conditions defining the convective threshold and the as-
sociated wave vectors of a mode for a given value of the shift
h are obtained from Table I and Eq. �4�. The following set of
five equations is then obtained:

� ��i

�kx
r �

kc

= �c�2kcx
� cos��kc

2�cos�hkcx
�

− h sin��kc
2�sin�hkcx

�� − 2kcx
= 0, �5�

� ��i

�ky
r �

kc

= �c2kcy
� cos��kc

2�cos�hkcx
� − 2kcy

= 0, �6�

� ��r

�kx
r �

kc

= − �c�2kcx
� cos��kc

2�sin�hkcx
�

+ h sin��kc
2�cos�hkcx

�� = Vgx, �7�

� ��i

�ky
r �

kc

= − �c2kcy
� cos��kc

2�sin�hkcx
� = Vgy , �8�

�i�kc� = − 1 − kc
2 + �c sin��kc

2�cos�hkcx
� = 0. �9�

Here, we arbitrarily chose the transverse displacement h
along the x axis.

The previous set of Eqs. �5�–�9� leads to two sets of con-
vective solutions defined by

kcy
= 0, �10a�

kcx

�n� =
n�

h
. �10b�

We then investigate the family of instabilities for each of
these two solutions. Condition �10a� obviously leads to solu-

TABLE I. Relations giving the convective and absolute instabil-
ity thresholds and their associated wave vectors.

Convective Absolute

Unstable
wave vectors

k*=kc�R k*=ka�C

Wave vectors
obtained from

��kr� ��i��kc
=0� ��kr� ��i��ka

=0�

��kr� ��r��kc
= �r

t �=Vg� ��kr� ��r��ka
=0�

Thresholds
obtained from

�i�kc�=0 �i�ka�=0

FIG. 2. Schematic sketch of the experimental setup. LC, liquid-
crystal layer; M, feedback mirror; F, input optical field; B, back-
ward optical field; , mirror tilt angle; d, feedback length.
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tions with no modulation along the y axis since kcy
=0, and

they are called in the following subsection “1D-type convec-
tive modes.” In contrast, Eq. �10b� yields the full 2D-type
convective modes, as we shall see in Sec. III B.

A. The “1D” type convective modes: Vertical rolls

In the presence of a lateral shift h of the backward beam
in the horizontal x direction, the instabilities associated with
kcy

=0 display no modulation along the vertical y axis, i.e.,
they appear as vertical rolls whose periodicity is fixed by the
wave number at threshold kc=kcx

. They are similar to those
that would be found in a 1D system restricted along the x
axis as studied in �1�. Here, we extend the previous study to
large values of h and point out that convective pattern for-
mation drastically changes with increasing the value of h.

The convective modes are determined in two steps: first,
from Eq. �5�, we determine the destabilized wave number
kcx

�h� at threshold. Since periodic functions are present in
Eq. �5�, there exists an infinite number of solutions for kcx

�h�
indexed by �p�. No analytical expression of kcx

�p��h� exists
since Eq. �5� is transcendental. We then determine them nu-
merically. Thus, these wave numbers kcx

�p��h� are injected in

Eq. �9� to yield the convective threshold �c
�p��h� as

�c
�p��h� =

1 + kcx

2�p�

sin��kcx

2�p��cos�hkcx

�p��
. �11�

Figures 3 and 4 display the evolution of the first six con-
vective thresholds and their associated wave numbers versus
h �the x subscript is omitted for the sake of clarity�. The
convective threshold curves versus h look like tongues and
evolve very strongly with h. For a given h, instabilities with
different wave numbers may compete in the regimes where
tongues overlap. For each value of p, the associated wave
number decreases continuously �for ��0� with h. The low-
est convective threshold and its associated pattern wave
number are determined graphically �bold curves in Figs. 3
and 4�. The wave number corresponding to this mode
evolves with discontinuity �bold curve of Fig. 4� and the
jumps are associated with a change of index �p� of the lowest
threshold tongue.

The phase and group velocities �V� ,Vg� of the mode se-
lected at the lowest convective threshold are plotted in Fig.
5. We can see that the group velocity is always positive �Fig.
5�b�� whereas the phase velocity can be either positive or
negative, meaning that the rolls can drift upstream �see, e.g.,
h=8 in Fig. 5�a�� or downstream. The change in the sign of
the phase velocity occurs at each local minimum of the low-
est convective threshold curve �Fig. 5� where the pattern is
nondrifting �e.g., h=4.65 or 10.55�. The minimum of each
tongue in Fig. 3 leads to a spatially fixed pattern �null phase
velocity in Fig. 5�a��. This situation corresponds to a lateral
shift h multiple of the half-wavelength �=2� /kcx

�p�. Physi-
cally it means that each time the lateral shift h is such that a
fringe �maximum of transverse modulation� of the backward
field B comes back in phase or in antiphase with a fringe of
the incoming field F, the pattern does not drift and its thresh-

old is minimum since the nonlinear Kerr effect is optimum.

B. The “2D” type convective modes: Horizontal rolls
and rectangular lattices

These modes are specific to the full 2D dynamics and are
associated with the second condition �Eq. �10b��, namely
kcx

�n�= n�
h . As done previously, we determine the variation of

the wave vectors and thresholds versus h by combining the

FIG. 3. Evolutions of the convective thresholds of vertical rolls
vs h for �a� p=1, �b� p=2, �c� p=3, and �d� p=4. �=−17 and �
=1. �e� Evolution of the primary threshold vs h �bold curve�.

FIG. 4. Evolution of the first six convective wave numbers vs h
corresponding to Fig. 3. The bold curve follows the wave number
selected at the primary convective threshold.
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set of Eqs. �5�–�9� with the condition on kcx

�n�. Inserting this
condition in Eq. �9� leads to a series of thresholds for con-
vective instabilities,

�c
�n��h� = �− 1�n

1 + kc
2�n�

sin��kc
2�n��

, n � N �12�

with

kc
2�n� = kcx

2�n� + kcy

2�n� = �n�

h
	2

+ kcy

2�n�. �13�

The striking feature of Eq. �12� is that the threshold is inde-
pendent of h, and is equal to its value in the absence of drift
�h=0�, except for the term �−1�n. So, their wave number and
threshold are constant with h. As a consequence, regardless
of h, the convective thresholds coincide with those of the
system without drift depending on the parity of n,

�c
�n��h,�� = �c

�n��0,�� for n even,

�c
�n��h,�� = �c

�n��0,− �� for n odd.

For negative �positive� values of �, the convective thresholds
are those of the negative �positive� nonlinearity system with-
out drift for even n, and those of the positive �negative�
nonlinearity for odd n.

The specific values of the wave numbers kc
�n� are obtained

for the minimum of �c
�n��h� versus kc

�n� in Eq. �12� that gives

tan��kc
2�n�� = �− 1�n��1 + kc

2�n�� . �14�

This trigonometric equation admits, for a fixed value of n,
multiple wave-number solutions indexed by p, as in Sec.

III A. To summarize, convective solutions are characterized
by two indices �n��p�. Each �n��p� mode with a wave num-
ber kc

�n��p� and associated threshold �c
�n��p� exists within a

bounded domain set by equality �13� since kcy

�n��p� exists only
if

h � hc
�n��p� =

n�

kc
�n��p� . �15�

These two properties are illustrated in Fig. 6, where the evo-
lution of the convective thresholds for the lower indices �n
�4; p�2� is plotted versus the lateral shift h. As explained
above, these thresholds are completely independent of the
shift h and the existence condition selects the domains of the
threshold curves that reduce to half-lines starting at hc

�n��p�.
The transverse displacement does not change here the thresh-
old value nor the mode composition of convective modes,
contrary to the 1D type modes. Only the nature of the pattern
emerging at the lowest threshold depends on h.

FIG. 5. Evolution of the phase and group velocities �V� and Vg,
respectively� for the mode of lowest threshold vs h corresponding
to Fig. 3.

FIG. 6. Evolutions of the 2D type convective mode thresholds
�c

�n��p� vs h for three first values of p. �a� Even values of n �n=0
squares, n=2 diamonds, n=4 triangles� and �b� odd values of n
�n=1 squares, n=3 diamond�. Note that for a given value of n, the
threshold value increases with the p index. The domains of exis-
tence of the modes kc

�n��p� are located to the right of the squares,
diamonds, and triangles ending the half-lines. Letters A–E corre-
spond to threshold values of the patterns of Fig. 8. Threshold curves
�that are degenerate� have been slightly shifted for the sake of vis-
ibility. �=−17, �=1.
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The wave-vector construction of these 2D convective
modes is the following. For a given �n��p� mode, �n� gives
the wave-vector x component defined by kcx

�n�= n�
h and �p�

gives the modulus kc
�n��p� of the wave vectors composing the

mode. Thus, the location of the end of the wave vectors
composing a convective mode �n��p� is defined by the inter-
section of a circle of radius kc

�n��p� and a vertical line defined
by kcx

�n�= n�
h �Fig. 7�a��. An example of wave-vector composi-

tion for the convective mode �n��p�= �2��2� is given in Fig.
7�b�. The given wave-vector location description gives the
two wave vectors k1 �and k3�. The k1 wave-vector end cor-
responds to the dot B� in Fig. 7�a�. Their two opposite wave

vectors k2=−k1 and k4=−k3 also enter the mode composi-
tion since Eq. �14� involves the square of kc

�n�. So such a
convective mode is likely to produce a rectangular pattern
because this yields a weaker symmetry breaking than rolls.

Globally, two types of 2D convective modes are obtained:
horizontal rolls �n=0� and rectangular lattices �n�0�, as il-
lustrated in Fig. 8. Examples of convective modes corre-
sponding to the wave-vector constructions presented in Fig.
7�a� are plotted in Fig. 8 for h=10 in the conditions of Fig. 6.
Depending on the pump parameter �, horizontal rolls and
rectangular lattices are obtained with different wave-number
values and wave-vector compositions. Threshold degeneracy
is observed for, e.g., the horizontal roll mode B and the rect-
angular lattice mode B� leading to mode competition at the
onset of their appearance.

Finally, inspecting the real part of ��k�,

�r�kc� = �c sin��kc
2�sin�hkcx

� , �16�

one can see that the above expression �Eq. �16�� vanishes
regardless of h for the 2D type modes �Eq. �10b��. This im-
plies that the phase velocity of these modes at convective

threshold, defined by v�=
�r�kc�

kc
, is identically zero. In other

words, all the 2D type modes are nondrifting at convective
threshold despite the presence of the drift �h�0�. This strik-
ing feature has also been predicted in other fields of nonlin-
ear sciences �17� and seems not to be specific to our system
but rather to be generic.

C. Numerical simulations

So far, all the convective modes have been obtained for an
ideal configuration where noise is neglected and the incident

FIG. 7. �a� 2D type convective mode wave-vector locations de-
pending on their indexes �n� and �p�. The possible wave-vector
ends are found at the crossings of a circle of radius kc

�n��p� and a
vertical line defined by kcx

�n�= n�
h of the same draw type �continuous

or dashed�. Only the wave-vector ends belonging to the first quad-
rant are represented. Dots labeled A ,B ,C ,D ,E ,B� ,C� correspond
to modes �0��1�, �0��2�, �0��3�, �1��2�, �1��3�, �2��2�, �2��3�. �b� Full
composition of the four wave vectors k1 to k4 contributing to mode
B�. Corresponding near- and far-field transverse modes are depicted
in Fig. 8 and their thresholds in Fig. 6.

FIG. 8. Convective 2D modes corresponding to the A–E wave
vectors presented in Fig. 7. Their convective thresholds are given
by the dots in Fig. 6. Top pictures: near field, bottom: far field.
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wave is a plane wave. However, our experimental system is
composed of a liquid crystal layer that is noisy and pumped
by a Gaussian beam. The changes induced by these two pa-
rameters in the numerical simulations as compared to the
analytical predictions at the primary convective threshold are
the following. Concerning the noise, as mentioned in the
Introduction, when noise is absent ��=0�, any initial pertur-
bation is amplified but advected away such that no pattern is
observed at long times. On the other hand, when noise is
present, a permanent pattern is observed resulting from the
continuous spatial perturbation source. The effect of noise is
thus to sustain the structures in the regime of convective
instability. The level of noise used here, �=0.01, comes from
a previous quantitative determination carried out in our ex-
perimental setup �18�. Taking into account the Gaussian pro-
file for the input beam in the numerical simulations does not
change the global scenario of the convective mode appear-
ance at the primary threshold versus h nor their wave-vector
composition. Only the numerical convective threshold values
are shifted up �as compared to the analytical ones� due to the
finite width of the Gaussian beam. These shifts decrease with
the transverse aspect ratio � �beam width 2w divided by the
pattern wavelength �� calculated in the plane-wave case�. In
the conditions of our experiments, this ratio is around 30
�2w3600 �m and ��120 �m� yielding e.g., at h=0, the
convective threshold value �c=1.52 for the experimental
conditions while the predicted one is �c=1.28 for the ideal
system. Thus, the numerical simulations carried out for real-
istic experimental conditions, i.e., including a Gaussian inci-
dent beam and a noise source term, allow us to predict the
parameter domain in which NSS should be observed experi-
mentally together with their wave-vector content and their
thresholds.

An example of the structures that will destabilize at the
primary convective threshold for different values of the lat-
eral shift parameter h is given in Fig. 9 for a negative non-
linearity ��� and with both noise and Gaussian input beam.
As h increases from 0, horizontal rolls �kcx

=0� appear first up
to h8.2, then vertical rolls �kcy

=0� for 8.2�h�10.5, and
rectangular lattices when h�10.5 �kcx

�n�= n�
h with n�0�. The

threshold values can be lower than those observed for the
system without transverse displacement, as was done experi-
mentally in Ref. �19� �h�8 in Fig. 9�. The sequence of ob-
served noise-sustained modes strongly depends on the sign
of �, since for positive values of � �not represented here�
only horizontal rolls and rectangular lattices are observed at
the primary convective threshold. We do not discuss here
patterns resulting from the combination of convective modes
�e.g., at h8, where the horizontal and vertical roll modes
have the same convective threshold�.

As we can remark from Fig. 9, the NSS mimic the con-
vective modes obtained previously for an ideal system.

IV. ABSOLUTE THRESHOLDS
OF THE CONVECTIVE MODES

Convective modes can be observed as long as the thresh-
old for absolute instabilities �a is not reached. If ���a, the

initial perturbations of the homogeneous state are amplified
all over the space. To know the extension of the convective
and absolute domains of the previous convective modes, we
need to determine their absolute thresholds. As has been de-
tailed in Sec. I, it is necessary to consider complex wave
vectors to characterize the spreading mechanism of the wave
packet resulting from an initial local perturbation. Namely, a
complex wave vector k is defined by �for clarity�

k = kx · e�x + ky · e�y = �kx
r + ikx

i � · e�x + �ky
r + iky

i � · e�y , �17�

where �e�x ;e�y� are the Cartesian orthogonal unitary vectors of
the transverse plane, and �kx ;ky� and the x and y components
of k. Then, k2 reads

�18�

We now plug Eqs. �17� and �18� into the dispersion relation
�Eq. �4��. After lengthy but straightforward calculations, we
obtain

�r = B − � exp�− kx
i h��cos��A�sinh��B�cos�kx

rh�

+ sin��A�cosh��B�sin�kx
rh�� , �19a�

�i = − 1 − A + exp�− kx
i h��sin��A�cosh��B�cos�kx

rh�

− cos��A�sinh��B�sin�kx
rh�� . �19b�

The conditions of Table I expressed in terms of the complex

FIG. 9. �a�–�h� Noise-sustained patterns at the primary threshold
obtained from numerical simulations carried out for the experimen-
tal conditions. The snapshots of the patterns are represented for near
�top� and far �bottom� field, respectively. The numerical simulation
parameters are �a�, �b� h=0 and �=1.52, �c�, �d� h=3.5 and �
=1.62, �e�, �f� h=9.7 and �=1.62, �g�, �h� h=12.5 and �=1.62, �
=1, �=−17, �=180ld, and �=0.01. �i� Synthesis of convective
threshold curves of 1D and 2D type convective modes vs h. The
sizes of the near- and far-field pictures are, respectively, 130
�130ld

2 and 1.77�1.77ld
−2.
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components lead to the following five relations:

� ��r

�ky
r �

ka

= 0, �20a�

� ��i

�ky
r �

ka

= 0, �20b�

� ��r

�kx
r �

ka

= 0, �20c�

� ��i

�kx
r �

ka

= 0, �20d�

�i�ka� = 0. �20e�

These relations determine both the values of the absolute
threshold and of the wave-vector components, i.e., �a, kxa

r ,
kxa

i , kya

r , and kya

i , respectively. We now proceed to the analysis
of the two types of instabilities obtained in the preceding
section, namely the “1D” and “2D” convective modes.

A. “1D” type modes (vertical rolls)

In the case of vertical rolls, the system of the five previous
equations �Eqs. �20a�–�20e�� reduces to three �Eqs.
�20c�–�20e�� since there is no component along the y axis
�see Sec. III A�. No exact analytical expressions of �a, kxa

r ,
and kxa

i have been derived from this set of equations. How-
ever, approximated analytical expressions of the latter vari-
ables can be obtained from a Taylor expansion of the disper-
sion relation �Eq. �4�� following the same approach as in
�1,20�. Here we include the second-order cross-coupling
term 1/2��2� /�k��� �k−kc���−�c�, which was not taken
into account in previous works �1,20�. In these conditions,
the approximated analytical values and numerically solved
exact values of the absolute threshold agree very well even
for nonsmall values of �k−kc� or ��−�c� �Fig. 10�. As can
be seen from Fig. 10, ��−�c� is around 0.4 for h8, which
is beyond the conditions for a Taylor expansion, but taking
into account the cross-coupling term gives an excellent
evaluation of the expected absolute threshold value �black
solid line of Fig. 10� even in these conditions. Indeed, with-
out the presence of the second-order cross-coupling term, the
approximated value of the absolute threshold would be 20%
far from the alternative value leading to large errors for the
width of the purely convective regimes. Finally, the system
�Eqs. �20c�–�20e�� is numerically solved to get exact values
of �a, kxa

r , and kxa

i . One has then to ensure that the obtained
values actually correspond to a saddle point �3,21� by check-
ing first the pinching condition as shown in Fig. 12. From the
example of Fig. 11, at saddle point, the pinching condition of
the curve �i=0 in the complex plane defined by �kr ,ki� �Fig.
12�c�� is satisfied. Secondly, one has to check that this saddle
point corresponds to the one associated with the absolute
threshold. Indeed, Papoff and Zambrini �22� mention that

due to the exponential term in the dispersion relation, there
exists a countable infinity of saddle points. To avoid the non-
desired saddle points, we follow by continuity from the situ-
ation h=0 the one actually corresponding to the absolute
threshold up to the desired h value.

The absolute thresholds obtained in the conditions of Fig.
3 are plotted in Fig. 13. Note, for mode �p�=1 around h=9,
the relatively wide regions of the convective regime �gray
region between dashed and solid lines�. We emphasize here
that for h=8, the mode that destabilizes first does not become
the first absolutely unstable mode. Moreover, by varying the
control parameter � and following the spatiotemporal evolu-
tion of a given convective mode, we have observed that its
phase velocity v� at absolute threshold generally differs from
that at convective threshold. The resulting striking feature is
that a nondrifting mode at convective threshold will be trav-
eling at the absolute one and vice versa.

FIG. 10. Influence of the second-order cross term in the Taylor
expansion of the dispersion relation for nonsmall values of ��
−�c�. Numerically solved exact convective �dashed line� and abso-
lute �black solid line� thresholds for �=−17. In gray, the approxi-
mate values of the absolute threshold with and without a second-
order cross term are shown.

FIG. 11. �i=0 surface in �kr ,ki ,�� space showing the saddle
point around the absolute threshold point �a=1.8 �cross�. Bold
level lines correspond to �=1.6 �below absolute threshold� and �
=1.8 �above absolute threshold�. �=−17 and h=10.
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B. “2D” type modes (horizontal rolls and rectangular lattices)

The situation of 2D type modes is complicated because a
system of five equations should be solved. However, two
observations lead to a significant reduction of the degree of
the system complexity. The first one is that at absolute
threshold

kya

i = 0. �21�

Indeed, there is no transverse displacement along the y axis,
hence there is no spatial amplification along this axis at ab-
solute threshold. This situation is common to other systems
experiencing drift effects as, in particular, for optical para-
metric oscillators in the presence of walk off �23�. The sec-
ond one that is valid only for the horizontal rolls,

kxa

r = 0, �22�

originates, in the absence of modulation along the x axis,
from these modes.

Starting from these properties, we first develop an analyti-
cal expression of the absolute threshold for the horizontal
rolls. Putting Eqs. �21� and �22� in Eqs. �20a�–�20e�, we
straightforwardly obtain B=0 leading to the following sys-
tem �kya

r �0�:

�a exp�− kxa

i h�sin��A� = 1 + A , �23a�

�a exp�− kxa

i h�� cos��A� = 1, �23b�

�a exp�− kxa

i h��2� cos��A�kxa

i − h sin��A�� = 2kxa

i .

�23c�

Substituting Eqs. �23a� and �23b� into Eq. �23c� gives

h�1 + A� = 0. �24�

So, either h=0 or A=−1. Since here h�0, then A=−1 lead-
ing to a nonphysical solution. Thus, no absolute threshold is
found for the horizontal rolls. The analytical development of
the absolute threshold carried out for the rectangular lattices
also leads to a system that does not possess absolute thresh-
olds. We have numerically solved the system of Eqs.
�20a�–�20e� together with the approximated expansion of the
dispersion relation, and no saddle point was found for the 2D
type modes. This is in agreement with the numerical simula-
tions performed with the parameter set of Fig. 3 with h=2,
where only convective horizontal rolls have been found up to
2�c ��� �1.3;2.8�, i.e., in a region where only horizontal
rolls are predicted�. From these investigations, one may con-
jecture that the 2D type modes are purely convective.

V. EXPERIMENTAL RESULTS

The main goal of this section is to compare the experi-
mental patterns observed at the primary threshold with the
analytical predictions and the numerical simulations carried
out in realistic conditions. The comparison is mostly per-
formed on the wave-vector composition of the convective
modes together with the evolution of their threshold �c�h�
and wave number kc with the lateral shift h.

The experiments are performed on the setup already de-
scribed in �18,24� with the main difference of having a feed-
back mirror tilted by an angle  �see Fig. 2�. A 50-�m-thick
layer of E7 homeotropically aligned nematic liquid crystal at
22 °C is irradiated by a 532 nm frequency doubled
Nd:YVO4 laser with a beam radius of 1.8 mm. The response
time 	 and diffusion length ld are 2.3 s and 10 �m, respec-
tively �25�. Thus, for a typical feedback length d=−2 cm, the
angle  is of order of 2.5 mrad for h10ld=100 �m �to be
compared with the pattern wavelength in the conditions of a
uniform pump profile ��=120 �m�. In the following, h will
be given in units of ld to keep the same units as for analytical
predictions.

Starting from the “homogeneous” state �i.e., without any
transverse modulation except for the Gaussian profile� and
increasing the transverse shift h, we successively observe, at
the first convective instability threshold, noise-sustained
horizontal rolls �Figs. 14�c� and 14�d��, vertical rolls �Figs.
14�e� and 14�f��, and rectangular lattices �Figs. 14�g� and

FIG. 12. Pinching condition observed for �i

=0 when crossing the absolute threshold at �
=1.731. �a� �=1.6, �b� �=1.7, �c� �=1.731, and
�d� �=1.8. Same parameters as Fig. 11.

FIG. 13. Evolution of the six first convective �c �dashed lines�
and absolute �a �plain lines� thresholds of vertical rolls vs h for
�=−17, �=1. The gray region corresponds to the width of the
convective regime of mode �p�=1 for h9.
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14�h��. This scenario exactly follows the one predicted by
our analytical study illustrated in Fig. 9. Indeed, starting
from the situation in which the transverse shift h is absent, so
that the hexagon �Figs. 14�a� and 14�b�� is the only possible
absolute pattern, we increase from zero the value of h and
successively recover the three convective modes obtained by
numerical simulations and predicted by our theoretical analy-
sis.

Several qualitative properties of these structures have
been checked.

�i� The convective threshold of the horizontal rolls does
not evolve with h, as can be seen in Fig. 14 for 0�h�8.
This result was predicted in Sec. III B and plotted in Fig. 6.
It reveals that the convective threshold of horizontal rolls is
the same as that of the hexagonal pattern. We have also
checked that the convective threshold of rectangular lattices
remains constant with h for h�10.5.

�ii� The wave number at convective threshold of horizon-
tal rolls or rectangular lattices does not change with h for
constant input intensity parameter �Fig. 15�. This property is
a direct consequence of the previous property of indepen-
dence of the convective threshold upon h �Eq. �12��.

�iii� The rectangular lattices are not drifting at threshold.
Indeed, as we have checked in Fig. 16�c�, the profile of its
cross section does not propagate along the transverse shift
direction, meaning that its phase velocity vanishes. This is
also the case for horizontal rolls. This property is remarkable
since it is nonintuitive and in contrast with the commonly
widespread situation where convection leads to propagating

patterns. Let us mention that there exists a temporal dynam-
ics of the noise-sustained rectangular lattices at convective
threshold. It looks like alternation between the two rolls
composing the pattern.

�iv� The vertical rolls are drifting patterns and have a
threshold value lower than that of the hexagonal structure in
the absence of transverse shift �see region 8�h�10.5 in
Fig. 14�.

We have also performed a quantitative comparison of the
predictions of the model with the experimental observations
in the case of the vertical rolls. Since these patterns have the
same threshold and wave number as those of an equivalent
1D system, we have realized such a system by means of
cylindrical lenses �24�, thus keeping only the wave-vector
component along the transverse shift axis �kx�. The results
are plotted in Fig. 17. The determination of the convective
threshold is carried out by using the instability convective
signature based on the evolution of pattern region upstream

FIG. 14. Near-field �upper row� and far-field �lower row� 2D
experimental noise-sustained patterns observed for different values
of the shift h �in units of ld� at the first convective instability thresh-
old. �=−17, d=−20 mm. �c is measured in units of the hexagon
threshold intensity at h=0 evaluated with 10% accuracy. h=0 hexa-
gons �a�, �b�, h=3.5 horizontal rolls �c�, �d�, h=9.7 vertical rolls �e�,
�f�, and h=12.5 rectangular lattices �g�, �h� are observed. �i� Experi-
mental values of the normalized convective threshold �c�h� /�c�h
=0� �dots�. The dotted line corresponds to its analytical value �Fig.
9�i��. The size of pictures is 1.3�1.3 mm2 �130�130ld

2� for the
near fields and 15�15 mrad �1.77� �1.77ld

−2� for the far fields.

FIG. 15. Evolution of the wave number �in units of ld
−1� of the

horizontal roll mode �0��1� vs h at convective threshold.

FIG. 16. �a� Experimental nondrifting noise-sustained rectangu-
lar lattice for a non-null lateral shift h at first convective threshold.
Upper, near field; lower, far field. �b� Temporal evolution of the
transverse cross section of the pattern along the line indicated by
the dashed arrow showing the nondrifting of the pattern. h=14.6,
�c /�c�h=0�=0.93. The size of pictures �a� and �b� is, respectively,
1.3�1.3 mm2 �130�130ld

2� and 15�15 mrad �1.77�1.77ld
−2�.
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edge �1�. The agreement between the wave-number analyti-
cal curves determined for the equivalent uniform system and
the experimental values �dots� measured for the real system
pumped with a Gaussian beam input is excellent �Fig. 17�b��.
Concerning the convective threshold �Fig. 17�a��, the agree-
ment is also good, taking into account the presence of a
Gaussian profile for the pumping beam that induces shifts in
the threshold values. It is also clear here that because of
convective instability, it is possible to lower by 10% the first
threshold of pattern instability as compared to the absolute
threshold in the absence of nonlocality �h=0� for negative
values of � �or equivalently for negative feedback lengths� as
already mentioned by Ramazza et al. �19,26�.

To summarize our experimental observations, we have
obtained an excellent agreement between the predictions and
the experimental observations on all the points that have
been checked. More specifically, the nature of the modes
predicted at the primary threshold, the variation with h of
their threshold �c�h� and wave number kc, and their phase
velocity v� agree in all details. This confirms that the model
�Eqs. �2� and �3�� accurately describes pattern formation of
our nonlocal system and generalizes what was obtained in
the 1D configuration �1�. In these conditions, we can safely
assume that the theoretical and numerical determinations of
the absolute thresholds are also reliable. Unfortunately, no
experimental check of absolute threshold is available for

these 2D instabilities, in particular because of the possible
interactions of several convective modes, contrary to the 1D
configuration, where the evolution of the instability front uf
provided such a check. Therefore, in the 2D case, we have to
rely on the predicted evolutions and values of �a. As the
calculations of the absolute thresholds �a predict wide re-
gions of purely convective regimes, i.e., domains in which
�c and �a are significantly different, we can expect corre-
sponding experimental large regions of purely convective
patterns. Numerical simulations have also confirmed that the
finite transverse dimension and Gaussian dependence of the
pump transverse profile do not change significantly the rela-
tive values of the thresholds if the aspect ratio � is large,
which is the case here since �30. As simulations carried
out with corresponding parameters confirm that structures
disappear in the absence of noise, we can safely claim that
the patterns obtained experimentally in these conditions just
above the primary convective threshold are noise-sustained
structures.

CONCLUDING REMARKS

In conclusion, we have shown that introducing a trans-
verse shift in a feedback loop of a noisy optical system leads
to convective and absolute instabilities generating noise-
sustained and dynamically self-sustained transverse struc-
tures, respectively. The first ones are convective patterns that
would not be observed if there were no noise in the system.
The second ones are the well known patterns that asymptoti-
cally cover the whole transverse space even in the absence of
noise.

We have analytically predicted, in the ideal situation of a
uniform incident wave, three types of “basic convective pat-
terns” or “convective modes,” namely horizontal rolls, verti-
cal rolls, and rectangular lattices. Numerical simulations car-
ried out for realistic experimental conditions confirm this
analytical study and agree very well with the obtained ex-
perimental noise-sustained modes.

We have also experimentally evidenced the properties and
features of the “convective modes” appearing in our optical
system. In particular, horizontal rolls and rectangular lattices
are purely noise-sustained structures and are nondrifting at
convective threshold. Their related wave number and con-
vective threshold do not evolve with the transverse shift h
that controls the nonlocality. We have also shown that the
vertical rolls can be either noise-sustained or self-sustained
and drift at convective threshold except for very specific val-
ues of h.

Numerous more complex patterns that can be generated
from the basis of these three previous “convective modes”
depending on their domains of existence and their competi-
tion are now under study.

FIG. 17. Experimental evolution of the �a� convective threshold
and �b� wave number of vertical rolls vs h. The continuous lines are
the theoretical values calculated from the analytical expressions of
Eqs. �5� and �11�. Dots are the measured experimental data. Vertical
bars are convective threshold determination errors. �=−15.
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