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The self-guiding of femtosecond light pulses in dense materials is investigated both theoretically and nu-
merically for various laser wavelengths. Special attention is paid on chromatic dispersion, plasma gain, and
multiphoton absorption in the nonlinear evolution of ultrashort filaments. First, by mapping the dispersion
versus the ratio of beam power over the critical power for self-focusing we justify the existence of special
propagation regimes, in which the beam self-channels with weak plasma response. Second, we prove that at
low wavelengths multiphoton losses can quench the emission of free electrons, which justifies recent experi-
mental observations of no apparent electron emission in water.
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I. INTRODUCTION

In the last decade, investigations on laser-produced fem-
tosecond �fs� filaments in gases, liquids, and dielectrics have
been raising considerable interest due to their potential ap-
plications in remote sensing and pulse compression tech-
niques �1–5�. The long-distance evolution of infrared pulses
in gases is nowadays well understood �1�: Optical filaments
develop from the dynamic balance between Kerr focusing
and plasma defocusing, with a limited influence of chromatic
dispersion. This scenario, however, becomes more question-
able for dense media �2–5�. Recent works �4,5� reported fila-
mentation regimes mainly driven by nonlinear losses and
strong dispersion with minor action of ionization in water
experiments. By self-focusing, the beam exhibits an X shape
in space and time, resulting from the interplay between dif-
fraction, normal group-velocity dispersion �NGVD�, and
minimization of energy losses caused by multiphoton ab-
sorption �MPA�. This dynamics was numerically reproduced
in Ref. �6� from a unidirectional paraxial propagation equa-
tion describing the full wave dispersion. NGVD was claimed
to arrest the wave collapse, with no crucial role played by the
plasma nonlinearities. Besides, new propagation regimes in-
volving anomalous group-velocity dispersion �AGVD� were
recently studied from the experimental side in Ref. �7� and
numerically restored in Ref. �8�. They revealed the possibil-
ity of shrinking the pulse both in space and time and to keep
it guided over several diffraction lengths. AGVD opens new
trends in pulse compression techniques and thus deserves a
thorough examination.

The purpose of this work is to discriminate between the
respective roles of dispersion, plasma, and multiphoton
losses in the generic dynamics of femtosecond pulse propa-
gation. This goal is motivated by the following. First, models
exploited in Refs. �4,5� accounted for nonlinear losses, but
they discarded plasma sources. Second, NGVD is known to
arrest Kerr focusing �9–15� in precise regions delimited by
the dispersion lengths and the pulse peak power �11,12�, but
we still ignore how these regions are modified in the pres-
ence of higher-order dispersion and pulse-steepening effects.
Here, we solve this issue by numerically mapping the disper-
sion versus self-focusing from a complete propagation model
applied to both NGVD and AGVD regimes. Furthermore we

show that, for low wavelengths, losses caused by multipho-
ton absorption dominate over plasma defocusing in the self-
guiding process. This assessment is supported by theoretical
arguments.

To start with, we recall the propagation equations in their
“classical” form �see, e.g., Refs. �8,16��, coupling the
electric-field envelope E with the electron plasma density �,
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Here, I= �E�2, ��
2 =r−1�rr�r, k0=n0�0 /c, T=1+ �i /�0��t , D

is the complex-valued dispersion operator treated in Fourier

domain and involves linear losses �Im�D̃�����0�,
�c�cm−3�	1.11�1021/�0

2��m� is the critical plasma density
at the laser wavelength �0, � is the inverse bremsstrahlung
cross section, and n2 is the nonlinear index for the Kerr re-
sponse. This may include a Raman-delayed component as

R�t� = �1 − xdk���t� + xdk��1 + 	2
K
2 �/	
K

2 ���t�e−t/
K sin�	t�

with � ,� being the Dirac and Heaviside distributions. Two
propagation materials will be investigated, namely, silica �8�,
for which xdk=0.18, 	
K=2.6, 
K=32 fs �17�, and water �6�
for which xdk=0. Despite differences in their Kerr responses,
these two media promote similar features in the nonlinear
dynamics of ultrashort pulses. In Eq. �2�, W�I� is the Keldysh
ionization rate for crystals �18� with gap potential Ui and �nt
is the density of neutral atoms. W�I� describes both regimes
of tunnel and multiphoton ionization �MPI�. In the MPI limit,
W�I� can be simplified as �KIK, where �K is the ionization
cross section and K
��Ui /��0�+1� is the number of pho-
tons necessary to promote one electron in the conduction
band. Avalanche ionization characterized by the parameter �
is also included. Electron-ion recombination intervenes
through the function f���=� /
r with 
r=150 fs in silica �16�
and f���=a�2 with a=2�10−24 cm3/ fs in water �6�.

This model also includes space-time focusing and self-
steepening through the operators T ,T−1, as established in
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Refs. �16,19�. It, however, discards nonlinear optical satura-
tion induced by, e.g., 
�5� defocusing susceptibility �20�, to-
gether with vectorial and nonparaxial effects �21�. On the
one hand, 
�5� corrections are nowadays not available for the
materials and wavelengths considered here. Despite this, it
can be shown that the ratio between the fifth and third-order
nonlinear polarization, �P�5� / P�3��	�E /Eat�2, where E is the
laser field and Eat	3�108 V/cm �22�, remains smaller than
0.4 for laser intensities lower than 5�1013 W/cm2. On the
other hand, vectorial as well as nonparaxial contributions are
negligible as long as the transverse size of the beam remains
large compared with the laser wavelength, which will always
be satisfied throughout the coming analysis.

Pulses are assumed to be initially Gaussian,

E�r,t,z = 0� =
2Pin

�w0
2e−�r2/w0

2�−�t2/tp
2�−ik0r2/2f , �3�

where Pin, w0, tp, and f denote their input peak power, waist,
duration, and focal length, respectively.

Preliminary computations �not shown here� enabled us to
recover the nonlinear dynamics of Ref. �6� for propagation in
water at �0=527 nm. With Eqs. �1� and �2�, 100 �m waisted,
170 fs Gaussian pulses focused with f =5 cm were simulated
for 1.3–2.6 �J energies, corresponding to beam powers
ranging from 5 to 10 critical powers for self-focusing �Pcr

	�0
2 /2�n0n2�. Using the same material parameters, we faith-

fully reproduced the spectral intensity, multipeaked temporal
distortions, and maximum fluences formerly published in
Ref. �6�. Moreover, by imposing the limits T ,T−1→1, we
refound quite close results. This property was found to hold
also in fused silica samples: Although higher-order disper-
sion and pulse steepening substantially enlarge spectral blue-
shifts and asymmetrize temporal distributions, they cannot
be responsible—at least for the pulse durations selected �tp

�10 fs�—for either arresting the beam collapse, or support-
ing the self-guiding dynamics by themselves. So, the key
players for pulse propagation appear to be definitively self-
focusing, GVD, plasma gain, and losses. Among the free-
electron sources of Eq. �2�, avalanche was checked to poorly
contribute to the overall electron density. Plasma is then
mainly originating from the photoionization source W�I�.

In what follows, we discriminate the previous effects
separately. To this aim, we shall employ a dimensionless
model derived from Eqs. �1� and �2� in the limit xdk→0,

using the substitutions z→4z0z, t→ ttp, E→
Pcr /4�w0
2�, �

→ �n0
2�c /2z0k0��, with z0=n0�w0

2 /�0, which yields the ex-
tended nonlinear Schrödinger �NLS� equation �26�

i�z� + ��
2 � + ���2� + F��� = 0. �4�

In Eq. �4�, F���=−��t
2�−��+ i����2K−2� only involves

leading-order contributions from GVD with coefficient �

2z0k� / tp

2, where �k�=��
2 k��=�0

, plasma response in the MPI
limit �t�=����2K with �= �2z0k0 /n0

2�c��K�nttp�Pcr /4�w0
2�K,

and MPA with �=2z0Ui�K�nt�Pcr /4�w0
2�K−1.

II. CHROMATIC DISPERSION

Let us first discuss the effect of dispersion, for which F
=−��t

2� in Eq. �4�. Pioneering analyses �9–11� evidenced
that NGVD �k��0� is capable of arresting the beam collapse
by splitting a self-focusing pulse into symmetric peaks in the
time domain. This property is currently recovered in numeri-
cal computations involving input powers moderately above
critical. However, knowing whether dispersion completely
halts the collapse by pulse splitting at very high powers re-
mains an open issue �see, e.g., Refs. �14,15��, as the field
amplitude sharply increases by several decades. In the
present context, however, these peak growths are expected to
be saturated by other nonlinear phenomena, such as plasma
generation. For purely dispersive media, Chernev and Petrov
�11� and Luther et al. �12� proved that NGVD prevents self-
focusing in some ranges of power ratios p= Pin / Pcr as long
as the normalized dispersion length tp

2 /2z0k� is small enough,
i.e., ���crit�p�. The power-dependent bound �crit, derived for
example, in Ref. �12�, has been recalled in the upper half
plane of Fig. 1 ���0� by a dashed line. It signifies that at
high enough powers ����crit�p��, GVD cannot efficiently
compete with Kerr focusing, which still promotes a violent
growth of the optical field. In this configuration, self-
focusing is saturated by plasma generation. The lower solid
curve represents the same boundary inferred from numerous
simulations involving all physical ingredients of Eqs. �1� and
�2� for negligible linear losses. Open circles represent some
initial conditions that do not collapse for silica parameters;
closed ones refer to those yielding plasma saturation, for
which the peak intensity can reach its maximum value,
henceforth noted Ipl. Black stars specify the collapsing states
emerging from water data. They indicate arrest of collapse
through the nonlinear losses, as will be discussed in the next
section.

By “collapse,” we mean self-focused states that reach di-
verging intensity values and follow the route of a singular,
blowing-up solution �13,23�. Only through this singular dy-
namics, high enough intensity levels, capable of triggering a
significant generation of plasma, can be attained. Therefore,
three zones can be deduced from Fig. 1.

FIG. 1. Collapse regions in the plane �� , p�. The solid curves
extrapolate results from numerical integrations of Eqs. �1� and �2�.
The dashed curves represent theoretical limits estimated from Eq.
�4�, above which dispersion inhibits self-focusing.
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�I� A dispersion-dominated domain leading to pure
spreading.

�II� A transient zone in which GVD rapidly inhibits the
self-focusing by pulse splitting. Although the beam intensity
may increase to some extent, it remains smaller than Ipl. The
plasma response is then limited to small amplitudes and has
a minor incidence on the self-guiding.

�III� A Kerr-dominated region, in which chromatic dis-
persion is unable to stop the collapse before significant
plasma generation comes into play.

An equivalent mapping can be done for AGVD regimes
���0�: As long as the total �r , t�-gradient norm of the input
pulse remains below that of the 3D NLS ground state �8,25�,
no blowup occurs from Eq. �4�. The corresponding frontier,
�����crit�p�, is plotted as a dashed line in the lower half
plane of Fig. 1. Again, numerical integrations of the com-
plete Eqs. �1� and �2� shift the zones of no blowup to some
extent, displayed by the solid curves. Differences with
boundaries fixed by the NLS equation �4� are caused by
higher-order dispersion and self-steepening that break the
symmetry of the temporal pulse profile. This prevents the
beam energy from being fully engaged in the collapse pro-
cess and “delays” it noticeably. It is worth noting that, be-
cause conditions for beam collapse become sharper with
anomalous GVD and overcome the basic requirement of a
critical power, self-focusing can here still develop for p�1
in various focusing geometries, when, e.g., a convergent lens
is introduced along the optical path.

Region II in Fig. 1 emphasizes the possibility to select
appropriate pulse parameters to keep the plasma response at
moderate levels. As an example, Figs. 2�a� and 2�c� compare
peak intensities and peak electron densities of Gaussian
pulses conveying high powers in fused silica at 790 nm �k�
	370 fs2 /cm� with the NGVD parameter �=20. For p
� plim=17, plasma occurs, as the wave intensity grows up
to two decades above the initial wave intensity
��15 TW/cm2�. In contrast, with p� plim, plasma density is

small but nonzero. Figures 2�b� and 2�d� provide similar in-
formation for pulses propagating in the AGVD regime at
�0=1550 nm �k�=−280 fs2 /cm� when �=−50 and p=12.5
or 13. For very high values of ���, dispersion prevails over
transverse diffraction. It blocks free-electron emission and
related losses by inhibiting the collapse process even for
powers as high as p=12.5. When p is increased, Kerr-
focusing and plasma-defocusing cycles produce narrow col-
lapse events associated with intensity levels �25 TW/cm2

and peak electron densities �1017 cm−3. Note that, with a
narrower zone II, transitions between spreading and collaps-
ing regimes are sharper than for normal dispersion: Whereas
the latter arrests the collapse by splitting the pulse at lower
intensity values, anomalous dispersion, instead, favors com-
pression in time.

The dynamics of region II are new. They refer to strongly
dispersive regions that maintain the beam in a waveguided
shape �i.e., within a slowly diffracting regime� at relatively
high powers. They, however, do not apply to the pulse pa-
rameters selected in Refs. �4–6� for water propagation. Here,
even with a high NGVD coefficient �k��500 fs2 /cm�, the
laser parameters �tp=170 fs, w0�100 �m, p=5–10� make
the initial pulse always belong to the region III, where chro-
matic dispersion cannot stop self-focusing and plasma gen-
eration �see the black stars in Fig. 1�. This statement thus
sounds in contradiction with the major conclusion of Refs.
�4–6�, according to which an apparent absence of free-
electron emission characterizes the self-guiding of ultrashort
pulses in water cells. To understand the plasma dynamics in
this case, it is, therefore, necessary to revisit the respective
actions of MPI and MPA carefully.

III. PLASMA RESPONSES: NONLINEAR LOSSES
VERSUS FREE-ELECTRON EMISSION

If normal GVD is not efficient enough to arrest the wave
collapse, which key player intervenes to avoid an extensive
production of free electrons? By “extensive,” we mean that
the Kerr and plasma defocusing terms in Eq. �1� mutually
compete to produce peak electron densities reaching their
maximal value. Assuming �� tpW�I��nt, we estimate the
peak optical intensity attainable in the extensive plasma re-
gime, Ipl, by the root of the relation 2n0n2�cIpl= tpW�Ipl��nt.
W�I� has been plotted in the inset of Fig. 3. We have numeri-
cal evidence that among all competitors able to arrest the
wave collapse in the region III of Fig. 1, only MPA can lower
the peak optical intensity below Ipl. So, it seems logical to
concentrate on MPA ��W�I�E / I� and plasma defocusing
��i�E /�c� only. Plasma defocusing works by acting on the
field phase, whereas MPA is a loss term. Although these two
quantities are intimately linked, their respective weights are
dictated by the intensity ratio I* / I, with I*
n0

2�cUi /k0tp
�1/�0tp. By setting I= Ipl, the intensity ratio I* / Ipl yields an
estimate of the MPA efficiency close to plasma saturation for
different wavelengths. The resulting curve has been repre-
sented in Fig. 3 for fused silica, water, and air at various
pulse durations. It shows that the percentage of MPA over the
emission of free electrons �plasma gain� augments all the
more as the laser wavelength is low and the pulse duration is

(a) (b)

(c) (d)

FIG. 2. Peak intensities for Gaussian pulses in fused silica with
�a� p=17 �solid curve� and p=18 �dashed curve� at 790 nm for �
=20 �w0=130 �m; tp=19 fs�; �b� p=12.5 �solid curve� and p=13
�dashed curve� at 1550 nm for �=−50 �w0=260 �m; tp=15 fs�. �c�
and �d� show their corresponding electron densities.
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short. The dotted line illustrates the same ratio for 70 fs pulse
propagation in air �O2� molecules �1�, for which the PPT
�Perelomov et al.� �24� ionization rate was employed. Here,
MPA becomes negligible compared with MPI. On the whole,
Fig. 3 shows the ability of the laser wavelength �0 to en-
hance the role of multiphoton losses in dense media.

The crucial role of the laser wavelength can be confirmed
by means of a quasi-self-similar analysis based on Eq. �4�. It
is well known �26,27� that along the collapse stage the pulse
self-focuses with a typical radius R�z , t� as ���
→���� /R�z , t�, where �
r /R�z , t� and � is the Townes
mode ���0�	2.2� reached in the limit R→0 while �

− 1

4R3Rzz�0. We can thus construct a dynamical system for �
measuring the weights of MPA and plasma defocusing as
potential competitors halting the wave collapse. Considering
only photoionization players in F��� yields near the first
collapsing time slice �t=0�,

�z 	 C�R��−
�

K
+

Rz

R
�
�K

8

�K − 1��2�0�
�K + 1�2 � , �5�

where Rz�0 and C�R� is a positive factor �R2−2K. This re-
lation shows that the self-focusing process can be arrested
��z�0� by MPA rather than by MPI, whenever the nonlinear
compression rate �Rz /R� satisfies in physical units

�Rz

R
� �

n2I*

�0

�K + 1�2

K3/2�K − 1�


32�

�2�0�
, �6�

which is directly related to the laser wavelength �I*�1/�0,
K��0�. The compression rate �Rz /R� is linked to the ratio of
peak intensity over the initial intensity. It strongly increases
near the collapse point and at small enough wavelengths,
nonlinear losses can actually be the key player maintaining
the beam in a self-channeled state.

To verify the previous property, we performed numerical
simulations from Eqs. �1� and �2�, using the pulse parameters
defined above for water propagation at 527 nm with an input
energy of 2.6 �J �p=10�. Figure 4�a� shows the peak inten-
sity when � and MPA are both set equal to zero �dashed

curve�, and when the plasma defocusing term �i�E /�c is
omitted �solid curve�. Figure 4�b� shows that obtained from
the complete model �1� and �2� �solid curve� and when the
MPA term is removed �dashed curve�. Normal GVD cannot
stop Kerr focusing, as expected from Fig. 1. By setting
D̃���=0, we inferred in this respect that the only �but impor-
tant� action of GVD on the filament evolution is to cut the
plasma range by dispersing the pulse time slices. With �=0,
the maximum intensity remains close to that computed from
the full model, whereas it departs to noticeably higher values
when MPA vanishes. Figure 4�c� details the peak electron
densities for the full model equations �solid curve� and when
MPA is ignored �dashed curve�. In both cases, the �generic�
FWHM diameter of the Gaussian-shaped plasma channel
was observed to be about 1.5 �m. The absence of MPA pro-
motes an extensive plasma generation exceeding by at least
one decade that taking place with nonlinear losses. We ob-
served similar features for shorter pulses with tp=50 fs. This
property was moreover checked to hold at higher powers
�p=20�.

Figure 5 details the on-axis temporal dynamics of the
former pulses in the plane �z , t�. It shows focusing and defo-
cusing cycles over a guiding range of 3 cm, with normal

FIG. 3. I* / Ipl vs �0 for different durations tp in air �70 fs, dotted
curve�, in fused silica �20 fs, dashed curve�, and in water �170 fs,
solid curve; 50 fs, dash-dotted curve�. The inset shows W�I� vs I at
527 nm in water �solid curve�, at 790 nm �dashed curve� and
1550 nm �dotted curve� in silica.

(a)

(b)

(c)

FIG. 4. Peak intensities of 170 fs pulses with w0=100 �m, f
=5 cm �p=10� in water at �0=527 nm for �a� �=MPA=0 �dashed
curve�, with no plasma gain �solid curve�, �b� for the full model �1�
and �2� �solid curve�, and when omitting MPA alone �dashed curve�.
�c� Peak electron densities corresponding to �b�.
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GVD dispersing the pulse along each cycle. It is seen right
away that the dynamics without plasma gain �Fig. 5�b�� is
very close to that of the full model �Fig. 5�a��. In contrast,
when MPA is omitted �Fig. 5�c�� the collapse is arrested by
extensive plasma generation, which couples back on the field
evolution: The defocusing action of the plasma sharply de-
stroys the regular arches at the trailing edge of the pulse.
This dynamics signals a relevant action of the free electrons
onto the self-guiding.

For comparison, Figs. 6�a� and 6�b� depict the propaga-
tion for �0=1 �m when again f =5 cm. We clearly see that
the modification induced by MPA on the plasma response
becomes much smaller as �0 is increased. The peak electron
densities shown in Fig. 6�a� for the full model �solid line�
and when omitting MPA �dashed line� are almost the same.
Here, the FWHM diameter of the Gaussian-shaped plasma
channel is increased to �3 �m due to the larger wavelength.
For the full model, we observe almost the same �mean� peak
electron density as at �0=527 nm, namely, �1019 cm−3. So,
over comparable propagation scales, the amount of free elec-
trons should be four times higher at 1 �m than at 527 nm.
Furthermore, Fig. 6�b� supplies the temporal evolution of the
pulse at 1 �m wavelength. By confronting this subplot with
Fig. 5, it is obvious that the defocusing action of the plasma

has an important impact on the propagation dynamics. In
particular, the trailing edge of the pulse is strongly distorted
by the plasma channel generated by its front part.

Finally, to evaluate the incidence of the focusing geom-
etry onto this dynamics, we performed additional runs using
the same pulse parameters as in Fig. 4, except that f = +�.

(a)

(b)

FIG. 7. �a� Peak intensities of 170 fs pulses with w0=100 �m,
f = +� �p=10� in water at �0=527 nm for the full model �1� and �2�
�solid curve�, with no plasma gain �dotted curve�, and when omit-
ting MPA alone �dashed curve�. �b� Peak electron densities corre-
sponding to �a�.

(a)

(b)

(c)

FIG. 5. �Color online� On-axis temporal dynamics vs z of 170 fs
pulses with w0=100 �m, f =5 cm �p=10� in water at �0=527 nm
for �a� the full model �1� and �2�, �b� for �=0, and �c� for omitting
MPA alone.

(b)

(a)

FIG. 6. �Color online� �a� Peak electron densities of 170 fs
pulses with w0=100 �m, f =5 cm �p=10� in water at �0=1 �m for
the full model �1� and �2� �solid curve�, and when omitting MPA
alone �dashed curve�. �b� On-axis temporal distribution vs z for the
full model at the same wavelength.
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The results shown in Fig. 7 evidence that the predominance
of the nonlinear losses compared with the plasma gain still
holds in parallel geometry. Apart from a shift of the nonlin-
ear focus point to slightly larger propagation distances
�1.3 cm instead of 1 cm�, the results are qualitatively the
same as in the loose focusing geometry with f =5 cm.

IV. CONCLUSION

In summary, we have cleared up the respective roles of
GVD, multiphoton absorption, and plasma defocusing in
condensed transparent media traversed by intense, ultrashort
laser pulses. Chromatic dispersion may arrest the collapse of
high-power pulses provided the normalized GVD length
tp
2 /2z0k�=1/� is small enough for a given power ratio

Pin / Pcr. When dispersion cannot saturate Kerr focusing at
high power levels, there exists a subtle competition between

the nonlinear absorption and the photoionization source. At
low wavelengths, MPA saturates the Kerr compression and
stabilizes the beam over long distances. This scenario applies
to Dubietis et al.’s experiments �4�, for which a propagation
model mainly relying on nonlinear losses �the so-called NLL
model� was proposed. More generally it applies to femtosec-
ond filaments in media with high critical plasma densities �c.
Free electron generation still takes place, but the plasma cou-
pling has a weak influence on the propagation dynamics. The
beam self-guiding is then mainly supported by nonlinear ab-
sorption.
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