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By using exact path-integral Monte Carlo methods we calculate the equation of state of an interacting Bose
gas as a function of temperature both below and above the superfluid transition. The universal character of the
equation of state for dilute systems and low temperatures is investigated by modeling the interatomic interac-
tions using different repulsive potentials corresponding to the same s-wave scattering length. The results
obtained for the energy and the pressure are compared to the virial expansion for temperatures larger than the
critical temperature. At very low temperatures we find agreement with the ground-state energy calculated using
the diffusion Monte Carlo method.
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I. INTRODUCTION

In the last decade, after the first realization of Bose-
Einstein condensation �BEC� in dilute systems of alkali at-
oms �1�, the experimental and theoretical investigation of
quantum degenerate gases has become one of the most active
and fast developing fields in atomic, molecular, and con-
densed matter physics �2�. The effect of interatomic interac-
tions on the properties of ultracold Bose gases has been the
subject of a deep and extensive research activity. As for the
theoretical side, the problem has been addressed from many
different perspectives, both at zero and finite temperature,
focusing on dynamical or equilibrium properties, in various
dimensionalities and geometrical configurations both homo-
geneous and inhomogeneous. Many different methods
have also been used, from simple mean-field approaches to
more advanced and essentially exact quantum Monte Carlo
techniques �2,3�. In particular, the path-integral Monte Carlo
�PIMC� method allows one to calculate, for a given
interatomic potential, the equilibrium properties of a bosonic
system at finite temperature essentially without any
approximation.

The PIMC technique has been applied in the context of
ultracold Bose gases to investigate various thermodynamic
properties in harmonically confined systems both in three �4�
and lower dimensions �5�, and for a detailed study of the
critical behavior and of the superfluid transition temperature
in three- �6,7� and two-dimensional �8� homogeneous
systems.

In the present paper, we report on the results of a PIMC
calculation of the equation of state of a three-dimensional
homogeneous Bose gas as a function of temperature and for
different values of the interaction strength. The main focus
is on the universal character exhibited by the equation
of state in terms of the reduced temperature T /Tc

0, where
Tc

0= �2��2 /mkB��n /��3/2��2/3 is the BEC transition tempera-
ture of an ideal gas of particles of mass m and number
density n, and of the gas parameter na3, incorporating the
effects of interatomic interactions at low temperatures
through the s-wave scattering length a. We consider different
repulsive model potentials �hard-sphere, soft-sphere, and

negative-power potentials� and we explicitly show the uni-
versal behavior of the energy per particle and pressure, both
below and above the transition temperature, if the gas param-
eter is small enough. At low temperatures, we compare the
calculated energy per particle with the results of a diffusion
Monte Carlo �DMC� study carried out at T=0 �9�, and at
high temperatures with the virial expansion of an interacting
gas. We believe that the present microscopic calculation
could serve as a reference study for investigations of the
thermodynamic properties of interacting Bose gases.

The structure of the paper is as follows. In Sec. II we give
a brief overview of the PIMC method of which we use two
different implementations: a fourth-order extension of the
Trotter primitive approximation �for the negative-power po-
tential� and the pair-product approximation �for the hard- and
soft-sphere potentials�. In Sec. III we discuss the results for
the energy per particle and gas pressure as a function of
temperature and interaction strength. Finally in Sec. IV we
draw our conclusions.

II. METHOD

We consider a system of N particles described by the
following Hamiltonian:

Ĥ = −
�2

2m
�
i=1

N

�i
2 + �

i�j

V��ri − r j�� , �1�

with different models for the spherical two-body interatomic
potential V�r�:

�1� Hard-sphere �HS� potential, defined by

VHS�r� = �+ � �r � a� ,

0 �r � a� ,
�2�

for which the hard-sphere diameter a corresponds to the
s-wave scattering length.

�2� Soft-sphere �SS� potential, defined by

VSS�r� = �V0 �r � R0� ,

0 �r � R0� ,
�3�

with V0�0. In this case the scattering length is given by
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a = R0�1 −
tanh�K0R0�

K0R0
	 , �4�

with K0
2=V0m /�2. For finite V0 one has always R0�a,

while for V0→ +� the SS potential coincides with the HS
one with R0=a. In the present calculation the range of the SS
potential is kept fixed to the value R0=5a and the height V0
is determined to give the desired value of a.

�3� Negative-power �NP� potential, defined by

VNP�r� = �/rp, �5�

with ��0 and the integer p�3. For this potential the
scattering length is given by �10�

a = 
2m�/�2

�p − 2�2�1/�p−2��„�p − 3�/�p − 2�…
�„�p − 1�/�p − 2�…

, �6�

where ��x� is the gamma function. In the present calculation
we use p=9, which yields a= �2m� /49�2�1/7��6/7� /��8/7�.

The universal regime in the plane na3-T /Tc
0 is analyzed

by performing PIMC simulations using the above three
potentials with the same value for the gas parameter na3.

The partition function Z of a bosonic system with inverse
temperature 	= �kBT�−1 is defined as the trace over all

states of the density matrix 
̂=e−	Ĥ properly symmetrized.
The partition function satisfies the convolution equation

Z =
1

N!�P
� dR
�R,PR,	�

=
1

N!�P
� dR �� dR2 ¯

�� dRM
�R,R2,�� ¯ 
�RM,PR,�� , �7�

where �=	 /M, R collectively denotes the position vectors
R= �r1 ,r2 , . . . ,rN�, PR denotes the position vectors with
permuted labels PR= �rP�1� ,rP�2� , . . . ,rP�N��, and the sum
extends over the N! permutations of N particles. The calcu-
lation of the partition function in Eq. �7� can be mapped to a
classical-like simulation of polymeric chains with a number
of beads M equal to the number of terms of the convolution
integral. In a PIMC calculation, one makes use of suitable
approximations for the density matrix 
�R ,R� ,�� at the
higher temperature 1/� in Eq. �7� and performs the multidi-
mensional integration over R, R2 , . . . ,RM as well as the sum
over permutations P by Monte Carlo sampling �11�. The
statistical expectation value of a given operator O�R�,

O� =
1

Z

1

N!�P
� dRO�R�
�R,PR,	� , �8�

is calculated by generating stochastically a set of configura-
tions �Ri�, sampled from a probability density proportional to
the symmetrized density matrix, and then by averaging over
the set of values �O�Ri��.

Various approximations have been used for the density
matrix at the high effective temperature M /	. In a first
approach, one relies on the exact operator formula

e−��T̂+V̂�+��2�/�2��T̂,V̂� = e−�T̂e−�V̂, �9�

and approximates it in the limit �→0. The lowest order is
known as primitive approximation �PA�

e−��T̂+V̂� = e−�V̂/2e−�T̂e−�V̂/2 + O��3� , �10�

and generate results for the energy with a quadratic depen-
dence on �. The convergence to the exact result is guaranteed
by the Trotter formula �12�,

e−��T̂+V̂� = lim
M→�

�e−�T̂e−�V̂�M , �11�

but, from a practical point of view, PA is not accurate enough
for studying systems at temperatures below the superfluid
transition �13�. In order to improve the accuracy of this ap-
proach, we have calculated the properties of the gas with the
NP potential by means of a higher-order scheme based on the
operatorial decompositions proposed by Chin �14�,

e−�Ĥ � e−v1�Ŵa1e−t1�T̂e−v2�Ŵ1−2a1e−t1�T̂e−v1�Ŵa1e−2t0�T̂,

�12�

where v1, v2, t1, and t0 are parameters to be optimized and

Ŵa1
and Ŵ1−2a1

are generalizations of the Takahashi-Imada
effective potential �15�. Chin’s action �CA� is accurate to
fourth order in � but allows for a practical sixth-order depen-
dence by adjusting some free parameters of the decomposi-
tion �16�.

An alternative approximation for the high temperature
density matrix is based on the pair-product ansatz �PPA� �11�

FIG. 1. �Color online� Energy per particle and pressure of a
Bose gas in the normal phase as a function of temperature. The gas
parameter is na3=10−6. Solid symbols �blue online� refer to E /N
−3kBT /2: HS potential �circles�, SS potential �diamonds�. Open
symbols �red online� refer to P /n−kBT: HS potential �circles�, SS
potential �diamonds�. Statistical error bars are smaller than the size
of the symbols. The virial expansion �21� is represented by lines
�blue online�: HS potential �solid line�, SS potential �long-dashed
line�. The virial expansion �20� is represented by lines �red online�:
HS potential �short-dashed line�, SS potential �dotted line�.
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�R,R�,�� = �
i=1

N


1�ri,ri�,���
i�j


rel�rij,rij� ,��

rel

0 �rij,rij� ,��
. �13�

In the above equation 
1 is the single-particle ideal-gas
density matrix


1�ri,ri�,�� = 
 m

2��2�
�3/2

e−�ri − ri��2m/�2�2��, �14�

and 
rel is the two-body density matrix of the interacting
system, which depends on the relative coordinates rij =ri
−r j and rij� =ri�−r j�, divided by the corresponding ideal-gas
term


rel
0 �rij,rij� ,�� = 
 m

4��2�
�3/2

e−�rij − rij� �2m/�4�2��. �15�

It can be shown �11� that PPA, Eq. �13�, is more accurate
than the simple PA, Eq. �10�, especially when the tempera-
ture of the system is very low and the interactions are
of a hard-core type. We have used the PPA approach for the
simulations with the HS and SS potentials which, in fact,
cannot be strictly used in the first approach due to their
discontinuous character.

The two-body density matrix at the inverse temperature �,

rel�r ,r� ,��, can be calculated for a given spherical potential
V�r� using the partial-wave decomposition


rel�r,r�,�� =
1

4�
�
�=0

�

�2 � + 1�P��cos �

� �
0

�

dke−��2k2/mRk,��r�Rk,��r�� , �16�

where P��x� is the Legendre polynomial of order � and  is
the angle between r and r�. The functions Rk,��r� are
solutions of the radial Schrödinger equation

−
�2

m

d2Rk,�

dr2 +
2

r

dRk,�

dr
−

��� + 1�
r2 Rk,�� + V�r�Rk,� =

�2k2

m
Rk,�,

�17�

with the asymptotic behavior

Rk,��r� =� 2

�

sin�kr − � �/2 + ���
r

, �18�

holding for distances r�R0, where R0 is the range of the
potential. The phase shift �� of the partial wave of order � is
determined from the solution of Eq. �17� for the given
interatomic potential V�r�.

For the HS potential a simple analytical approximation
of the high-temperature two-body density matrix due to
Cao and Berne �17� has been proven to be highly accurate.
The Cao-Berne density matrix 
rel

CB�r ,r� ,�� is obtained
using the large momentum expansion of the HS phase
shift ���−ka+ �� /2 and the large momentum expansion
of the solutions of the Schödinger equation �17�
Rk,��r���2/� sin�k�r−a�� /r. This yields the result


rel
CB�r,r�,��


rel
0 �r,r�,��

= 1 −
a�r + r�� − a2

rr�

� e−�rr�+a2−a�r+r����1+cos �m/�2�2��. �19�

In the case of the SS potential, we calculate numerically

rel�r ,r� ,�� from Eqs. �16�–�18�. In the case of the HS po-
tential, we use both the density matrix determined numeri-
cally and the Cao-Berne approximation �Eq. �20��. We have
verified that in all cases the two procedures give indistin-
guishable results for the HS interaction within the present
statistical uncertainty.

FIG. 2. �Color online� Energy per particle and pressure of a
Bose gas in the normal phase as a function of the temperature for
na3=10−4. Same notation as in Fig. 1, except for the results of the
energy for the NP potential, shown here as squares �blue online�.
Whenever not shown, the error bars are smaller than the symbol
sizes.

FIG. 3. �Color online� Energy per particle and pressure of a
Bose gas in the normal phase as a function of the temperature for
na3=10−2. Same notation as in Figs. 1 and 2. Error bars are smaller
than the symbol sizes.
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III. RESULTS

PIMC simulations have been carried out for a Bose gas
with periodic boundary conditions and with N ranging from
64 to 1024. In all the calculations finite size effects have
been checked to be smaller than the reported statistical
uncertainty.

A. Normal phase

At high temperatures n�T
3 �1, where �T=�2��2 /mkBT is

the thermal wavelength, the equation of state of the gas can
be calculated from the virial expansion

PV

NkBT
= 1 + a2�T�n�T

3 + ¯ , �20�

where we considered only the contribution arising from the
second virial coefficient a2�T�. The corresponding virial ex-
pansion of the energy per particle can be calculated using
standard thermodynamic relations and one finds �18�

E

N
=

3

2
kBT�1 + a2�T�n�T

3 + ¯ � . �21�

For a noninteracting Bose gas the second virial coefficient
can be promptly calculated with the result a2

0=−1/�25, de-
termined by statistical effects. For a gas of particles interact-
ing through a repulsive interatomic potential a2�T� can be
calculated through a summation over partial waves �19�

a2�T� = a2
0 −

�8

�
�

�=0,2,4,. . .
�2 � + 1��

0

�

dke−�2k2/mkBT����k�
�k

.

�22�

For bosons, the sum in Eq. �22� only includes even partial
waves. The �th partial-wave phase shift ���k� in the above
equation is obtained from the solution of the Schrödinger
equation �17� for the given potential V�r� with the boundary
condition �18�. If the thermal wavelength is much larger than
the range of the potential, �T�R0, one obtains, to lowest
order, the following result:

a2�T� − a2
0 = 2

a

�T
+ ¯ , �23�

which only depends on the scattering length a.
In Figs. 1–3, we present the PIMC results for the energy

per particle E /N and pressure P in the normal phase

FIG. 4. �Color online� Energy per particle and pressure of a
Bose gas in the superfluid phase as a function of temperature. The
gas parameter is na3=10−6. Solid symbols �blue online� refer to
E /N: HS potential �circles�, SS potential �diamonds�. Open symbols
�red online� refer to P /n: HS potential �circles�, SS potential �dia-
monds�. Statistical error bars are smaller than the size of the sym-
bols. The horizontal bar �green online� corresponds to the ground-
state energy per particle E0 /N of a HS gas calculated using DMC.
The lines correspond to a noninteracting gas: the solid line �blue
online� refers to the energy per particle and the dashed line �red
online� to the pressure.

FIG. 5. �Color online� Energy per particle and pressure of a
Bose gas in the superfluid phase as a function of the temperature for
na3=10−4. Same notation as in Fig. 4, except for the results of the
energy for the NP potential, shown here as squares �blue online�.
Whenever not shown, the error bars are smaller than the symbol
sizes.

FIG. 6. �Color online� Energy per particle and pressure of a
Bose gas in the superfluid phase as a function of the temperature for
na3=10−2. Same notation as in Figs. 4 and 5. Error bars are smaller
than the symbol sizes.
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�T�Tc� for three different values of the gas parameter:
na3=10−6 �Fig. 1�, na3=10−4 �Fig. 2�, and na3=10−2 �Fig. 3�.
In order to emphasize the deviations from the classical re-
sults we plot the quantities E /N−3kBT /2 and P /n−kBT. We
also plot the corresponding virial expansions from Eqs. �20�,
�21� with the second virial coefficient a2�T� calculated using
Eq. �22� for the HS and SS potentials. For the smallest value
of the interaction strength, na3=10−6, we find very good
agreement between the HS and SS results and with the virial
expansions down to temperatures close to the transition tem-
perature. At na3=10−4, the virial expansion still provides a
good approximation in the whole temperature regime and
deviations are found only at the lowest temperatures T�Tc

0.
On the other hand, universality is maintained only for low T
since differences between the HS and SS potentials start
to become visible for temperatures T /Tc

0�4. Finally, for
the largest interaction strength na3=10−2, the universal be-
havior fixed by the scattering length a is lost in the whole
temperature range. For the HS potential, agreement with the
virial expansion is found only at the largest temperature.

Concerning the results for the NP potential obtained with the
CA approximation, notice that already for na3=10−4 the sta-
tistical uncertainty is significantly larger than the one corre-
sponding to results for the HS and SS potentials obtained
using the PPA. This is due to the large separation in scale
between the range of interactions and the mean interparticle
distance which occurs in dilute systems. For very small val-
ues of the gas parameter na3 the algorithm based on the PPA,
which is constructed from the exact solution of the two-body
problem, converges much faster than the one based on the
CA. For example, at T=2Tc

0 and na3=10−4, the calculation
for the NP potential has been performed using up to
M =200 beads in contrast to only M =12 in the case of the
HS and SS potentials. For the smallest value of the interac-
tion strength, na3=10−6, and especially for temperatures be-
low the transition temperature, the calculation using the CA
approach becomes much more computationally demanding
due to the large number of beads required.

TABLE I. Energy per particle E /N �in units of kBTc
0� for the HS and SS potentials and different values of

the gas parameter na3=10−6, 10−4, 10−2. In parentheses we give the statistical errors.

E /N �kBTc
0�

na3=10−6 na3=10−4 na3=10−2

T /Tc
0 HS SS HS SS HS SS

0.10 0.022�1� 0.021�1� 0.093�1� 0.093�1� 0.577�5� 0.499�1�
0.25 0.043�2� 0.042�1� 0.111�2� 0.110�1� 0.586�4� 0.506�1�
0.50 0.160�4� 0.158�3� 0.214�4� 0.218�4� 0.639�5� 0.606�4�
0.75 0.402�5� 0.412�7� 0.466�11� 0.454�6� 0.856�13� 0.885�13�
1.00 0.816�10� 0.819�6� 0.891�13� 0.902�15� 1.380�34� 1.425�14�
2.00 2.540�6� 2.541�5� 2.665�13� 2.675�8� 3.328�4� 3.090�3�
4.00 5.694�5� 5.692�5� 5.818�7� 5.821�5� 6.458�3� 6.196�3�
10.0 14.817�5� 14.821�5� 14.956�4� 14.943�3� 15.527�6� 15.312�4�
20.0 29.885�5� 29.880�5� 30.023�4� 29.989�2� 30.615�11� 30.374�4�

TABLE II. Pressure P /n �in units of kBTc
0� for the HS and SS potentials and different values of the gas

parameter na3=10−6, 10−4, 10−2. In parentheses we give the statistical errors.

P /n �kBTc
0�

na3=10−6 na3=10−4 na3=10−2

T /Tc
0 HS SS HS SS HS SS

0.10 0.021�1� 0.021�1� 0.095�1� 0.094�1� 0.676�6� 0.514�1�
0.25 0.037�2� 0.035�1� 0.107�2� 0.106�1� 0.680�4� 0.520�2�
0.50 0.116�3� 0.114�2� 0.183�4� 0.180�4� 0.724�4� 0.582�3�
0.75 0.280�4� 0.286�6� 0.355�7� 0.347�4� 0.890�8� 0.761�8�
1.00 0.556�7� 0.558�4� 0.648�10� 0.651�10� 1.264�16� 1.109�8�
2.00 1.708�4� 1.706�3� 1.835�9� 1.832�5� 2.572�3� 2.223�3�
4.00 3.808�4� 3.807�3� 3.937�5� 3.924�4� 4.716�4� 4.308�3�
10.0 9.891�4� 9.893�3� 10.028�3� 9.995�2� 10.954�8� 10.378�3�
20.0 19.936�3� 19.932�3� 20.075�4� 20.024�2� 21.335�10� 20.416�3�
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B. Superfluid phase

The determination of the transition temperature from the
equation of state is very delicate as it involves a slight
change of the energy vs T dependence at Tc. Its precise de-
termination would require the calculation of the specific heat.
Other observables, like the superfluid density and the con-
densate fraction, give a direct signature of the transition
�6,7�. The most reliable results so far give the following shift
of the transition temperature Tc �7�:

Tc − Tc
0

Tc
0 = �1.29 ± 0.05��na3�1/3, �24�

holding for very small values of the gas parameter. For the
values of na3 used in the present study, the above equation
yields estimates of Tc ranging from 1% to 30% above Tc

0. We
are not interested here in the calculation of Tc and the focus
is only on the precise determination of the equation of state.

In Figs. 4–6, we show results for E /N and P /n in the
superfluid phase �T�Tc� for the three values of the gas pa-
rameter: na3=10−6 �Fig. 4�, na3=10−4 �Fig. 5�, and
na3=10−2 �Fig. 6�. To emphasize the effects of interactions in
Figs. 4 and 5 we also plot the energy per particle and the
pressure of an ideal Bose gas. For na3=10−6 and na3=10−4

we see very small differences between the results of the HS
and SS potentials �notice the large statistical uncertainty in
the results of the NP potential at na3=10−4�. For the largest
value of na3 we still find good agreement between the results
of the HS and NP potentials, while significant differences
are found between the HS and SS potentials. At very low
temperatures, the PIMC results agree with the ground-state
energy per particle E0 /N obtained for the HS potential
using the DMC method �9�. For the three values of the gas

parameter used in the present study the results are �in units of
kBTc

0�: E0 /N=0.019 05 �2� at na3=10−6, E0 /N=0.091 85 �8�
at na3=10−4, and E0 /N=0.5840 �4� at na3=10−2.

The PIMC results for E /N and P /n obtained using the HS
and SS potential at the various temperatures and for the three
values of na3 are reported in Tables I and II. Finite
size effects are relevant only in the simulations performed at
T=Tc

0 because of the vicinity to the critical point. For ex-
ample, in the case of the HS potential at na3=10−4 we find
for this temperature the result: E / �NkBTc

0�=0.935 �7� with
N=64 and E / �NkBTc

0�=0.891 �13� with N=1024.

IV. CONCLUSIONS

In conclusion, we have carried out, using exact PIMC
methods, a precision calculation of the equation of state of an
interacting Bose gas as a function of temperature and
interaction strength. The universal character of the equation
of state at low temperatures and small values of the gas
parameter is pointed out by performing simulations with dif-
ferent interatomic model potentials. Above the transition
temperature we compare our results for energy and pressure
with the high-temperature expansion based on the second
virial coefficient. The inclusion of tables for both energy and
pressure is intended as a reference for future studies of the
thermodynamic properties of interacting Bose gases.
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